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Abstract: Land surface temperature (LST) is an essential parameter for studying environmental
and ecological processes and climate change at various scales. It is also valuable for studies of
evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. Since
meteorological station data can provide a limited number of point data, satellite images that provide
high temporal and spatial resolution LST data in large areas are needed to be used in all these
applications. In this study, the usage of satellite-derived LST images was investigated in comparison
with meteorological station data measurements in Istanbul, which has heterogeneous urban structures.
LST data were obtained from Landsat 5 TM, Landsat 8 OLI/TIRS, and Terra Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite images using the Google Earth Engine (GEE) cloud
platform. The linear correlation analysis performed between Landsat LST and MODIS LST images
gave a high correlation (r = 0.88). In the correlation analysis, hourly air temperature and soil
temperature meteorology station data provided by the State Meteorological Service and LST values
obtained from images taken from Landsat TM/TIRS and Terra MODIS were used. The correlations
between air temperatures and Landsat LST ranged from 0.47–0.95 for 1987–2017 to 0.44–0.80 for
MODIS LST for 2000–2017. The correlations between 5 cm soil temperatures and Landsat LST ranged
from 0.76–0.93 for 2009–2017 to 0.22–0.61 for MODIS LST 2000–2017. In addition, linear regression
models produced with meteorological parameters and LST values were applied to 2022 LST maps to
show the spatial distribution of these parameters, and then, accuracy analyses were made.
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1. Introduction

Land surface temperature (LST) is a measure of the temperature of the Earth’s surface.
It is an important variable in meteorology and climate science as it affects the energy and
water exchange between the atmosphere and the Earth’s surface. Accurately understanding
LST at the global and regional levels helps evaluate land surface–atmosphere change
processes in models and, when combined with other physical properties, such as vegetation
and soil moisture, provides a valuable measure of surface conditions [1]. LST is typically
measured using satellite imagery or ground-based sensors. While evaporation and urban
heat islands can be monitored with LST, it is also used in agriculture, disaster response, and
urban planning applications. Remote sensing is exceptionally beneficial for understanding
spatiotemporal land cover change in relation to key physical properties in terms of surface
brightness and emission data. Optical remote sensing images provide the reflectivity of the
Earth’s surface, while thermal infrared images show the emissivity of the surface material,
and both complement each other and are essential for environmental monitoring [2].
Satellite-derived surface temperature products are widely used for different purposes
in determining both land and sea surface temperature, with the advantage of providing
continuous monitoring of satellites over large regions: in plant or agricultural studies [3–6],
climate change studies [7,8], sea surface temperature determination studies [9–12], urban
studies [13–16], forest and forest fires [17,18], analysis of annual land cover dynamics [19,20],
and drought analysis [21,22].
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Obtaining ground temperature data at meteorological stations is time-consuming and
costly and cannot reflect the surface temperature on a large scale due to the heterogeneity
of the Earth (vegetation, topography, and soil moisture) [23]. However, due to the spatial
resolution of satellite images (each pixel of the image covers an area of several hundred
meters or kilometers), point temperature measurement at the weather station may not
coincide with the temperature of a pixel.

Because LSTs from satellite data contain various corrections, their accuracy must be
validated in order to provide reliable information about the quality of the LST for the
above-mentioned applications. Validation is the process of independently assessing the
uncertainty of data from system outputs, and without validation, any data derived from
remotely sensed data cannot be used safely. For this reason, various methods are used to
verify the LST values derived from the satellite; the temperature-based method (T-based),
radiation-based method (R-based), and cross-validation are commonly used methods [24].
The T-based, also used in this study, is a ground-based method that directly compares the
satellite-derived LST with a sufficient number of in situ LST measurements at the satellite
overpass [25]. Many researchers have studied the relationships between LST derived
from satellites, such as MODIS and Landsat satellites, and near-surface air temperature
obtained from ground-based meteorological stations. These strong relationships were
demonstrated by statistical and regression analysis. In a study comparing the LST values
derived from MODIS and ground-based near-surface air measurements obtained from
14 observation stations covering coastal, mountainous, and urban areas of Cyprus, it
was reported that there is a very high correlation between the data [26]. In a study cov-
ering the whole of Portugal, a 10-year forecast was made using a statistical approach
based on the correlation of MODIS LST data with data from 106 meteorological stations
(i.e., minimum, maximum, and average air temperatures between 2000 and 2009). As a
result of the analysis, they showed the strong relationship between the MODIS LST and air
temperature (as an example, for the average temperature, 85% of the stations had r2 greater
than 0.90 and RMSE less than 1.5 ◦C) and validated the accuracy of the LST values [27]. In a
study conducted in the Eastern Thrace region, it was found that 27 meteorological stations’
data (monthly average temperature, precipitation, and relative humidity) and Landsat LST
data showed a positive correlation between satellite-based LST and ground temperature
values and a negative correlation for precipitation and relative humidity [28]. In a study,
the LSTs of Antalya central districts were examined using Landsat 7, Landsat 8, and MODIS
satellite images, and a high correlation was observed between MODIS and Landsat 7
(r2 = 0.7) and MODIS and Landsat 8 (r2 = 0.9) [16]. In a study conducted in China, Landsat
8 data and four different methods were used to derive LST values. Temperatures from
local weather stations of the China Meteorological Data Network were used for validation,
and MODIS daily LSTs were used for cross-validation. Comparing Landsat LST values
with air temperature data and MODIS data, correlations ranging from 0.82 to 0.85 were
obtained [29]. In another study conducted to estimate LST from Landsat 8 data in arid
lands, soil temperatures of three meteorological stations at a depth of 5 cm were used for
temperature-based verification, and statistical coefficients were found to be higher than
0.87 in all methods [23].

It is significant to reveal the relationship between urban areas and LST, especially
in complex urban metropolitan areas with heterogeneous surface classes where rapid
urbanization occurs. However, in cases with insufficient measurements from meteorological
stations, statistical estimation of these parameters depending on previous years is also
very important. By drawing attention to these two points, this study, which was carried
out in Istanbul, a city with a very complex urban structure, aims to obtain meteorological
parameter maps with acceptable accuracy from satellite data. Istanbul is a mega city with
a population of 15.5 million and one of the fastest-growing cities in Europe. The study
area lies between the continents of Europe and Asia and has an area of approximately
5757 km2 [13]. With the rapidly increasing population and urbanization, the surface
temperatures of Istanbul are also increasing due to the increasing number of buildings
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and artificial surfaces. Therefore, this study is important in terms of obtaining accurate
and reliable surface temperature data in complex urban environments such as Istanbul. In
the study, together with the meteorological station data used for verification, LSTs were
produced from Landsat and Terra MODIS satellite images (Figure 1) for the province of
Istanbul, and the linear correlations between them were examined.

Figure 1. Study area on Landsat 8 OLI true color image (RGB:432) dated 23 July 2022, Istanbul.

This study has four main objectives: (i) to demonstrate the effectiveness of satellite-
derived LST data; (ii) to examine the relationships between meteorological station data
in Istanbul (i.e., air temperature and soil temperature) and satellite-derived LSTs; (iii) to
produce 2022 maps for these two parameters using regression models applied to the 2022
LST maps (i.e., by performing regression models between meteorological station data and
satellite-derived LSTs from previous years); and (iv) to validate the spatial distribution map
of meteorological parameters with the actual meteorological station data.

2. Materials and Methods
2.1. Materials

In the study, Landsat 5 TM [30], Landsat 8 OLI-TIRS [31] thermal bands, and Terra
Moderate Resolution Imaging Spectroradiometer (MODIS) MOD11A1 [32,33] V6.1 (daytime
data) were used. The characteristics of the satellites used are given in Table 1.

The study was carried out on the Google Earth Engine (GEE) cloud platform. GEE is a
cloud-based computing platform where various geospatial analyses can be performed on
Google’s cloud infrastructure. GEE combines a multi-petabyte catalog of satellite imagery
and geospatial datasets with planetary-scale analysis capabilities [34]. GEE allows the
filtering of low-quality images (such as shadow and cloud).

Using data in the clear pixel is essential for accurate surface temperature calculations
using satellites; the accuracy of results will be reduced if the data have a pixel with clouds.
The clearest sky of the year in the Istanbul region is in July; during this month, the sky
is 95% clear, mostly clear, or partly cloudy [35], and for this reason, the month of July
was chosen as the study period. The Landsat satellite images used in this study were
determined by examining the cloudless July images between 1985 and 2022 in the study
area individually in the USGS Earth Explorer [36], and the chosen images were also checked
and used in GEE.



Atmosphere 2023, 14, 644 4 of 17

Table 1. Characteristics of Landsat 5 TM, Landsat 8 OLI/TIRS, and Terra MODIS MOD11A1.

Satellite
Spectral

Resolution
(µm)

Spatial
Resolution

(m)

Temporal Resolution
(Day)

Radiometric
Resolution (Bit)

Landsat 5 TM

6 Optical Bands
(0.45–2.35)

30 m

16 81 Thermal Band
(10.40–12.50) 120 m

Landsat 8
OLI/TIRS

9 Optical Bands
(0.43–2.30)

30 m
15 m

16 16
2 Thermal Bands

(10.60–12.51) 100 m

Earth Science
Data Type

Spectral
Resolution

(µm)

Spatial
Resolution

Temporal
Resolution Number Type

MOD11A1 2 Thermal Bands (31, 32)
(10.780–12.270)

1 km
(actual, 0.928 km)

Daily
(daytime)

Uint 16
(unsigned integer number)

Meteorology station data (hourly air temperature, 5 cm soil temperature, relative
humidity, evaporation) were requested from the Turkish General Directorate of Meteorology
(TGDM) between 1987 and 2022. The stations whose data are used are given in Figure 2,
with their locations and international meteorological station numbers [37].

Figure 2. Meteorological stations with “International Meteorological Station Numbers” on 23 July 2022
Landsat LST image of Istanbul.

TGDM has fifty-four meteorological stations in Istanbul, and hourly meteorological
parameters of all stations were requested for the study. However, it can be seen that hourly
measurements were made at seven stations between 1987 and 2000 for the air tempera-
ture parameter, and the number of data increased with the establishment of automatic
stations since 2003 (i.e., total numbers of stations are 2003: 11, 2009: 12, 2013: 18, 2017: 35,
2020: 41, 2022: 39). Since four stations are located on the breakwater, their data were not
used in the analysis. In addition, it was observed that there were very high differences (up to
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8–10 degrees) between the air temperatures measured at the meteorology stations at the
airports and the LSTs, and these data were also not used in the analysis. Figure 2 shows the
stations from which the data were gathered. Considering the hourly 5 cm soil temperature
data, there are 7 stations for 1987, 8 stations for 2022, and 7 stations for other years on
average. However, since there are few hourly relative humidity and evaporation data for
very few dates in the study, these data could not be used. The air temperatures at the
stations are measured at 2 m from the ground, and the meteorology stations are located at
different altitudes (2 m to 381 m).

2.2. Methods

The hourly air temperature and hourly soil temperature (5 cm depth) data for the
stations between 1987 and 2022 were obtained from the TGDM. Istanbul LST maps were
generated in GEE for nine dates (23 July 1987; 7 July 1993; 18 July 1997; 26 July 2000;
3 July 2003; 19 July 2009; 30 July 2013; 9 July 2017; 23 July 2022) with Landsat 5 TM
and Landsat 8 OLI/TIRS images and six dates (26 July 2000; 3 July 2003; 19 July 2009;
30 July 2013; 9 July 2017; 23 July 2022) with MODIS Terra images. Landsat 8 OLI/TIR
image acquisition time for Istanbul is approximately 09.00 a.m. UTC, while Terra MODIS’s
is approximately 11:30 a.m. UTC (İstanbul local time: UTC+3 h). The Landsat frame
used for Istanbul is Path:180, Row: 31, and image acquiring times for Landsat 5 TM are
8:07–8:34 a.m. UTC and Landsat 8 OLI/TIRS 08.45–08.47 a.m. UTC. Satellite image
acquisition times were taken into account in the analyses. The flow chart of the study is
given in Figure 3.

Figure 3. The flow chart of the study.

2.2.1. LST Retrieval

In the study, LSTs from Landsat thermal bands were calculated on the GEE plat-
form, and LST images were generated. Mono-window algorithm [38], split-window
algorithm [39,40], single-channel algorithm [41], radiative transfer equation [42], temperature-
independent spectral indices method [43], and the inversion of Planck’s function [44] are
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the algorithms used for extracting land surface temperature (LST) from satellite imagery.
In this study, the Planck function is utilized for calculating LST. According to Planck’s
radiation law, every object emits radiation at a certain temperature (not equal to 0 K) [45].
The process steps for calculating land surface temperatures are the conversion of digital
values (DN) to spectral radiance values, the conversion of spectral radiance values to
brightness temperature values, and the calculation of surface emissivity (ε) values [46].
For calculating LST, brightness temperature and emissivity values are required. Firstly,
Landsat data is converted to TOA spectral radiance using the radiance rescaling factors
with Equation (1) [47]:

Lλ = ML × Qcal + AL (1)

where L(λ) is the top of atmosphere (TOA) spectral radiance (Watts/(m2 ∗ srad ∗ µm),
ML is the band-specific multiplicative rescaling factor (ML = 0.055375 for Landsat 5,
ML = 0.0003342 for Landsat 8), AL is the band-specific additive rescaling factor
(AL = 1.18243 for Landsat 5, AL = 0.1 for Landsat 8), Qcal is the quantized and calibrated
standard product pixel values (DN). After that, thermal band data are converted to bright-
ness temperature [47]:

TB =
K2

ln
(

K1
Lλ

+ 1
) (2)

where TB is the brightness temperature in Kelvin, and K1 and K2 are the band-specific
thermal conversion constants from the metadata file of USGS [48] (K1 = 607.76, K2 = 1260.56
for Landsat 5 TM, K1 = 774.89, K2 = 1321.08 for Landsat 8 OLI/TIRS).

In the literature, the normalized difference vegetation index (NDVI) thresholds method
is most often used for estimating land surface emissivity (ε) [49]. When the NDVI is
known of a surface area, the emissivity value can be assigned. In this study, land surface
emissivity is calculated with NDVI and PV (vegetation proportion) values with thresholds
and formulas given in Table 2.

NDVI =
NIR − RED
NIR + RED

(3)

PV is calculated via the equation:

PV =

[
NDVI − NDVImin

NDVImax − NDVImin

]2
(4)

LST = B

1 +
(

λ×TB
ρ

)
· ln(ε)

(5)

where λ is the average wavelength of the band (µm);

ρ = h ∗ c/σ = 1.438 × 10−2 m ∗ K;
σ = Boltzmann constant (1.38 × 10−23 J/K);
h = Planck’s constant (6.626 × 10−34 J ∗ s);
c = the velocity of the light (2.998 × 108 m/s).

Table 2. NDVI threshold model used in this study [11,48,50].

NDVI Threshold Land Cover Type Surface Emissivity

NDVI < 0 Water 0.985
0 ≤ NDVI ≤ 0.1 Bare soil ρR (red reflectance band)

0.1 ≤ NDVI ≤ 0.7 Vegetation mixed with soil 0.990PV + 0.984(1 − PV) + 0.04PV(1 − PV)
NDVI > 0.7 Vegetation 0.990
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MODIS MOD11A1 V6.1 data were used to generate MODIS LST images in GEE. These
data are ready-made data processed by USGS with the split-window algorithm [40] and
converted to LST [32].

After the LST images were obtained from Landsat and MODIS, the statistical data of
the images were evaluated, and the correlation between the mean values of the images
was calculated. The observed differences are mainly due to the use of different retrieval
algorithms used in the computation [29].

2.2.2. Statistical Analysis

The correlation coefficients were calculated using Pearson correlation method, which
is a measure to calculate linear dependency between two variables, and its formula is given
in Equation (6) [51]:

rxy =
∑(xi − x)∑(yi − y)√

∑(xi − x)2
√

∑(yi − y)2
(6)

where x is the average of x variable, y is the average of y variable, and rxy is the Pearson
correlation coefficient of x and y variables and varies between −1 and 1. If rxy is close to 1,
the variables are positively correlated; otherwise, the variables are negatively correlated.
After the correlation analysis, linear regression models were created using satellite and
ground-based meteorological data. Linear regression analysis is based on the quantita-
tive relationships between variables [52] and can be described as a linear equation like
Equation (7):

Y = a0 + a1X1 + a2X2 + . . . . + anXn (7)

where X and Y describe the variables, and a0 to an are the coefficients in the linear
regression models.

The significance of the regression analysis results was evaluated with the p-value.
The p-value is a primary value used to measure the statistical significance of the results
of a hypothesis test, and a p-value less than 0.05 is considered statistically significant.
p-values are typically determined using p-value tables or spreadsheets/statistical software.
These calculations are based on assumptions or known probability distributions of the
particular statistic being tested. The p-value is calculated from the deviation between
the observed value and the chosen reference value, taking into account the statistical
probability distribution; the greater the difference between the two values, the lower the
p-value. Mathematically, the p-value is obtained by integrating the area under the probabil-
ity distribution curve of all statistics that are, at least, as far from the reference value as the
observed value for the total area under the probability distribution curve calculated [53].
In this study, p-values were calculated using Excel data analysis tools.

The results of the regression models were validated with meteorological station data
for 2022 using root mean square error (RMSE) (Equation (8)):

RMSE =

√
1
N ∑n

i=1(Yi − Ypi)
2 (8)

where Yi is the actual value, Yp is the obtained value, and n is the number of
validation samples.

2.2.3. Thematic Mapping of Meteorological Parameters

For this purpose, correlation analysis was performed between the meteorological
station data (for two meteorological parameters) between 1987 and 2017 and eight Landsat
LST images produced on the same dates. The same procedures were applied to MODIS LST
images, and correlation analyses were performed. Since the station data of the previous
years are especially few, the data sets of all years were combined, and a correlation analysis
was performed.
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Due to the correlations obtained being satisfactory, the regression models were created
using two meteorological parameters. Afterward, thematic maps were produced for two
parameters using 2022 LST images, and their spatial distributions were mapped. For the
accuracy assessment, RMSEs were taken into account, and the difference between the 2022
meteorological station data and the values obtained from the thematic map was calculated
for each meteorological parameter considered.

3. Results and Discussion

Istanbul Landsat LST maps were created using nine cloud-free (1987–2022) Landsat
images. However, since MODIS has provided data since 2000, six MODIS LST maps
were created. The mean values of each LST image were determined, and the mean value
differences calculated are given in Table 3.

Table 3. The mean values and differences calculated.

Data (Mean, ◦C) 26 July 2000 3 July 2003 19 July 2009 30 July 2013 9 July 2017 23 July 2022

MODIS LST 33.16 36.55 32.86 34.45 30.52 31.08
Landsat LST 31.52 34.28 29.04 32.4 29.04 30.47
Difference, ∆ 1.64 2.27 3.82 2.05 1.48 0.61

In Table 3, it can be seen that there are 0.61 to 3.82 ◦C differences between Landsat
LST and MODIS LST image mean values, while these differences are primarily related
to the image acquisition time of the sensors (9:00 and 11:30 a.m. UTC, respectively). In
addition, the fact that thermal sensors have different spectral and spatial resolutions can
be considered as a secondary and third factor. The fourth factor is the use of two different
algorithms for LST calculations from two different sensors.

The Pearson correlation coefficient was calculated between the Landsat LST and
MODIS LST mean values given in Table 3, and it can be found that the MODIS LST and
Landsat LST results are highly correlated with each other (Figure 4). As shown, a high
correlation of 0.88 was found between Landsat LST and MODIS LST images. This result is
consistent with a similar literature study conducted in Antalya, where the correlation was
found to be 0.70 [16]. In another study conducted in China, for Landsat LST values and
MODIS data, correlations were in a range of 0.85 [29].

Figure 4. Landsat LST and MODIS LST images mean values and correlation.
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Correlation analyses were performed between the station data of eight images (for
each meteorological parameter) and the corresponding pixel values in the relevant Landsat
LST images between 1987 and 2017. Since the Landsat 8 OLI/TIR and Terra MODIS’s image
acquisition times for Istanbul are approximately 09:00 UTC and 11:30 UTC, respectively, the
meteorological data corresponding to these hours were used. The correlation coefficients
calculated for each year and the number of station data used are given in Figure 5a,b.

Figure 5. Correlation coefficients between Landsat LST and meteorological parameters ((a) air
temperatures, (b) 5 cm soil temperatures) and number of data measured at the station.

When the correlations between the air temperature data from meteorological stations
and Landsat LSTs for eight different dates in Figure 5a are examined, the lowest value is
r = 0.47, and the highest is r = 0.95. When the correlations between the 5 cm soil temperature
data from meteorological stations and Landsat LSTs for three different dates in Figure 5b are
examined, the correlations are above 0.67. These results are consistent with the study [29],
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which showed that the correlation of Landsat LST values with air temperature data
was 0.82.

The correlation analysis results between the meteorological station data (for two
meteorological parameters) and the corresponding pixel values in the relevant MODIS LST
images between the years 2000 and 2017 are given in Figure 6a,b. According to the results,
the correlation between the meteorological data and MODIS LST is high.

Figure 6. Correlation coefficients between MODIS LST and meteorological parameters ((a) air
temperatures, (b) 5 cm soil temperatures) and number of data measured at the station.

When the correlations between the average temperature data from meteorological
stations and the MODIS LSTs for five different dates in Figure 6a are examined, the lowest
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value is r = 0.41 for 2017, and the highest value is r = 0.80 for 2013. When the correlations
between the soil temperature data obtained from meteorological stations and MODIS LSTs
for five different dates in Figure 6b are examined, the correlations are above 0.44, except
for 19 July 2009 (r = 0.22). In the correlation analysis made with two different satellite data
sets, it can be noticed that MODIS LST satellite data give a lower correlation result, which
is thought to be mostly due to their lower spatial resolution.

As seen in Figures 5 and 6 above, there are data pairs with high correlation coefficients
for each parameter and those with low correlation. Correlation analysis and regression
analysis were performed using data from all years together, for each parameter, to see the
effect of using data from all years. The correlations for individual years and all years are
given in Table 4, together with the p-values obtained from the analyses.

Table 4. The correlations and p-values.

Satellite Data Meteorological Station Data Year Σ Point r2 p

Landsat LST
Air

Temperature

1987 4 0.85 0.0761
1993 5 0.63 0.1107
1997 4 0.90 0.0500
2000 5 0.76 0.0533
2003 5 0.45 0.2158
2009 8 0.22 0.2403
2013 11 0.54 0.0103
2017 25 0.47 0.0001

Total (8 years) 68 0.53 2.52 × 10−12

MODIS LST
Air

Temperature

2000 6 0.50 0.1159
2003 6 0.19 0.3837
2009 8 0.47 0.0625
2013 11 0.64 0.0032
2017 25 0.17 0.0363

Total (5 years) 56 0.26 0.00005

Landsat LST 5 cm Soil Temperature

2009 5 0.87 0.0208
2013 6 0.58 0.0766
2017 6 0.58 0.0766

Total (3 years) 17 0.50 0.0016

MODIS LST
5 cm Soil

Temperature

2000 6 0.38 0.1944
2003 6 0.28 0.2824
2009 4 0.05 0.7828
2013 6 0.26 0.3051
2017 6 0.20 0.3800

Total (5 years) 28 0.44 0.00012

Statistically significant correlations are marked in bold in Table 4 (p ≤ 0.05). When the
p-values are examined in Table 4, it can be seen that for the Landsat LST and air temperature,
p = 0.05 for 1997, p = 0.01 for 2013, and p = 0.0001 for 2017. The highest p-value was obtained
using all data between 1987 and 2017, p = 2.52 × 10−12. Similarly, the best p-value between
MODIS LST data and air temperatures was obtained using the total values, p = 0.00005.
While the p-value between Landsat LST and soil temperature was 0.0208 for 2009, it was
obtained as p = 0.0016 using the total data of 3 years. While it was observed that the
p-values for each year were bigger than 0.05 between MODIS LST and soil temperatures,
p = 0.00012 was obtained with all data of 5 years.

Thematic maps were produced (for data with p ≤ 0.05) using 2022 Landsat LST and
MODIS LST images and linear regression models, and the regression models used are given
in Table 5. Accuracy assessments were made using 2022 meteorological station data for
each thematic map produced, and RMSEs were calculated (Table 5).

When Table 5 is examined, the highest accuracy in the four air temperature maps
produced with Landsat LST was obtained with the 2017 regression model and the regression
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model using data from all years (RMSE 1.25 ◦C and 1.35 ◦C). In the three thematic maps
produced with MODIS LST data, the lowest RMSE value (1.26 ◦C) was obtained with the
regression model using the five-year data. Similarly, models created with total data in soil
temperature thematic maps produced better results than models created from a single year
(3.28 for Landsat, 9.05 for MODIS). In the accuracy assessment, the 2022 air temperature
data from 31 stations were used for the validation of the 2022 air temperature maps derived;
however, the soil temperature thematic maps derived could only be verified with a small
number of measurements collected from seven stations. This clearly confirms the low soil
temperature model accuracy in the analysis (Table 5).

Table 5. Linear regression models (with p ≤ 0.05) and RMSE errors.

Parameters Data Year Linear Regression Models RMSE (◦C)

Air Temperature Landsat LST 2022

1997 y = −0.7436x + 42.293 r2 = 0.9024 10.95
2013 y = 0.6355x + 9.5679 r2 = 0.5373 1.42
2017 y = 0.4099x + 16.685 r2 = 0.4686 1.25

All (8 years) y = 0.4952x + 14.295 r2 = 0.5268 1.35

Air Temperature MODIS LST 2022
2013 y = 0.6725x + 9.0265 r2 = 0.6383 8.54
2017 y = 0.2468x + 22.842 r2 = 0.1602 1.35

All (5 years) y = 0.3443x + 19.914 r2 = 0.2585 1.26

5 cm Soil
Temperature Landsat LST 2022

2009 y = 3.8288x − 83.763 r2 = 0.8696 9.32
All (3 years) y = 0.839x + 3.7863 r2 = 0.4977 3.28

5 cm Soil
Temperature MODIS LST 2022 All (5 years) y = 1.7682x − 19.925 r2 = 0.4395 9.05

The air temperature map and 5 cm soil temperature map derived using the 2022
Landsat LST map and regression models (generated with all-year data) are given in Figure 7.
In the accuracy evaluation of thematic maps, data from 31 stations were used as 2022 air
temperature data. Since the soil temperature was measured at seven stations, it could be
evaluated with a small number of measurements.

The air temperature map and 5 cm soil temperature map derived using the 2022
MODIS LST map and regression models (generated with all-year data) are given in Figure 8.

When Figures 7 and 8 above are examined, it can be seen that Landsat LST and MODIS
LST maps are similar, and more detailed maps are obtained with Landsat, which has a much
higher spatial resolution. It is thought that one of the reasons for the high-temperature
values in the MODIS LST maps is related to the time the image was taken. Specifically,
the Landsat 8 OLI/TIR acquisition time for Istanbul is approximately 09:00 UTC, while
Terra MODIS’s is approximately 11:30 UTC. In the LST maps, the air temperatures are
higher in the urban areas, while the temperatures are lower in the forest areas located to
the north of the city. The same situation can be observed in the air temperature and soil
temperature maps.

While air temperature maps derived from Landsat and MODIS LST maps have high
RMSE accuracies, temperatures are also in similar ranges. When the soil temperature maps
derived from Landsat and MODIS LST maps are examined, the Landsat soil temperature
map (RMSE = 3.28 ◦C) is in the range of 22–38 ◦C, while the range in the MODIS soil
temperature map (RMSE = 9.05 ◦C) is 25–45 ◦C. Therefore, it can be said that Landsat
LST gives better results in deriving soil temperature maps according to RMSE values.
In addition, the differences in the orbital periods of the satellites also cause a difference
between the sensed temperature values, which affects the accuracy of the regression models.
As a result, there will be a slight difference between the spatial distribution maps derived
by these two satellites.
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4. Conclusions

With its spatial and temporal resolution capabilities and continuous data availability,
remote sensing technology and data offer a great opportunity to monitor environmental
impacts in megacities. In this study, the linear correlations between the meteorological
station data (i.e., air temperature and 5 cm soil temperature) and satellite-derived LSTs
in the heterogeneous megacity Istanbul were investigated. Although Istanbul is the most
significant city in Turkey, only a small number of the 54 available meteorological stations
had data on hourly air temperature and hourly soil temperature. Therefore, the applicability
of satellite-based LST data for the derivation of meteorological parameters was examined,
in this study, in the absence of adequate hourly data.

In order to derive the spatial distribution maps of the two meteorological parameters,
linear regression models were first created between the LST data and the meteorological
station data from previous years due to the sufficient correlations found. The accepted
regression models were then applied to the 2022 LST data.

The accuracies of the obtained thematic maps were examined using 2022 meteorologi-
cal station data. In general, it was seen that the accuracy of thematic maps derived with
the regression models created using data from all years is higher than the maps derived
with each year’s data. The RMSE values for the air temperature map produced by Landsat
LST and MODIS LST were obtained as 1.35 ◦C and 1.26 ◦C, respectively. According to
the results of the accuracy analysis performed with a small number of station data, it was
observed that the soil temperature maps had lower RMSEs (i.e., RMSE = 3.28 ◦C with
Landsat LST, RMSE = 9.05 ◦C with MODIS LST).

The main findings obtained are (i) the meteorological data derived using satellite-
based LSTs can be used as in situ data in cases where meteorological station data are not
available and/or insufficient. Accuracy analyses, in particular of air temperature thematic
maps derived by regression models using 2022 Landsat LST and MODIS LST data, provide
evidence of this; (ii) despite the low resolution of MODIS LST data, which provides daily
data, its performance was also remarkable; and (iii) in addition, a high correlation was
determined between the mean values of the Istanbul MODIS LST maps and Istanbul
Landsat LST maps (r = 0.88).

As a future study, the correlation of LSTs with different meteorological data will
be evaluated on the basis of land use/land cover types in not only heterogeneous but
also homogeneous urban areas. In addition, an analysis will be carried out considering
other seasons.
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