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Abstract: Most of the current, popular approaches to monitoring real driving NOx emissions are
based on direct measurement. However, due to the uncertainty of sensor-based measurements,
such methods cannot always be used to accurately screen out the malfunctions of an emission
control system. In this paper, a random forest (RF) model which extracts information from on-board
diagnostics (OBD) data streams transmitted by a remote emission management vehicle terminal
(REMVT) is proposed to provide a specific emission method for the online screening of high NOx
emissions. First, two particular forms of modeling, random forest and logistic regression (LR),
are laid out as representatives of nonparametric models and specified linear models. These two
models were trained, validated and compared using OBD data collected from three China-VI heavy-
duty diesel vehicles (HDDVs). The results show that as a data-driven, highly adaptive and robust
learning method, the RF model can more accurately identify an abnormal emission state. Finally,
a further validation was conducted, in which another China-VI HDDV was tested in two typical
states, including a fault state and a normal state. The results indicated that the RF model could clearly
distinguish the out-of-control emission condition from the normal operation state. The outcome of
this research verifies the feasibility of using a machine learning model to process remote OBD data
on HD vehicles and to identify high emissions in the case of an in-use fleet. On this basis, more
sophisticated combined models and multi-stage models could be developed.

Keywords: heavy-duty diesel vehicles; NOx emissions; remote monitoring; on-board diagnostics;
random forest; real driving emission

1. Introduction

Globally, diesel emissions, particularly those from heavy-duty vehicles, have crucial
source effects on local air quality. In China, as reported by the Ministry of Ecology &
Environment, more than 80% and 90% of annual vehicle-related NOx and PM emissions are
attributed to heavy-duty diesel vehicles [1]. Although electrification and hybridization can
effectively eliminate diesel emissions, concerns regarding the range, payload, and security
of these applications have confined the use of such vehicles to mainly urban contexts. In
the short term, heavy-duty diesel vehicles are deemed irreplaceable in road transportation;
hence, curbing diesel emissions during real driving is still a high priority.

As an alternative to laboratory tests, the enforcement of real-world measurement
requirements using the Portable Emission Measurement System (PEMS) through both the
Euro-VI and China-VI regulations has largely secured the lower-pollution operation of new
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diesel vehicles, but given the high cost and limited availability of PEMS testing, PEMS will
never be the panacea for the current large population of in-service vehicles, especially for
developing economic entities. New techniques for enrolling as many in-service vehicles as
possible are required to better monitor and curb diesel emissions [2].

On-board diagnostics (OBD) was first proposed to monitor vehicle performance based
on sensor feedback. This idea has greatly improved the control of vehicle emissions
beyond the scope of type approval. However, although OBD can identify emission-related
faults and warn the driver by illuminating the malfunction indication light (MIL) on the
dashboard, the main limitation of OBD is that it can only help to eliminate these high
emissions if the driver fixes the vehicle in a timely manner.

Uploading key OBD data to a terminal, which is known as the remote emission
management vehicle terminal (REMVT), allows the environmental authorities to be aware
of the emission performance of any vehicle almost as quickly as its driver [3]. Such a
strategy, which was first widely mandated through the heavy-duty China-VI regulation,
could significantly strengthen the supervision of manufacturers’ compliance and drivers’
duties. However, the enormous scale of OBD data uploaded by millions of vehicles in a
second-by-second manner poses a new challenge. New models are needed to accurately
identify high emitters among the in-service vehicle fleet.

Previous studies have developed some mathematical models to compare the emission
factors derived from real-time OBD data with the regulation limits. Zhang et al. calculated
fuel consumption with a carbon balance method based on CO, CO2 and THC data measured
by PEMS and recorded the OBD fuel consumption data using the REMVT, and analyzed
the accuracy and factors influencing the latter [4]. Zhang et al. tested eight HDDVs, which
included the retrofitting by PEMS of in-use China-IV/V HDDVs and China-VI HDDVs
on road, in order to examine the reliability of remote OBD NOx concentrations, showing
good agreement between the remote data and PEMS results, with an average relative error
of approximately 15% [5]. Combining remote data and vehicle sales data, Wang et al.
estimated NOx emission reductions after the implementation of China-VI standards [6].

Most of the high emission identification methods proposed thus far rely on a NOx
sensor downstream of a selective catalytic reduction (SCR) system. This sensor-based
algorithm is theoretically applicable, but in practice, the accuracy and stability of commer-
cialized NOx sensors are far less reliable than those of laboratory and PEMS analyzers
when carrying out high-precision quantifiable measurements. For example, almost all
sensors are sensitive to aspects of ambient environments, including temperature, humidity
and atmospheric pressure. Measurements of NOx concentration may drift and introduce
uncertainty into calculated emission results [7–11].

To remedy this drawback, in this study, a machine learning model using engine oper-
ating features closely correlated with NOx emissions as criteria for the detection of high-
emitters was designed, trained and validated with remote OBD data, at a volume of approx-
imately 90,000 data points obtained from four China-VI-compliant heavy-duty vehicles.

2. OBD Resource
2.1. Test Vehicle and Route Information

OBD data from four different models of HDDV were selected as the research sample.
V1 and V4 were 18-ton trucks, V2 was a 4.5-ton pickup truck, and V3 was a 19-seat bus.
The basic parameters and key configurations of the test vehicles are shown in Table 1.

The vehicles V1–V3 were tested on road, according to the PEMS procedure [2], and
the obtained data were used for the model training and cross-validation.

Many studies have shown that SCR systems can significantly reduce NOx emissions [12–14].
To further validate the capability of the model to identify high emissions, a pair of road
tests, which consisted of a fault state test and a normal state test, were conducted on vehicle
V4 for a comparative analysis. The test route and driving style were entirely determined by
the vehicle owner’s choice. As for the fault state test, the urea injection of the test vehicle
was halted by artificially removing the front temperature sensor of the SCR, resulting in
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abnormal NOx emissions. In the latter half of the test, the emission control monitoring
system repaired the fault through self-diagnosis and brought the uncontrolled emissions
back to a compliant level. The data of vehicle V4 in the fault state and normal state are
denoted as samples S4-a and S4-b, respectively.

Detailed information on the test routes is summarized in Table 2. The mileage represents
the total distance of travel, which is divided into three segments: urban, rural and motorway,
according to the on-road speed (below 55 km/h is referred to as urban, between 55 km/h and
75 km/h as rural, and above 75 km/h as motorway). The duration proportions within the
three segments, along with the corresponding average speeds, are also displayed.

Table 1. Test vehicles and emission control devices.

Vehicle ID Category Displacement (L) Net Power (kW) Net Torque (Nm) Emission
Standard After-Treatments

V1 N3 4.764 162 850

VI DOC + cDPF + SCR + ASC
V2 N2 2.8 93 310
V3 M3 2.36 99 340
V4 N3 6.234 176 950

Table 2. Test route composition (urban, rural, motorway) *.

Sample ID Vehicle ID Mileage
(km)

Urban Rural Motorway

Duration
Proportion

(%)

Average
Speed
(km/h)

Duration
Proportion

(%)

Average
Speed
(km/h)

Duration
Proportion

(%)

Average
Speed
(km/h)

S1 V1 177.4 50.0 30.1 13.9 64.4 36.2 82.0
S2 V2 126.3 59.0 21.3 19.5 62.2 21.5 82.7
S3 V3 137.0 62.9 23.2 17.8 63.5 19.3 84.0

S4-a V4 118.0 72.5 27.1 27.3 61.1 0.2 77.1
S4-b V4 108.7 71.6 23.0 28.4 60.9 0.1 77.5

Note: * Urban (<55 km/h), rural (55 km/h ≤ speed < 75 km/h), motorway (≥75 km/h).

2.2. Test Equipment

The REMVT was provided by the manufacturer of the test vehicles. It is capable of
sending and receiving OBD data via a wireless network. The transmitted data include
important information about the vehicle’s instantaneous operating condition, along with
the environmental temperature, humidity, atmospheric pressure, exhaust flow, GPS data
and NOx concentrations. The system topology diagram is shown in Figure 1.
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3. Data Process and Methodology

After the collection, preprocessing and aggregation of the original OBD data, two
models were constructed, analyzed and evaluated. The whole investigation procedure is
illustrated in Figure 2.
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Figure 2. Investigation procedure.

The OBD data volumes, recorded in seconds, are displayed in Table 3. Each single item
has 19 attributes. The four vehicles have a total volume of approximately 90,000 remote
data points, which were used to support the establishment of the model.

Table 3. Single-item volume and total volume of OBD data.

Vehicle ID Sample ID Single-Item Volume Total Volume

V1 S1 12,225 232,275
V2 S2 10,888 206,872
V3 S3 11,968 227,392
V4 S4-a 6072 115,368

S4-b 6045 114,855

3.1. Data Preprocessing

To exclude unrepresentative data and calculate the emission results, data preprocessing
is required.

The original 1 Hz data streams acquired from the REMVT are preprocessed as follows:

• Cold-start data exclusion: Remove cold-start data with engine coolant temperatures
less than 70 ◦C.

• Negative data correction: In the case of the actual torque percentage being less than
the frictional torque percentage due to occasional, random fluctuations of the sensors,
set both percentages to zero. Set negative readings of the NOx concentration (also
caused by sensor drift) to zero.

• Emission calculation: Sequentially calculate the instantaneous torque, engine work,
NOx emissions and specific NOx emissions from the calibrated data.

The instantaneous NOx emissions and instantaneous work are calculated according to
Annex C A.5.2.3 and L.2.5.2 of the HD China-VI Emissions standard [2]. The instantaneous
specific NOx emissions are obtained from the ratio of the emissions and work.
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3.2. Data Aggregation

In this method, after data preprocessing, samples S1–S3 are used to train the models.
Based on engineering experience, some channels are reprocessed to make it easier for the
model to identify the internal relationship between non-emission features and emission
features. From each sample, we extract 13-channel panel data, constituting 12 channels
of emission-related features, denoted as X = (xtj)T×12, and a channel of the specific NOx
emissions, denoted as Y = (yt)T×1. Here, t stands for the time index measured in seconds,
and T stands for the total length of the effective time span. The information on the channels
is displayed in Table 4.

Table 4. Information on the channels.

Full Name Abbreviation Unit

Exhaust volume flow rate EXVFR m3/min
Exhaust temperature EXT ◦C

Exhaust pressure EXP kPa
Engine coolant temperature ENCT ◦C

Engine speed ENS round/min
Vehicle speed VS km/h

Intake air temperature IAT ◦C
Mass air flow rate MAFR g/s

Commanded exhaust gas recirculation CEGR %
Engine fuel rate ENFR L/h
Engine torque ENT Nm

Work W kW · h
NOx-specific emissions NSE g/kW · h

To smooth out the data and reduce the follow-up computation load, the time span
is divided into N = bT/60c intervals of 1 min (60 s), and the mean of X and Y for the ith
interval is calculated as

−
x ij =

∑60
k=1 x(i−1)·60+k,j

60
, i = 1, · · · , bT/60c, j = 1, · · · , 12 (1)

−
y i =

∑60
k=1 y(i−1)·60+k

60
, i = 1, · · · , bT/60c (2)

Here,
−
x i = (

−
x i,1,

−
x i,2, · · · ,

−
x i,12) are taken as predictors of the instantaneous emission

state. This “divide and average” strategy is a type of data aggregation which has been
widely applied in statistical process control tasks [15]. It has earned its popularity due to
the following advantages:

• Enhancing independence within the data: After data aggregation, there is far less
correlation between the one-minute samples, which better fits the basic assumptions
of most current machine learning methodologies.

• Removing the burden of inefficient computation from the model: Through data
aggregation, redundant information in the original sequence is greatly compressed,
and the number of one-minute samples requires far fewer computing resources for the
model training and validation.

• Improving the normality of the data distribution: According to the central limit theo-
rem, the aggregated data approach a normal distribution regardless of the skewness
and kurtosis of the distribution of the original sequence, which benefits the robustness
of the model inference.

• Reducing the influence of outliers: The potential outliers that emerge due to the
uncertainty of the indications are smoothed out by averaging, which further ensures
the robustness of the model training.
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When the above workflow is finished, the aggregated samples of the three data sets

S1–S3 are merged, being denoted as
−
X = (

−
x ij)N×12 and Y = (

−
y i)N×1, for further utilization.

There are other statistical methods for data aggregation which may have a better
performance in some situations. We chose two typical ones, namely, the 50% quantile

and 90% quantile, for comparison in the construction of the predictor matrix
−
X. These

were used in the same way as in the aforementioned procedure, the only change being the
substitution of the mean operation in Equation (2) into the corresponding quantiles.

3.3. Ground Truth Labeling

To explore the correlation between the features and NOx emissions, the rows of the

panel (
−
X,
−
Y) which represent information about each interval are divided into two categories,

normal and abnormal, and benchmarked according to the specific NOx emissions. Then,
we set the PEMS NOx limit of China-VI, 0.69 g/kWh, as the threshold [2]. Specifically, a
binary label

∼
y i at the ith interval is defined as

∼
y i =

{
0,
−
y i < 0.69g/kW·h

1,
−
y i ≥ 0.69g/kW·h

(3)

In other words,
∼
y i = 0/

∼
y i = 1 is taken as the ground truth of the normal/abnormal

state. (Here, ground truth means information that is acknowledged to be true, demon-
strated by empirical evidence such as direct observation and measurements. The term
is originally borrowed from meteorology, in which “ground truth” refers to information
obtained on the ground during the occurrence of a weather event [16].) Thus, the prob-

lem is converted into a supervised classification task, with each row of
−
X as a vector of

predictors and the corresponding class of the sample
∼
y i as the response. This allows us to

harness a variety of powerful and extensively studied classifiers through machine learn-
ing. Traditional detection methods implemented through direct measurements coupled
with a well-trained classifier on the basis of emission-related features can be expected to
substantially outperform state-of-the-art emission-monitoring systems. In the training of a
classifier, the data from the NOx sensor are still used, but only in the ground truth labeling,
which means that as long as the identification of the category is correct, the precise NOx
emission values will not be included in the model. Thus, for the classification model, a
lower requirement of accuracy is needed for sensor-based emission measurements. Since
the model investigates the mechanisms of high emissions through their relationships with
the engine’s operating features, it is expected to confirm the alarms provided by direct
NOx monitoring, as well as the indications of abnormal operating conditions that direct
monitoring fails to detect. Meanwhile, it is noteworthy that there are only 41 samples with
the label

∼
y i = 1 in the total of 528 samples, which indicates that the total sample should be

considered to be highly class-imbalanced.

3.4. Correlation Coefficient Analysis

Since there are numerous classification models in the literature on statistics and ma-
chine learning, including linear and nonlinear and parametric and nonparametric, it is
important to choose one that fits the cause-and-effect mechanism of NOx emissions, with
the selected features, to the greatest possible extent. To gain insight into the associations
between variables as a guide for model selection, Pearson correlation coefficients between
the features themselves and between the features and NOx-specific emissions are calculated

based on the panel (
−
X,
−
Y).

Figure 3 exhibits a heatmap of the correlation matrix for the considered channels. The
channels are clustered in the figure based on their correlation coefficients, from which it is
revealed that many features are highly correlated, especially the engine fuel rate, engine
torque, mass air flow rate and exhaust volume flow rate. Most of the variables are positively
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correlated, with the commanded exhaust gas recirculation as an exception. The exhaust
gas recirculation system returns part of the exhaust gas from the engine to the intake
manifold, from which it then reenters the cylinder along with fresh air. Due to the large
amount of CO2 contained in the exhaust gas, the maximum combustion temperature of the
mixture in the cylinder decreases, thereby reducing the amount of NOx generated. From
Figure 3, it can be seen that the feature that has the most significant correlation with the
NOx-specific emissions is the engine torque, but the correlation is still far from sufficient
to interpret the variation in the NOx emissions. This suggests that a multivariate model
is required for the prediction of the emission condition. Some of the features show weak
correlations with the specific NOx emissions, such as the engine speed. These features
cannot be simply excluded from the modeling, due to the limited ability of the Pearson
correlation coefficient to capture potential complicated nonlinear relationships between the
variables, the existence of which will be further verified in the following sections.
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Of course, a linear model, or any parametric model of a given form, will carry the
risk of model misspecification. Moreover, the aforementioned collinearity of the features
is a non-negligible factor in modeling which may lead to overfitting [17]. Therefore, it
is preferable to perform a feature selection step before the training, and cross-validation
should be applied to guarantee an objective assessment of the generalization performance
of the model [18,19]. To sum up, a data-driven, highly adaptive nonparametric multivariate
model subjected to corresponding feature selection before and cross-validation after training
is the starting point for our model design.

3.5. Modeling and Evaluation Design
3.5.1. Random Forest

Following the results obtained by correlation coefficient analysis, we chose random
forest (RF) to model the classification task. Other nonlinear learning models, such as
gradient boosting decision tree, support vector machine and neural network, also have
appreciable flexibility, but this comes at the cost of more computational complexity and the
need for more tuning work.

First proposed by Breiman [20], the random forest model is built upon classification
and regression trees (CART) [21]. It constructs a collection of trees from bootstrap sam-
ple sets (bootstrap is a type of resampling method which involves repeatedly sampling
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observations with replacements from the data set to construct multiple sample sets with
differences [22]). For every split of nodes in the generation process of an individual tree, a
subset of features are randomly drawn as candidates, and the best feature and the corre-
sponding best split point are chosen to maximize the improvement of the model fit [23].
For a classification task, the class of a new sample is predicted by a majority vote by the
trees. The bootstrap method for generating sample sets combined with randomly selected
features for node splitting provides the trees with great diversity, enabling them to capture
more information on the training data, while retaining low correlation with each other; this
eventually leads to an effective variance reduction achieved through voting. Using this
strategy, random forest turns the notorious instability of a single tree, which easily leads to
overfitting, into a kind of benefit, hence ensuring the robustness of the classification. In
addition, the random forest model is also simple to train and tune, with the number of
trees, the number of candidate features for each split and the minimum size of the terminal
nodes as the only hyperparameters; a vast body of empirical studies have shown that the
generalization performance of random forest is seldom affected by the particular choice of
these hyperparameters. As an illustration, a single tree is trained using a bootstrap sample

of the panel (
−
X,
∼
Y) (as seen in Figure 4). In the case of random forest, a number of bootstrap

trees are generated to form a committee, each casting a vote for the predicted class.
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As discussed in the correlation coefficient analysis, the predictors are not equally
relevant, with non-negligible collinearity. The generalization performance of a prediction
model can often be improved by learning the importance of each predictor and only
choosing the ones with substantial influence for modeling. To this end, a backward feature
selection step tailored to random forest is added before training. The method is based
on function “rfe” in the R package “caret”, a sketch of which is given below. At first, the
random forest is trained with all 12 of the features, and 10-fold cross-validation is used to
calculate the average prediction accuracy [23]. After this, the features are ranked in terms
of importance based on their contributions to the overall enhancement of node purity at
each split across all the trees. Then, with the feature of the lowest importance removed, the
model is retrained and validated in the same way, through 10-fold cross-validation, and
the average prediction accuracy together with the importance of the remained features is
recorded again. The previous procedure is repeated a preset number of times, as determined
by the user. Among the obtained models, the one with the highest prediction accuracy
determines the features included in the final model. Considering the randomness of the
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above workflow (due to the generation process of the forest and the sample division in
cross-validation), we repeat the procedure ten times and record the frequency with which
each feature is selected to render the results more stable. The features with a frequency of
no less than 0.5 are included in the final model.

After feature selection, 10-fold cross-validation is applied again to test the performance
of the model. To control the randomness of the sampling, the ten folds of samples are
drawn based on a stratified design. To be more specific, in each fold, the samples are drawn
in proportion to the sample sizes of S1–S3. During training, a modification of the basic
model is applied to provide better control for the false discovery rate (FDR) [24]. For the
classification of a sample, an estimate of posterior probability P(

∼
y i = 1

∣∣∣−x i), denoted as P̂(
−
x i),

is provided instead of a definite class label. The probability is estimated by the proportion
of trees for which the sample

−
x i falls into a terminal node labeled as class 1. A threshold

P∗ is needed for the final dichotomy: If P̂(
−
x i) > P∗,

∼
y i is predicted to be 1; otherwise,

∼
y i is predicted to be 0. For the determination of P∗, an additional hyperparameter ω is
introduced. Denoting n01(P∗) and n10(P∗) as the numbers of normal/abnormal samples
misclassified as class 1/0 in the training set, a loss function l is defined as

l(P∗) = ω·n01(P∗) + (1−ω)·n10(P∗) (4)

where P∗ is obtained by minimizing the above loss function. The hyperparameter is tuned
to attain optimal FDR control for the validation set, which can equally be described as best
improving the precision, as mentioned in the following sections.

For the prediction of samples in a validation set, there are four possible cases:
∼
y i equals

0 and is predicted as 0;
∼
y i equals 0 but is predicted to be 1;

∼
y i equals 1 and is predicted as

1; and
∼
y i equals 1 but is predicted to be 0. These four cases are recorded as true negative,

false positive, true positive and false negative. We denote tn, f p, tp and f n as numbers of
the four cases in the validation set, and total as the summation of the four numbers. To
measure the performance of the model, four indicators are used:

Total accuracy = (tp + tn)/total: the ratio of correct classifications across all the
test samples;

Null accuracy = tn/(tn + f p): the ratio of correct classifications across all the test
samples of class 0, which can also be taken as an estimate of 1− α, where α is the prob-
ability of a type-I error (also known as the significance level) in the hypothesis testing
H0 :

∼
y i = 0↔ H1 :

∼
y i = 1 ;

Recall = tp/(tp + f n): the ratio of correct classifications across all the test samples of
class 1, which can also be taken as an estimate of the power in the above hypothesis testing;

Precision =tp/(tp + f p): the ratio of correct classifications across all the test samples
predicted as class 1, which implies that improving the precision is equivalent to controlling
the FDR.

The last two indicators are selected to better evaluate the effectiveness of the model
in making its prediction, especially in consideration of the imbalanced characteristics of
the sample. The trade-off between the two indicators should be considered because for the
same learning model, an increase in the recall will trigger a decrease in the precision in a
cause-and-effect manner. For the sake of our monitoring task, priority is given to precision,
whereas a better recall rate is preferred when the precision is roughly the same.

To obtain more stable results, the 10-fold cross-validation is repeated ten times, through
which the averages of the four indicators are obtained for the final comparison.

3.5.2. Logistic Regression

To further confirm the superiority of the nonlinear, more data-driven random forest
classifier in the screening of out-of-control emission conditions, logistic regression (LR) is
used as a benchmark. Logistic regression, introduced by Cox [25], is an ad hoc generalized
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linear model for classification. Through logit transformation, the posterior probability

P(
∼
y i = 1

∣∣∣−x i) is modeled via a linear function in
−
x i, as follows:

log
P(
∼
y i = 1

∣∣∣−x i)

1− P(
∼
y i = 1

∣∣∣−x i)
= β0 + βT

1
−
x i (5)

Although simple, the model often provides an interpretable view of how the features
affect the response through the vector of the regression coefficients β = (β0, β1), and for
prediction purposes, it can sometimes outperform more sophisticated nonlinear models,
especially when the signal-to-noise ratio of the training data is low.

The components of
−
x i are normalized in advance before training to eliminate the

influence of the discrepancy of magnitudes, a problem which does not affect the training
of the RF model. The subsequent procedures of training and validation are maintained in
parallel with the above subsection to ensure a fair comparison.

For feature selection, the following minimization of the negative log-likelihood func-
tion with a penalty is solved to obtain the estimate of the regression coefficients β = (β0, β1):

β̂ = argmin
β

∑N
i=1

[
log(1 + exp(β0 + βT

1
−
x i))−

∼
y i(β0 + βT

1
−
x i)
]
+ pλ(β1) (6)

The penalty aims to induce β̂ with sparsity, and only features with non-zero regression
coefficients are considered to have a significant impact on the response. A number of
penalty functions have been designed to make this conception work. One can mention,
for example, the least absolute shrinkage and selection operator (LASSO) [26–28], the
smoothly clipped absolute deviation (SCAD) [29], the adaptive LASSO [30,31], the grouped
LASSO [32], the Dantzig selector [33], bridge regression [34] and the elastic net [35,36]. In
this study, the penalty is chosen to be SCAD, which is reputed for its oracle property: under
certain regular conditions, as the number of samples approaches infinity, the estimator β̂
only has non-zero values based on the true support of β, and is root-n-consistent [29]. The
optimization of (6) is computed using the function “cv.ncvreg” in the R package “ncvreg”,
the core of which is the coordinate descent algorithm [37]. The hyperparameter λ in the
penalty function is tuned by 10-fold cross-validation to achieve the best prediction accuracy
as a default. Again, to achieve better stability, we repeat the procedure ten times and record
the frequency of each feature to obtain a non-zero weight in the estimate. The features with
a frequency of no less than 0.5 are retained in the final model.

The model testing step is exactly the same as that used for random forest, with the
same method for determining the threshold P∗, the same four indicators for assessing the
performance of the model, and ten 10-fold cross-validations for ensuring more stable results.

4. Results and Discussions
4.1. Model Comparison through Cross-Validation

Our comparisons of the two types of modeling, preprocessed using three patterns
of data aggregation, are summarized in Tables 5 and 6. Table 5 displays the frequency
with which features were selected in the feature selection step. In the final modeling and
validation step, only features with a selection rate of no less than 0.5 are retained. The
results imply that the important features selected by the two different models vary, from
which we can glean that the interpretability of the features with regard to the response is
highly dependent on the mechanism of the specific model. Table 6 reveals the effectiveness
of the prediction in more detail through the four indicators. For both models, the mean
operation for data aggregation shows the overall best performance, with the 50% quantile
following closely, and the 90% quantile being the least effective. This is in line with our
previous research, in which it was shown that the 90% quantile resulted in significant
uncertainty and could not be taken as a stable representative of NOx emissions [38]. For
all the three modes of data aggregation, random forest outperforms logistic regression,
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which confirms our hypothesis that the relationship of NOx emissions with OBD features is
strongly nonlinear. With higher precision, random forest also maintains the recall rate at an
acceptable level (67.2% and 48.5%, respectively, for the mean mode). As a nonparametric
and highly adaptive learning model, random forest captures further details of the nonlinear
relation and is more robust to the high correlation between OBD features, which still exists
after feature selection. At the same time, as with all other prevailing machine learning
methods, the two models are still premature in treating the class imbalance problem, which
is the main obstacle preventing the acquisition of higher precision and recall rates.

Table 5. Frequency of features selected.

Mean 50% Quantile 90% Quantile

LR RF LR RF LR RF

EXVFR 0 1 0 1 0 0.7
EXT 1 0.7 1 0.8 1 1
EXP 0 0.1 0.8 0.4 0 1

ENCT 1 0.6 1 0.7 0 0.8
ENS 0.1 0.4 1 0.9 1 0.2
VS 0 0.3 1 0.4 1 0.5
IAT 1 0.1 1 0.1 1 0

MAFR 1 0.5 1 0.7 0 0.6
CEGR 1 0.1 1 0.1 0 0.3
ENFR 1 1 1 1 0 0.9
ENT 1 1 1 1 1 1

W 0 1 0 1 0 1

Table 6. Model evaluation.

Mean 50% Quantile 90% Quantile

LR RF LR RF LR RF

Total accuracy 0.933 0.940 0.931 0.928 0.917 0.927
Null accuracy 0.985 0.980 0.980 0.974 0.977 0.978

Precision 0.616 0.672 0.598 0.592 0.463 0.540
Recall 0.315 0.485 0.355 0.405 0.212 0.311

4.2. Trials for More Precision

Focusing on the random forest model with the preprocessing of the mean mode, some
tests and analyses were conducted to better enhance its precision.

Concerning the class imbalance issue, oversampling was applied to the abnormal class
to render the sample sizes of the two classes in a ratio of 1:1 [39]. Trained by the artificially
modified sample, the performance in cross-validation showed no particular advantage.
Although there was some increase in the recall rate, the precision decreased significantly,
which indicates that in such an extremely imbalanced case (with the true normal–abnormal
ratio being over 10:1), oversampling is not a substantive solution to the problem.

From the above study, it can be inferred that there is a limitation on the present
12 features preventing greater precision in the one-minute classification task. However,
it should be kept in mind that the ultimate goal of the system is to screen out any out-of-
control emissions through OBD data which are derived in sequence. A typical requirement
of vehicle manufacturers is that they upload a new batch of information every 10 min.
Observing the time series of the specific NOx emissions based on the one-minute interval
average, as displayed in Figure 5, it can be seen that the abnormal points are concentrated
in only a few time periods, and the state has time continuity. From this discovery, it can be
determined whether an alarm should be set off based on the number of positive signals
given by the classifier within the 10 min window, through which the impact of a single
false discovery can be reduced. Furthermore, combined with the traditional supervision
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method based on the direct measurement of NOx emissions, the whole system is expected
to better serve the real-time online monitoring of emissions.
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5. Model Adaptability Assessment Using External Data

In this part of the study, the validation tests of V4 were conducted, and the results
were analyzed to better illustrate the adaptability of the proposed monitoring model. The
samples S4-a and S4-b, with respect to the fault state and normal state, were preprocessed
and aggregated following the same rules as those used for S1–S3, and the emission states
of the one-minute intervals were predicted by the random forest classifier retrained with

(
−
X,
∼
Y), namely, the full sample of S1–S3 after aggregation and labeling. The CEGR feature

was removed during training due to the lack of corresponding channel information in the
OBD data of V4.

To simulate real online monitoring scenarios, the two predicted state sequences of
S4-a and S4-b were further divided into windows in 10 min increments, with the number
of alarms or, in other words, the number of one-minute states, predicted as abnormal by
the classifier being recorded per window. Meanwhile, the specific NOx emissions per
window were calculated using the ratio of cumulative NOx emissions and cumulative
engine work during the corresponding 10 min period. In practical use, the above two
processing sequences, which represent the learning model and the specific method, are
instantly calculated and transmitted in parallel for real-time monitoring.

Figures 6 and 7 plot the line charts of the two monitoring sequences of S4-a and S4-b.
As seen in Figure 6, at the beginning of the route (corresponding to the first six windows),
the specific emissions of the abnormal case, S4-a, are apparently higher compared to the
normal case, S4-b. Afterwards, the specific emissions of S4-a return to a level comparable
with S4-b due to the fault substitution strategy set by the manufacturer. This setup allows
the vehicle OBD system to activate alternative strategies so as to control the emission level
when a fault is detected. The variations in the lines in Figure 7 show many similarities
with those in Figure 6, and most of the alarms occur around the local maxima of the
specific emissions. These results indicate that the learning model successfully grasps the
fluctuations in the emission process. Half of the windows show at least two signals during
the uncontrolled stage in S4-a, with a peak value of three signals, while in contrast, there is
only one window of two signals within the same period in S4-b. This demonstrates that the
model can effectively distinguish the out-of-control emission condition of S4-a from the
normal operation case.

Nevertheless, the learning model fails to completely capture the high emissions at the
beginning of the route, especially in the case of S4-a. This shortcoming may be ascribed to
two aspects. On the one hand, due to the insufficiency of the training sample, the model
cannot yet fully capture the general rule necessary to discriminate between normal and
abnormal emissions, and the prediction accuracy is expected to be further improved with
the increase in the training sample size. On the other hand, the mechanism of simulated
faults may, to some extent, be different from the given cause of high emissions in actual
working conditions. It should be remembered that the result of cross-validation is only
meaningful if the test data are derived from the same distribution as the training data.
Therefore, to obtain more reliable results in the context of heterogeneity, we recommend
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first clustering the vehicles to be monitored according to the vehicle models, road conditions
and potential faults, and using a learning model trained on data with the same attributes.
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6. Conclusion and Recommendations

In this paper, a random forest classification model using engine operating features
other than NOx signals as the criteria for in-service high-emission diesel vehicle identifi-
cation was proposed, trained and validated using remote OBD data collected from four
China-VI diesel vehicles. The validation results confirm the feasibility of the method. This
RF-based approach has better credibility than NOx signal-oriented methods because a
multi-factor assessment tends to be more stable and reliable.

Compared to a straight-forward comparison between NOx readings and the regulative
limits, this RF-based machine learning model is more effective in recognizing high emissions
induced by cheating. A good example is the artificially lifted thermo-couple upstream of
the SCR in this paper, which according to OBD logic will not be treated as a malfunction;
hence, the environmental authorities will not be alerted of the occurrence of high NOx
emissions. By contrast, for the RF-based algorithm, such a case is not difficult to identify,
because the judgement is not dependent on any sole parameter.
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Several extensions of the present work would be of practical interest. First, the ground
truth labeled according to the calculated value of specific NOx emissions is not always
reliable. A more comprehensive definition of an abnormal state could not only improve
the reliability of the classifier but also render it more independent of the specific emission
method, which will improve FDR control in combined testing [40,41]. Second, after data
aggregation, the sample is taken as independent and identically distributed for modeling,
but in reality, interdependence still exists along the time axis. An autoregressive model of
NOx emissions could be employed and further boosted with a machine learning model
trained on residuals [42]. Alternatively, in a more direct approach, NOx emissions with
time lags could be added as additional features of our proposed classifier. The actual effects
of these modifications should be examined carefully, as they may instead lead to a greater
risk of overfitting. Third, the same kind of modeling could be applied and validated for
the monitoring of emissions of other key pollutants, such as particulate matter. Fourth,
recent research on the random forest model has expanded its functions to include treatment
effect estimation, which has enabled the possibility of cause inference rather than the
prediction of high emissions alone [43]. This indicates that the potential of the RF model is
not limited to monitoring, but also encompasses the quality and design improvement of
core components for vehicle manufacturers. Last but not least, in real applications, a large
amount of OBD data are often monitored simultaneously by the environmental authorities
and manufacturers. The latest computational technologies such as parallel computing and
distributed computing can effectively save time in model updating and validation [44]. In
our view, the study of remote monitoring with the aid of machine learning is an exciting
and promising area for future research.
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