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Abstract: Ground-level ozone pollution causes adverse health effects, and the detailed influences of
meteorological factors and precursors on ozone at an hourly scale need to be further understood. We
conducted an in-depth analysis of the phase relationships and periods of ground-level ozone in Shunyi
station, Beijing, and contributing factors using wavelet analysis and geographic detectors in 2019.
The combined effects of different factors on ozone were also calculated. We found that temperature
had the strongest influence on ozone, and they were in phase over time. NO2 had the greatest
explanatory power for the temporal variations in ozone among precursors. The wavelet power
spectrum indicated that ozone had a periodic effect on multiple time scales, the most significant
being the 22–26 h period. The wavelet coherence spectrum showed that in January–March and
October–December, NO2 and ozone had an antiphase relationship, largely complementary to the
in-phase relationship of temperature and ozone. Thus, the main influencing factors varied during
the year. The interactions of temperature with NO2 significantly affected the temporal variations
in ozone, and explanatory power surpassed 70%. The findings can deepen understanding of the
effects of meteorological factors and precursors on ozone and provide suggestions for mitigating
ozone pollution.

Keywords: ozone; meteorological factor; temporal variation; wavelet analysis; geographic detector

1. Introduction

The atmospheric environment is profoundly affected by intense human activities and
extreme weather, and air pollution has become a major environmental concern in many
countries [1,2]. China, the largest developing country, has implemented a series of much
stricter air pollution control measures since the last decade, sacrificing rapid economic
growth to control air pollution [3–7]. Although monitoring data have demonstrated that
the concentrations of many pollutants (e.g., SO2 and PM2.5) have decreased dramatically
in China in recent years, ozone (O3) concentrations have exhibited an opposite and in-
creasing trend. Ozone can irritate the respiratory tract and impede blood oxygenation,
leading to potential systemic effects when the tropospheric concentration exceeds a certain
threshold [8,9]. Under such context, deeper understandings of the temporal trends of ozone
concentrations and the complex underlying influencing factors are needed for targeted air
pollution control [10].
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The formation and elimination processes of ozone are complicated. Human activ-
ities do not emit ozone directly, but transportation, thermal power generation, and the
petrochemical industry emit considerable amounts of ozone precursors (e.g., NOx and
VOCs) [11]. Ozone is formed when heat and sunlight cause chemical reactions between
these precursors [12]. Thus, the precursors and meteorological conditions are both impor-
tant for ozone concentration. Previous studies have demonstrated the significant effects
of various meteorological factors on ozone, such as temperature [13,14], humidity [15], air
pressure [16], wind direction [14], and wind speed [17]. Meteorological factors and ozone
concentrations oscillate sharply within a day or days and also fluctuate remarkably by
season [18–20].

Due to the high complexity of ozone, revealing its temporal patterns and relating
factors is a challenge. Although there have been several studies investigating the drivers
of ozone concentrations, the knowledge of ozone, such as periodicity and the joint effects
of the various influencing factors, remains lacking. First, previous studies have mostly fo-
cused on large areas, such as countries [21–23], urban agglomerations [24,25], and cities [26].
These studies often used the mean or other integrated values to characterize the ozone
concentrations in a certain region with sparse monitoring stations. However, ozone con-
centration can be extremely heterogeneous across regions, even over short distances. Such
large-scale approaches aggregate the spatial and temporal variability and can hardly obtain
the specific relationships between ozone and its influencing factors. Using time series data
from the same station can avoid the influences of complex spatial factors and obtain a
more accurate and detailed relationship. Second, most studies have focused on the spatial
variability of ozone [27], but inadequate attention has been paid to its temporal features
and causes, which are critical to explore the ozone formation process and control ozone
pollution. Third, many studies have focused on the analysis of annual and monthly vari-
ability of ozone and its influencing factors, while ozone concentrations and meteorological
factors can vary dramatically on an hourly scale [28,29]. Short-term changes in ozone are
also important to reveal its detailed processes and causes. The long-term studies cannot
highlight the precise relationships on an hourly scale.

Notably, an increasing number of scholars have used more advanced models to quan-
tify the impact of various meteorological factors on surface ozone concentrations, such as
quantile and multiple linear regression models [22,30–33]. These models, while focusing
on the goodness of model fit, are limited in quantifying the effect of each individual factor
and the interactions among factors. Because of the complexity of ozone formation [34,35]
and the strong oscillations and periodicity of the meteorological factors and ozone pre-
cursors at an hourly scale [36], it is difficult to reveal the complete temporal patterns of
ozone. At present, few studies have analyzed the effects of the influencing factors on
the periodicity, phase relationship, correlation, or differentiation of ozone distribution at
hourly scales. Such information is critical for exploring the effects of meteorological factors
and anthropogenic precursors on ground-level ozone concentrations in detail. However,
wavelet analysis and geodetectors can well make up for the shortcomings of the above
methods. Wavelet analysis is a method of representing signals with a finite-length or
fast-decaying “mother wavelet”, and the signals are usually time series. Wavelet analysis
can quickly extract the variation characteristics of time series such as periodicity. Moreover,
the wavelet coherence spectrum can reflect both the correlation and time lag between
variables, which overcomes the shortcoming of the traditional correlation analysis methods
(such as Pearson, Spearman, and Kendall) [13]. Due to its ability to extract hidden features,
wavelet analysis has been widely used in the study of many atmospheric pollutants [37–40].
“Geodetectors” is an effective method for exploring the hierarchical heterogeneity in ge-
ography [41–45]. Geodetectors include factor detector and interactive detector, which
are used to detect the drivers of a single factor and factor interaction on the dependent
variable, respectively. Geodetectors are often used to analyze the heterogeneity of spatial
distribution, but it still has superior performance in calculating temporal heterogeneity,
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especially quantitatively calculating joint effects of different factors, which is difficult to
express in traditional models.

To fill the knowledge gap in this area, this study aims to explore the following two
issues: (a) using wavelet analysis to investigate the variation character and periodic oscil-
lation properties of ozone on an hourly scale in the time–frequency domain and explore
the correlation and phase relationship between the influencing factors and ozone; and
(b) quantitatively estimate the explanatory power of each factor and their joint effects on
ground ozone concentration. Based on the ozone-influencing-factor relationships and phase
relationship analysis, a more comprehensive understanding of ozone temporal variation
will be achieved, which is the basis to support practical suggestions for ozone pollution
prediction and control.

2. Materials and Methods
2.1. Data Sources

According to related studies [22,46,47], there are several major determinants of ozone,
including reactants, reaction conditions, regional transportation, and seasonal effects.
To describe the detailed ambient conditions of ozone, we selected eight meteorological
factors, including temperature, dewpoint temperature, wind speed (including U and V
components), surface net solar radiation, surface air pressure, solar altitude, and relative
humidity, as the influencing factors [48]. NO2 was selected as the anthropogenic precursor
of ozone. Although VOCs are important for short-term ozone generation, the hourly
monitoring cost of VOCs is too high, and there are no available VOCs data to access for this
study. Furthermore, VOCs include a variety of compounds, and different compounds have
different contributions to the generation of ozone, which adds extra complexity. Therefore,
this study did not include VOCs as precursors of ozone during analysis. The theoretical
relationships between the influencing factors and selected proxy variables are presented in
Figure 1. The detailed parameters from ERA5 land reanalysis data and observation stations
are listed in Table S1.
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2.1.1. Ground Ozone and Its Precursors

Ground-level ozone and NO2 concentrations were obtained from the monitoring sta-
tions of the National Environmental Monitoring Center of China (http://www.cnemc.cn/
(accessed on 15 July 2021)). Considering fewer missing data and higher representativeness
of the geographical environment where the station is located, Shunyi station (40.1269◦ N,
116.655◦ E), in the northeast of Beijing, was chosen for this study. Hourly observations
from 1 January at 15:00 to 31 December at 23:00 in 2019 were collected and prepared. The
total number of observations was 8745, with 447 missing data values due to equipment
or network errors, which accounted for 5.12%. To fill in the missing values, we attempted
linear interpolation, quadratic curve interpolation, polynomial interpolation, and spline
function interpolation for the whole dataset. However, none of these methods was found
to fill the missing data well. Finally, we calculated the number and percentage of missing
gaps for variables (Table S2), set 5 h as the threshold of time span, and conducted linear
interpolation to fill in the missing values if the continuous missing values were less than
5. Otherwise, if there were more than five continuous missing values, the mean value
for the same hour from the previous three days and the following three days was used.
After the above data preparation process, the filled results were found to better reflect the
periodicity of ozone concentrations from the perspective of time series and exhibited a
reasonable oscillation amplitude. For NO2, the missing values were filled in the same way
as for ozone.

2.1.2. ERA5 Land Meteorological Data

Ground meteorological monitoring stations are rarely located in the same position as
air pollution monitoring stations, and only limited meteorological parameters are provided.
Therefore, full-coverage meteorological reanalysis data were used to derive the required
meteorological parameters. The meteorological data in this study were extracted from the
ERA5 Land dataset (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era5 (accessed on 18 July 2021)). ERA5 Land is a reanalysis dataset, which combines model
data with worldwide observations into a complete and consistent global dataset [49]. We
extracted and calculated the time series data of ERA5 Land for the location of the air
pollution monitoring site. The meteorological parameters included 2 m temperature, 2 m
dewpoint temperature (2 m temperature), 10 m U component of wind (10 m U wind), 10 m
V component of wind (10 m V wind), surface pressure, surface net solar radiation (SNSR),
relative humidity (RHU), and solar altitude data. Specifically, the 2 m temperature and 2 m
dewpoint temperature represent the values at 2 m above the ground surface. The 10 m
U component of the wind represents the east–west component of the horizontal wind at
10 m above the ground surface, with positive values indicating from west to east. Similarly,
the 10 m V component of the wind is the north–south component of the horizontal wind.
Because the densely populated area of Beijing is mainly to the south of the monitoring
point, the influence of wind direction was also considered.

2.2. Methods
2.2.1. Continuous Wavelets, Cross Wavelets, and Wavelet Coherence

• Continuous wavelet transform

Wavelet analysis is an effective tool for periodic and unstable O3 and meteorological
factors. However, few studies have conducted a wavelet analysis to explore the features
over time. Wavelet analyses compensate for the traditional Fourier transform, which can
only display frequency domain information and the uncertainty of the window selection
of the short-term Fourier transform [50]. Wavelet analyses can reflect local variation
characteristics along the time series and perform a multiscale detailed analysis of the signal.
The Morlet wavelet is a plural form wavelet, and its real and imaginary parts differ by π/2,
which eliminates the oscillation of the real wavelet transform coefficient modulus [51]. To

http://www.cnemc.cn/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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ensure a better balance between time and frequency localization analysis [52], the following
Morlet wavelet was used for analysis:

Ψ0(t) = π−
1
4 eiω0te−

t2
2 (1)

where ω0 is the dimensionless frequency, t is the dimensionless time, and i represents the
imaginary unit. When ω0 = 6, the wavelet scale s is approximately equal to the Fourier
period. The continuous wavelet transform can be expressed as follows:

Wn(s) =
N−1

∑
k=0

x̂kΨ̂× (sωk)eiωnδt (2)

The continuous wavelet transform can be used to analyze the periodicity and oscilla-
tion characteristics of a single factor in the time series, but an analysis of the correlation
and causality between ozone and its influencing factors requires the use of cross wavelet
and wavelet coherence.

• Cross wavelet

Through a time–frequency analysis of multiple time scales, the relationship between
two time series (O3 and its influencing factors) can be determined. With WX

n (s) and WY
n (s)

as the continuous wavelet transform results of Xn and Yn, respectively, the cross wavelet
transform (XWT) can be defined as

WXY
n (s) = WX

n (s)W
Y∗
n (s) (3)

WY∗
n (s) is the complex conjugate of WY

n (s), and the power of the crossed wavelet
is defined as

∣∣∣WXY
n (s)

∣∣∣, reflecting the resonance energy of two time series in the time–
frequency domain. The larger the power, the higher the correlation between two time
series [53]. The significance of the XWT power spectrum is to compare it with the red noise
standard spectrum. Assuming that the expected spectra of the two time series X and Y
are red noise spectra PX

k and PY
k , the crossed wavelet power spectrum distribution has the

following relationship:

D

(∣∣∣∣∣ |WX
n (s)||WX∗

n (s)|
δXδY

∣∣∣∣∣ < p

)
=

Zν(p)
ν

√
PX

k PY
k (4)

Zν(p) is the confidence level related to probability P of the probability density function
(PDF), which is defined by the square root of the product of the two χ2 distributions, and ν
is the degree of freedom. When ν = 2 and the significance level is set at α = 0.05, Z2 (95%)
equals 3.999. If the time series X and Y satisfy the significance test, they will be considered
significantly correlated under the red noise test.

• Wavelet coherence

The power spectrum of the cross wavelet can only reveal whether two time series have
a common high-energy region, whereas the wavelet coherence spectrum can be used to
measure the local correlation degree of two time series, similar to the piecewise correlation
coefficient. Even if the two series are in the low-energy region, their correlation may be
significant. Therefore, the significant area of the wavelet coherence spectrum is generally
larger than that of the cross wavelet spectrum [52]. The wavelet coherence spectra of the
two time series X and Y are defined as

R2
n(s) =

∣∣S(s−1WXY
n (s)

)∣∣2
S(s−1|WX

n (s) |2)S(s−1|WY
n (s)|

2
)

(5)
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S is a smoother, defined as

S(W) = Sscale(Stime(Wn(s))) (6)

Sscale is the smoothing parameter of the wavelet-scale coordinate axis, and Stime is the
smoothing parameter of the time axis. For the Morlet wavelet used in this study, a suitable
smoother is defined as follows:

Stime(W)|s =
(

Wn(s)× c
−t2

2s2
1

)
|s (7)

Stime(W)|s =
(

Wn(s)× c2 ∏(0.6s)
)
|s (8)

C1 and C2 are standardization constants, Π represents the rectangular function, and
coefficient 0.6 is the empirical scale of the Morlet wavelet. The Monte Carlo approach has
also been used to evaluate the significance of the wavelet coherence spectrum [52]. The
average angle of the phase difference arrow and 95% confidence interval are used for the
wavelet coherence spectrum, and only the phase difference arrow with R2

n(s) ≥ 0.5 is given
in the results.

2.2.2. Geodetectors

Considering the significant seasonality of ozone, the correlation between ozone and
its influencing factors may also vary with season. To investigate this temporally nonsta-
tionary relationship, we stratified the factors from a temporal perspective with natural
breakpoints after stratification by season, and then detected factors and their interactions
using geodetectors [54]. A geographic detector was originally used to detect spatially
stratified heterogeneity. However, the concept of “stratification” is not limited to geospace,
and the stratification of variables can be spatial, temporal, or by attribute [55]. The core
assumption of geodetectors is that if an independent variable has a significant influence on
a dependent variable, the distributions of the two variables should be similar. Here, we
extend the concept of “stratification” to the time series of ozone and the related factors to
explore the temporal relationships among variables.

• Factor detector

To detect the explanatory power of factor X to Y, the value q can be calculated
as follows:

q = 1− ∑L
h=1 Nhδ2

h
Nδ2 = 1− SSW

SST
(9)

SSW =
L

∑
h=1

Nhδ2
h (10)

SST = Nδ2 (11)

h = 1, 2, . . . , L is the stratum of variable X; Nh and N are the number of units in stratum
h and in all strata, respectively; and δ2

h and δ2 represent the variance of stratum h and the
global total variance, respectively. The larger the value of q, the stronger the decisive power
of the independent variable X on the distribution of the dependent variable Y, and vice
versa. After a simple transformation of the q value, it satisfies the noncentral F distribution,
and its significance can be assessed [54].

• Interactive detector

Single-factor detection cannot be used to explore the joint effects of factors on ozone.
It is difficult to detect the joint effect of factors on the enhancement or weakening of ozone
pollution using traditional methods that cannot exclude the effect of multicollinearity [27].
However, the interactive detector can efficiently calculate the joint effects of the two factors
on ground-level ozone concentration. In this study, the interactive detector first calculates
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the q values of X1 and X2 separately to derive q(X1) and q(X2) and then calculates the
interaction of the two variables q(X1∩X2). These three powers are compared to deter-
mine whether the interaction enhanced or weakened the explanatory power of the ozone
concentration level.

3. Results and Discussion
3.1. Time–Frequency Characteristics of O3 and Its Influencing Factors

The preliminary data exploration revealed that O3 and its influencing factors have
clear seasonality, which can also be confirmed by the wavelet transform. The year is divided
into spring (March to May), summer (June to August), autumn (September to November),
and winter (December to February) according to the meteorological features and customs
rules of China.

From the time–frequency domain, the ground-level ozone concentration variation
is characterized by instability and periodicity. Figure 2b shows that the wavelet power
spectrum of ozone has a distinct 22–26 h period band from March to November, which
indicates that there is a significant daily periodic signal of ozone concentrations at the
22–26 h time scale. This result quantitatively confirms the day-cycle characteristics of ozone.
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Furthermore, we performed a Morlet wavelet analysis on all the factors. Several influ-
encing factors exhibit similar periodic characteristics to ozone, such as the 2 m temperature
(Figure 2h). However, the time–frequency distribution patterns of some factors are different
from ozone. For example, NO2 does not exhibit a 24 h cycle in summer (June–August).
In contrast, NO2 in winter shows a distinct 24 h scale cycle when ozone periodicity is not
significant (December–February), and the concentration of NO2 is lower in summer and
higher in winter, which demonstrates an opposite trend to that of ozone across the year
(Figure 2c). Surface pressure has a stronger 4–8 day cycle in the months of the year except
July and August (Figure 2f). The 10 m V component of the wind has a relatively continuous
24 h scale period in the annual time distribution (Figure 2j). The net surface solar radiation
is considerably higher in summer and lower in winter, which is caused by the revolution of
the Earth and the incidence angle of sunlight. Notably, in Figure 2l, the net surface solar
radiation has two significant periods, corresponding to 1 d and 0.5 d, respectively. This also
explains the fragmentary periodic signal of ozone on an hourly scale. The wavelet power
spectra of the other factors are provided in Figures S1–S4.

The line charts represent the Z-score normalization time series for each factor, which
are the results of normalizing the original data with 0 as the mean and one unit as one
standard deviation. In the wavelet power spectrum, the left and right axes represent
the period and periodic intensity, respectively, and the bottom axis is time. The yellow
represents a higher periodic intensity and the blue represents a lower periodic intensity.
The thick contour encloses regions of greater than 95% confidence for a red noise process,
and the thick curve is the cone of influence (COI).

3.2. Correlation among Influencing Factors and Ozone

Traditional methods cannot obtain the phase relationship of the periodic sequence,
whereas cross wavelets and wavelet coherence can effectively diagnose the correlation
and time lag between different signals, highlight the common energy region in the time–
frequency domain between ozone and its impact factors, and reveal the causal relationship
between them [52]. To comprehensively analyze the influencing factors that affect ground
ozone concentrations, 10 independent variables, including the precursors and meteoro-
logical factors, were selected for cross wavelet and wavelet coherence analyses. Based on
related studies [56–60], the precursor NO2 and meteorological factor 2 m temperature were
explained in detail, and the results for other factors are provided in Figures S6–S18. The
key phase relationships and periods between the other factors and ozone are summarized
in Table S3.

Figure 3a shows the crossed spectrum of ozone and NO2. The high-energy area of the
wavelet is mainly concentrated in the period of 22–26 h. Although there is a short break
from mid-January to mid-February, the relationship between NO2 and ozone during the
22–26 h period in 2019 is significant in general. In Figure 3b, on the 0.25–8 d scale, NO2
and O3 are in an antiphase, and this relationship almost lasts for the entire study period
(except from May to September). For the phase difference, the NO2 and O3 concentrations
change in opposite directions at multiple scales. NO2 produces nitric oxide (NO) via
photolysis, which then consumes ozone through titration. In the complex reaction process,
concentrations of NO2 that are either too high or too low suppress ozone concentrations,
which is also supported by the Empirical Kinetic Modeling Approach (EKMA) curve
proposed by the United States Environment Protection Agency (USEPA) [61]. From the
specific analysis results, in January–May and October–December, NO2 and O3 are in a
significant antiphase at several time scales. In mid-August–November, in addition to the
22–26 h period scale, there are correlations on the 10–15 d and 20–30 d scales, but the phase
angle arrow faces downward, indicating that NO2 lags the O3 changes on a larger time
scale in autumn.
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represents a smaller correlation coefficient. The area surrounded by the thick black solid
line indicates the area that passes the 95% red noise confidence test, and the black solid line
envelope is the conical influence domain; the relative phase relationship is indicated by the
arrows (in phase points to the right, antiphase points to the left, NO2 leads O3 1/4 period
when pointing straight up).

As indicated in Figure 4, temperature and O3 have the most significant resonant cycles
on the 22–26 h scale in the positive phase in 2019, indicating that there is a significant corre-
lation between the two on an hourly scale. This also suggests that ozone and temperature
change simultaneously. Higher temperatures can provide energy for the movement of
atoms and molecules and accelerate the molecular decomposition of the reaction process,
thereby accelerating ozone production [62]. Furthermore, temperature increases with the
solar radiation from sunlight, which is a significant factor in the overall O3 generation
reaction. Figure 4b demonstrates that there is also a good correlation between the air
temperature and ground-level ozone concentrations on the 20–30 d cycle scale from May to
November, with a difference of approximately 360◦ in direction (arrow level to the right).
The correlation was significant (α = 0.05) in the standard spectrum test for red noise. There
was also a significantly positive correlation for 6–10 d during March–August, indicating a
multiscale effect of temperature on ozone generation.
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The left axis represents the period, the right axis represents the intensity of the com-
mon period in the XWT and the consistency of the changing trends in the WTC, and the
bottom axis represents time. The yellow represents a larger correlation coefficient and blue
represents a smaller correlation coefficient. The area surrounded by the thick black solid
line indicates the area that passes the 95% red noise confidence test, and the black solid line
envelope is the conical influence domain; the relative phase relationship is indicated by the
arrows (in phase points to the right, antiphase points to the left, temperature leads O3 1/4
period when pointing straight up).

3.3. Stratified Heterogeneity of Ozone and Detection of Factor Effects

To quantitatively evaluate the effects of the precursors and meteorological factors
on ground-level ozone concentrations, all factors were stratified after considering the
seasonality factors. The results of the factor detection indicate that O3 had significant
heterogeneity in the time series distribution, and all 10 factors have significant effects on
the temporal heterogeneity of ozone concentrations, but the strength of the effects varied
substantially (Table 1). It can be found that the value of q is between 0.22 and 0.64, and
all have passed the significance test, indicating that the factors used in the study have
22% to 64% explanatory power on the time distribution of ozone during the study period.
Among the meteorological factors, temperature and net surface radiation have the high-
est explanatory power for ground-level ozone concentrations; in particular, temperature
explained 64% of the ozone variation. Although ambient temperature typically correlates
positively with solar radiation, it has its own special contribution to ozone generation in
many ways. High temperature causes high NOx emissions from soil and biogenic VOCs
which are important precursors of ozone. PAN is generated through the oxidation of
acetaldehyde in the presence of NOx in a hydrocarbon-rich environment. The formation
of PAN serves as sinks for both NOx and peroxy radicals, which can reduce the reactants
for the ozone generation [63,64]. Moreover, dry deposition to vegetation is an important
sink of tropospheric ozone, while high temperature would suppress stomatal uptake and
decrease dry deposition [65]. Regarding the net surface solar radiation, the ERA5 reanalysis
dataset during night-time hours shows zero solar radiation. However, ozone transport still
occurs at night. Therefore, the temporal divergence explanatory power of the net surface
solar radiation did not reach the expected value, with 0.36 in this study. The decisive
power of NO2 on ozone concentration is 41% [66]. The effect of NO2 concentration on
O3 production is complex. NO2 acts as a reactant for O3 production, and sufficient NO2
facilitates ozone production, but too much NO2 inhibits O3 concentrations [67]. Therefore,
the power derived above is reasonable.

Table 1. Statistics of impact factor detection by geodetectors for ozone concentrations.

Index 2 m
Temperature

10 m U-Wind
Component

10 m
V-Wind

Component

Net Surface
solar

Radiation

Surface
Pressure

2 m Dewpoint
Temperature RHU * Solar

Altitude NO2

q statistic 0.64 0.22 0.23 0.36 0.27 0.25 0.22 0.29 0.41
p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

* Relative humidity: RHU.

The interaction between the factors is common, which is also in line with reality. Be-
cause the geodetectors are calculated using the ratio of total intra-stratum variance to global
variance, it ingeniously avoids the covariance problem of traditional methods. The q values
of each pair of factors indicate that the joint effects of the factors on ozone concentrations are
all enhancing effects (Table 2). Among them, the interaction of temperature and NO2 have
an explanatory power of 74% for the temporal variations in ozone concentrations, which is
extremely significant. This can be attributed to the fact that both are direct factors associ-
ated with the ozone production reaction. Temperature can accelerate the ozone production
reaction and affect the transport of atmospheric pollutants by influencing other factors,
such as relative humidity and wind. While NO2 is an ozone precursor, higher temperatures
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can accelerate its decomposition speed; therefore, the joint effect of temperature and NO2
is crucial for ozone concentrations. In addition, the interaction of net surface radiation and
the north–south component of wind has 44% explanatory power on the variation in ozone
concentrations. Because the net surface solar radiation characterizes the intensity of input
energy, and sunlight is an essential condition for ozone production, this factor should have
explanatory power for the variation in ozone concentrations. Regional transport influences
ozone concentrations, which is revealed by the 10 m V-wind component and 10 m U wind.
The main urban area of Beijing is located south of the research site, and air pollutants in the
core urban area may be transported to the research site by wind, which will affect the final
observed ozone concentrations. This finding was also confirmed by related studies [68,69].
This is the reason why the direction of wind is also considered in this study.

Table 2. Impact factor interaction detection to ozone concentrations.

Variable 2 m
Temperature

10 m
U-Wind

Component

10 m
V-Wind

Component

Net Surface
Solar

Radiation

Surface
Pressure

2 m
Dewpoint

Temperature
RHU * Solar

Altitude NO2

2 m temperature 0.64
10 m U-wind
component 0.66 0.22

10 m V-wind
component 0.67 0.27 0.23

Net surface solar
radiation 0.66 0.39 0.44 0.36

Surface pressure 0.67 0.30 0.32 0.42 0.27
2 m dewpoint
temperature 0.66 0.29 0.30 0.41 0.33 0.25

RHU 0.66 0.25 0.25 0.40 0.31 0.30 0.22
Solar altitude 0.67 0.31 0.38 0.42 0.35 0.34 0.34 0.29

NO2 0.74 0.44 0.46 0.50 0.48 0.45 0.44 0.47 0.41

* Relative humidity: RHU.

To explore the second issue noted in the introduction, we used geodetectors to quan-
titatively calculate the joint effect of two factors on ozone concentrations on a temporal
scale, which is novel compared to previous studies. This study confirms that the temporal
application of the wavelet analysis and geographic detectors is feasible.

3.4. General Discussion

Some of our findings are similar to previous studies, while there are also some novel
findings in this study. Hourly ozone concentrations are higher in spring and summer and
much lower in autumn and winter, with their mean values of 73.33 µg/m3, 97.74 µg/m3,
46.23 µg/m3, and 35.97 µg/m3, respectively (Figure 2a). This result is consistent with
previous studies [70–72].

This study analyzes multiscale periods from an oscillating time series, which has not
been explored in related studies. There are also fragmented but significant periodic signals,
such as 6 h and 12 h in many cases, which indicates that ozone has a smaller periodic
signal in addition to the 24 h periodic variations. From the wavelet coherence spectra of
NO2 and O3, and temperature and O3, an interesting phenomenon was observed. Regions
where NO2 was in the antiphase with ozone were considerably deficient in regions where
temperature and ozone were in phase in 2019. This indicates that in summer and autumn,
when temperature is high and NO2 concentration is low, temperature is the primary factor
affecting ozone. In spring and winter, higher NO2 concentrations control ozone generation
when temperature is low. The results of the wavelet analysis indicate that the key factors
affecting ozone concentrations differ at different periods within a year, which has not been
confirmed by previous studies.

To our knowledge, this is the first time that geodetectors were applied to explore
the explanatory power of the individual influencing factors and their interactions on the
temporal variations in ozone at an hourly scale. This also provide a new perspective for
related research. When discussing the influence of influencing factors on ground-level
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ozone concentration, the interaction between factors cannot be ignored, and sometimes it is
even very important.

This study also has several limitations. We extracted the periodic properties and
phase relationships of ozone and its influencing factors from the oscillatory time series
on an hourly scale. One limitation is the uncertainty in the imputation of missing data.
This has always been an issue worth exploring for monitoring data; however, it is not
the focus of this study. We compared a variety of interpolation methods, and finally
concluded that the interpolation method in this study is the most suitable for the ozone
time series. The filling of missing data might result in occasional cycles at multiple time
scales. Therefore, the analysis in this study only used large contiguous regions in cross
wavelet spectrum (XWT) and wavelet coherence spectrum (WTC) to ensure the reliability
of the relationship. Other limitations of this study are the length of the time series and
the representativeness of the selected station. Because our study focused on an hourly
scale, we only selected the time series from the station for 2019. We used a total of 8745
observations, which is sufficient to explore the variations in ozone and its influencing
factors during the year. However, this suggests that the relationship between ozone and
the influencing factors in this study may be unstable in a longer multiyear term, which
is also an interesting issue for future consideration. Furthermore, it should be noted that
the findings of this study were concluded from model results only based on one station,
which may be different from other stations with different geographical features, such as
rural or downtown stations. We will investigate the spatial effects by selecting more types
of stations to compare the relationships between influencing factors and ground ozone
concentrations in future research.

4. Conclusions

In this work, the time series of ozone and its influencing factors were disentangled
and reconstructed to analyze the multiscale relationships with meteorological factors
and some precursors using continuous wavelet transform, cross wavelet, and wavelet
coherence. Compared with other studies, we quantitatively calculated the period and
phase relationships of ozone and its influencing factors. The most significant cycle of
ground ozone concentrations was the 22–26 h scale period, and there was a multiscale
effect at the scales of 6 h and 12 h. Temperature and ground-level ozone concentrations
shared a strong periodic signal, with a positive phase on multiple scales from March to
October, while NO2 and ozone exhibited an antiphase at other times in 2019, indicating
that air temperature and NO2 control ozone production at different times of the year.

We found that the single factor of temperature had the highest power to determine
the ground-level ozone concentrations among all the factors. In addition, the interactions
between NO2 and temperature had the strongest explanatory power for the time distribu-
tion of ozone concentrations, which has not been found in other studies. The interactions
of solar radiation and the southerly wind also has a great impact on the ground ozone
concentrations at the research site because densely populated areas are located south of
the monitoring site. This finding indicates that the regional transmission of ozone should
be considered. Because of the complex and strong multiscale effects of the meteorologi-
cal factors and precursors on ozone concentrations, the management of ozone pollution
should be focused on time scales of ozone pollution and controllable precursors. Long-term
mitigation of ozone pollution can be achieved through rational land-use schemes and the
control of anthropogenic heat and emission sources. As an emergency response, people
can slow the rate of ozone production by using intervention measures such as mist cannon
trucks, which can increase humidity and decrease temperature. The findings of this study
can help improve the management of urban ozone pollution.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/atmos14030604/s1, Figure S1: Z-score normalization time series
(a) and wavelet power spectrum (b) of 2 m dew temperature, Figure S2: Z-score normalization time
series (a) and wavelet power spectrum (b) of 10 m U component of wind (10 m U wind), Figure S3:
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Z-score normalization time series (a) and wavelet power spectrum (b) of relative humidity (RHU),
Figure S4: Z-score normalization time series (a) and wavelet power spectrum (b) of solar altitude,
Figure S5: Wavelet coherence spectrum (WTC) of 2 m dew temperature and O3, Figure S6: Crossed
wavelet spectrum (XWT) of 2 m dew temperature and O3, Figure S7: Wavelet coherence spectrum
(WTC) of 10 m U component of wind (10 m U wind) and O3, Figure S8: Crossed wavelet spectrum
(XWT) of 10 m U component of wind (10 m U wind) and O3, Figure S9: Wavelet coherence spectrum
(WTC) of 10 m V component of wind (10 m V wind) and O3, Figure S10: Crossed wavelet spectrum
(XWT) of 10 m V component of wind (10 m V wind) and O3, Figure S11: Wavelet coherence spectrum
(WTC) of relative humidity (RHU) and ozone (O3), Figure S12: Crossed wavelet spectrum (XWT) of
relative humidity (RHU) and ozone (O3), Figure S13: Wavelet coherence spectrum (WTC) of surface
net solar radiation (SNSR) and ozone (O3), Figure S14: Crossed wavelet spectrum (XWT) of surface
net solar radiation (SNSR) and ozone (O3), Figure S15: Wavelet coherence spectrum (WTC) of solar
altitude and ozone (O3), Figure S16: Crossed wavelet spectrum (XWT) of solar altitude and ozone
(O3), Figure S17: Wavelet coherence spectrum (WTC) of surface pressure and ozone (O3), Figure S18:
Crossed wavelet spectrum (XWT) of surface pressure and ozone (O3), Table S1: Parameters from
ERA5 land reanalysis data and observation stations, Table S2: Number and percentage of missing
gaps for air pollutants and meteorological data, Table S3: The periods and phase relationship of
influencing factors and ozone.
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