
Citation: Zhang, Z.; Sun, Y.; Li, Y.; Ai,

J.; Zheng, X.; Wang, W. Simulation

and Analysis of the Influence of

Sounding Rocket Outgassing on

In-Situ Atmospheric Detection.

Atmosphere 2023, 14, 603.

https://doi.org/10.3390/

atmos14030603

Academic Editor: Olaf Scholten

Received: 9 February 2023

Revised: 9 March 2023

Accepted: 20 March 2023

Published: 22 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Simulation and Analysis of the Influence of Sounding Rocket
Outgassing on In-Situ Atmospheric Detection
Zhiliang Zhang 1,2,3,4 , Yueqiang Sun 1,2,3,4, Yongping Li 1,2,3,4,*, Jiangzhao Ai 1,3,4, Xiaoliang Zheng 1,2,3,4

and Wei Wang 1,2,3,4

1 National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China
4 Key Laboratory of Science and Technology on Environmental Space Situation Awareness,

Chinese Academy of Sciences, Beijing 100190, China
* Correspondence: lyp@nssc.ac.cn

Abstract: The Meridian Project’s sounding rocket mission uses a mass spectrometer to conduct in-situ
atmospheric detection. In order to assess the influence of surface material outgassing and the attitude
control jet on the spectrometer’s detection, a sounding rocket platform was modeled and simulated.
Using the physical field simulation software COMSOL and the Monte Carlo method, this study
investigated whether the gas molecules from the two cases could enter the in-situ atmospheric mass
spectrometer’s sensor sampling port after colliding with the background atmosphere. The simulation
results show that the influence of surface material outgassing on the in-situ atmospheric detection is
very small, even under the conditions of medium solar activity and medium geomagnetic activity,
while the influence of the attitude control jet on the in-situ atmospheric detection is large but can
be reduced by reducing the low-altitude attitude control operation and decreasing the transmission
probability. Through simulation optimization and according to engineering needs, increasing the
nozzle outlet cross-sectional area, increasing the temperature of the gas used for attitude control,
increasing the nozzle rotation angle, increasing the nozzle outlet angle, or increasing the nozzle center
height can reduce the transmission probability. This model can simulate and analyze the influence of
both surface material outgassing and attitude control jets on in-situ atmospheric detection, optimize
relevant parameters, and provide new ideas for relevant work.

Keywords: Meridian Project; sounding rocket; in-situ detection; outgassing; COMSOL; Monte Carlo

1. Introduction

Sounding rockets are a powerful method for the in-situ detection of the atmosphere
and ionosphere at 20–200 km. This region is beyond the capability of sounding balloons
and is too low for satellites to operate for long periods of time. This makes sounding
rockets the best platform for collecting data and observing phenomena. Sounding rockets
have the advantages of a simple structure, mature technology, low cost, and control-
lable risk; meanwhile, they are highly flexible and can be launched quickly for detection
when solar activity and geomagnetic activity are intense. Therefore, developed countries,
such as Europe [1–5] and the United States [6], as well as Japan [7] and India [8], have
been actively developing sounding rockets and conducting missions at an early stage
and have achieved many scientific results [9–13]. Today’s advanced international sound-
ing rockets can even reach an altitude of 1000 km. Additionally, China began sounding
rocket research in 1958, and three generations of sounding rockets have been developed in
50 years [14,15].

The Meridian Project, a major national scientific project, was started by the Chinese
Academy of Sciences (CAS) in 2008. The Meridian Project is the most comprehensive, full-
featured, and longest-spanning space environment ground-based monitoring network in
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the world [16,17]. Additionally, through the efforts of scientists from China and around the
world, it has gradually developed into the International Meridian Circle Program [18]. The
Meridian Project uses sounding rockets to conduct in-situ detection within the atmospheric
environment at 20–320 km to complement ground-based detection, to explore the dynamical
processes and mechanisms of the atmosphere, ionosphere, and solar-terrestrial space [19,20],
and to provide the necessary environmental parameters for atmospheric science, scientific
research [21,22] and engineering projects related to the atmosphere.

Spacecraft contamination has always been an important aspect to consider in space-
craft design and has been studied by many researchers [23–27]. Spacecraft contamination is
mainly caused by particles of surface materials outgassing from platforms and payloads, as
well as particles generated by thrusters and attitude control operations. Spacecraft contami-
nation affects not only optical instruments but also in-situ mass spectrometers, especially
in a thin atmosphere. For optical instruments [28], deposition of contamination can lead to
degradation of instrument performance; for mass spectrometers [29–31], contamination
does not degrade instrument performance but can produce significant background sig-
nals, especially for detection missions in thin atmospheres, which affect the reliability and
authenticity of the detection results.

So far, many scholars have used simulation analysis [32–36], in-orbit monitoring [37],
and adsorption [38,39] control to study spacecraft contamination. Sounding rocket missions
are not very long (typically 5–20 min), and the detection region is the atmosphere. Therefore,
simulation and analysis before missions are particularly important to address the issue
of sounding rocket contamination. Simulation and analysis can be used to improve and
optimize the structure and location of rockets and payloads and to filter noise from the
result data after missions to reduce the effects of contamination. This paper focuses on the
influence of surface material outgassing and the attitude control jet on the mass spectrometer
used for in-situ atmospheric detection in the context of the Meridian Project sounding
rocket mission and investigates whether the gas molecules from the above two cases can
enter the mass spectrometer’s sensor sampling port after colliding with the background
atmosphere. The physical field simulation software COMSOL is used to model and simulate
the collision process with the Monte Carlo method to explore the influence of different
solar and geomagnetic activities, and to support the development of the Meridian Project
sounding rocket mission.

2. Theory and Methods
2.1. Gas Molecular Collision Model

Monte Carlo methods are often used to simulate collision processes. The direct sim-
ulation Monte Carlo (DSMC) method is suitable for solving the Boltzmann equation to
study rarefied gas flow [32,40,41] and is relatively easy to apply in terms of programming
effort and computational time. Additionally, atmospheric motion above 120 km can be
regarded as free molecular flow, which is the equilibrium Maxwell distribution and can
be described and calculated by the Boltzmann equation. DSMC uses a large number of
simulated molecules (104–106 or more) and records the position, velocity, internal energy,
and collision process of each simulated molecule, as well as its state after the collision, so
as to simulate the complex physical phenomena of the atmosphere. Collisions between
molecules are handled based on probability.

The surface material of the sounding rocket platform can adsorb gas molecules, which
can escape when the altitude increases and the pressure decreases. The sounding rocket
platform is controlled in flight by jetting gas, and these two cases of gas molecules will
collide with the background atmosphere. In 1858, Clausius developed the elastic sphere
model of gas molecules, introducing the average collision frequency, i.e., the average
number of collisions of a molecule with other molecules per unit of time. This model
simplifies molecular motion:

1. The molecular repulsion range is set to a rigid sphere of diameter d;
2. The collisions between molecules are elastic;
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3. The background molecules are approximately stationary;
4. The incident molecules move at average speed v.

The incident molecular A’s motion is shown in Figure 1. The cross-sectional area of
the cylinder, i.e., the area of molecular collision, is σ. The distance traveled by A in time t is
vt. The numerical density of gas molecules in the background atmosphere is n. The total
number of molecules centered in the cylinder, i.e., the number of molecules colliding with
A, is nσvt. The average collision frequency is shown in Equation (1).

z =
nσvt

t
= nσv (1)
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Figure 1. Diagram of the incident molecular motion.

In 1860, Maxwell used probability statistics to derive the speed distribution function of
equilibrium gas molecules, i.e., Maxwell’s distribution, and used the distribution to derive
the relationship between average speed and absolute temperature, and modified Clausius’
formula, as shown in Equation (2):

z = nσ
√
(vA

2 + vB2) = nπd2
√
(vA

2 + vB2) (2)

The diameter d is given by the Van der Waals radius of molecules; the average speed of
background molecules is obtained from the Maxwell distribution; and different molecules’
numerical density in the background atmosphere is calculated using the NRLMSISE-00
model [42,43]. The NRLMSISE-00 model was developed by the U.S. Naval Laboratory
based on satellite mass spectrometer data and incoherent scattering radar temperature
measurements and is one of the most advanced and well-established empirical atmospheric
models in the world, which is widely used in data analysis and simulation.

2.2. Surface Material Outgassing

Generally, any solid material can adsorb gas molecules. Additionally, when the solid
material is placed in a high-vacuum environment, the gas will be desorbed and escape. Ac-
cording to the literature [44,45], Equation (3) is obtained, where q is the material outgassing
rate in Pa·L/(s·cm2); C is the pumping speed in L/s for the pressure change (the following
text uses m3/s as the unit); p1 and p2 are the values before and after the pressure change in
Pa; and S is the surface area of the material in cm2. According to the mission, the material
outgassing rate is 533.2 × 10−6 Pa·L/(s·cm2).

q =
C(p1 − p2)

S
(3)

2.3. Attitude Control Jet

According to the mission, the attitude control uses a de Laval nozzle; its structure is
shown in Figure 2, and its design parameters are shown in Table 1. The cold gas propulsion
method is used, and the gas is nitrogen (N2). From the principle of the de Laval nozzle,
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it is known that the gas speed is accelerated from subsonic to supersonic as the cross-
sectional area of the nozzle outlet changes. The relationship is shown in Equation (4)
and Figure 3, where γ is the adiabatic index (1.66 for monatomic molecules and 1.40 for
diatomic molecules).

A∗

A
= (

γ + 1
2

)

1
γ−1

Ma(1− γ− 1
γ + 1

Ma2)

1
γ−1

(4)
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Figure 2. Structure of the de Laval nozzle. The three straight arrows are the inlet, throat and outlet
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Table 1. Design parameters of the de Laval nozzle.

Parameter Value

Inlet radius 1.30 mm
Throat radius 0.75 mm
Outlet radius 2.60 mm
Outlet angle 30◦
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According to aerodynamics, the speed of sound is calculated as shown in Equation (5),
where γ is the adiabatic index (1.66 for monatomic molecules and 1.40 for diatomic molecules),
R is the gas constant, T is the absolute temperature, and M is molar mass. Combining Table 1,
Equation (4), and Equation (5), the speed of jetting N2—whose temperature is 303 K—to the
nozzle outlet in the mission design is about 765 m/s.

c =
√

γ
p
ρ
=

√
γRT

M
(5)

2.4. Simulation Model

COMSOL Multiphysics (COMSOL) [46] is a powerful piece of physical field simu-
lation software based on the finite element method that can be used to solve systems of
partial differential equations to simulate physical phenomena and can be used to analyze
electromagnetic, structural, fluid, heat transfer, and engineering problems. COMSOL’s
free molecular flow module has been used to simulate and analyze spacecraft contam-
ination [47–49]. However, the particle tracking module is better suited to deal with the
collision process. The particle tracking module [50] supports the calculation of particle
trajectories in fluid or electromagnetic fields, including particle–particle, particle–fluid,
and particle–field interactions. The particle tracking module has a velocity reinitialization
feature that applies random forces to particles during the simulation, allowing various
Monte Carlo simulations to be performed. The module has collision nodes for adding
random collisions, and further sub-nodes for elasticity, ionization, and excitation can
be selected.

The flowchart of the building model is shown in Figure 4. The structure of the model
is shown in Figure 5, and the geometrical parameters are shown in Table 2. The direction
of the outer normal vector of the nozzle outlet is the same as the positive direction of the
x-axis. Figure 5a is placed in the center of Figure 5d.
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Table 2. Geometric parameters of the model.

Domain Parameter Value

Frustum of a cone of platform

Top radius 2.50 mm

Bottom radius 0.375 m

Height 0.345 m

Cylinder of platform
Radius 0.375 m

Height 1.115 m

The outlet of the de Laval nozzle of the platform
Radius 2.60 mm

Center height 25 mm

Collision Edge length 500 m
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The particle tracking module was selected to simulate the collision process between
the gas molecules from the outgassing or jet and the background atmosphere. The points
to be considered when setting up the particle tracking module were:

1. The wall condition of the platform surface was set to diffuse scattering, and the wall
condition of the collision domain and sensor sampling port was set to frozen;

2. The gas molecules of outgassing were N2, oxygen (O2), and argon (Ar), and were set
on the surface of the platform (the effective surface area is 3.323 m2) at the ratio of
78:21:1 and at the same speed as the sounding rocket;

3. The gas molecules of the jet were N2 and were set at the nozzle outlet with the calculated
velocity of the three-dimensional cone distribution during jetting; the jet duration was
set to 1 s, and the number of jets was set to 50 to simulate the continuous state;

4. The collision nodes were added, and the background parameters were input, such as
numerical density, molar mass, temperature, and average collision frequency;

5. The simulated molecules in the model were only the particles of outgassing or the jet,
not the background atmosphere;

6. Due to the limited computing power, the maximum number of simulated molecules
in the model was 105.

The model was meshed and solved using a transient study in the time domain.

3. Results and Analysis

The mission was planned to detect altitudes of 120–320 km. COMSOL was used to
investigate the collision process with different solar and geomagnetic activities. The simula-
tion parameters are shown in Table 3, and the background atmospheric data calculated by
the NRLMSISE-00 model under different solar activity, geomagnetic activity, and altitudes
are shown in Tables 4–7. The transmission probability obtained from the simulation is the
ratio of the number of particles received at the sensor sampling port to the total number
of particles.

Table 3. Simulation parameters.

Parameter Value

Altitude 120, 160, 200, 240, 280, 320 km
Jet speed 765 m/s

Medium/low solar activity index F10.7 200/100 sfu
Medium/low geomagnetic activity index Ap 48/8

Average speed of platform at 120 km in simulation 1925.5 m/s
Average speed of platform at 160 km in simulation 1723.5 m/s
Average speed of platform at 200 km in simulation 1498.5 m/s
Average speed of platform at 240 km in simulation 1236.5 m/s
Average speed of platform at 280 km in simulation 908.5 m/s
Average speed of platform at 320 km in simulation 375.5 m/s

Table 4. Background atmospheric temperature and numerical density of various molecules at different
altitudes under low F10.7 and low Ap environments (LL).

Altitude Temperature He O N2 O2 Ar H

120 km 383 K 3.77 × 1013 m−3 7.82 × 1016 m−3 2.54 × 1017 m−3 3.90 × 1016 m−3 1.01 × 1015 m−3 5.67 × 1012 m−3

160 km 634 K 2.06 × 1013 m−3 1.21 × 1016 m−3 1.46 × 1016 m−3 1.33 × 1015 m−3 1.78 × 1013 m−3 1.02 × 1012 m−3

200 km 680 K 1.50 × 1013 m−3 3.80 × 1015 m−3 2.07 × 1015 m−3 1.55 × 1014 m−3 1.12 × 1012 m−3 5.55 × 1011 m−3

240 km 689 K 1.15 × 1013 m−3 1.34 × 1015 m−3 3.39 × 1014 m−3 2.03 × 1013 m−3 8.47 × 1010 m−3 4.68 × 1011 m−3

280 km 691 K 8.96 × 1012 m−3 4.89 × 1014 m−3 5.81 × 1013 m−3 2.74 × 1012 m−3 6.82 × 109 m−3 4.31 × 1011 m−3

320 km 691 K 6.99 × 1012 m−3 1.81 × 1014 m−3 1.02 × 1013 m−3 3.76 × 1011 m−3 5.68 × 108 m−3 4.04 × 1011 m−3
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Table 5. Background atmospheric temperature and numerical density of various molecules at different
altitudes under low F10.7 and medium Ap environments (LM).

Altitude Temperature He O N2 O2 Ar H

120 km 389 K 4.00 × 1013 m−3 8.56 × 1016 m−3 2.59 × 1017 m−3 4.02 × 1016 m−3 1.09 × 1015 m−3 4.84 × 1012 m−3

160 km 659 K 2.24 × 1013 m−3 1.35 × 1016 m−3 1.56 × 1016 m−3 1.47 × 1015 m−3 2.20 × 1013 m−3 8.27 × 1011 m−3

200 km 714 K 1.64 × 1013 m−3 4.39 × 1015 m−3 2.38 × 1015 m−3 1.86 × 1014 m−3 1.53 × 1012 m−3 4.45 × 1011 m−3

240 km 727 K 1.27 × 1013 m−3 1.63 × 1015 m−3 4.24 × 1014 m−3 2.68 × 1013 m−3 1.31 × 1011 m−3 3.74 × 1011 m−3

280 km 730 K 9.99 × 1012 m−3 6.24 × 1014 m−3 7.96 × 1013 m−3 4.01 × 1012 m−3 1.20 × 1010 m−3 3.45 × 1011 m−3

320 km 730 K 7.90 × 1012 m−3 2.43 × 1014 m−3 1.53 × 1013 m−3 6.13 × 1011 m−3 1.15 × 109 m−3 3.24 × 1011 m−3

Table 6. Background atmospheric temperature and numerical density of various molecules at different
altitudes under medium F10.7 and low Ap environments (ML).

Altitude Temperature He O N2 O2 Ar H

120 km 398 K 3.97 × 1013 m−3 9.01 × 1016 m−3 2.65 × 1017 m−3 3.46 × 1016 m−3 1.03 × 1015 m−3 3.28 × 1012 m−3

160 km 758 K 2.09 × 1013 m−3 1.51 × 1016 m−3 1.68 × 1016 m−3 1.10 × 1015 m−3 2.10 × 1013 m−3 3.34 × 1011 m−3

200 km 863 K 1.54 × 1013 m−3 5.56 × 1015 m−3 3.23 × 1015 m−3 1.54 × 1014 m−3 2.06 × 1012 m−3 1.48 × 1011 m−3

240 km 895 K 1.24 × 1013 m−3 2.41 × 1015 m−3 7.71 × 1014 m−3 2.92 × 1013 m−3 2.68 × 1011 m−3 1.20 × 1011 m−3

280 km 906 K 1.01 × 1013 m−3 1.10 × 1015 m−3 1.98 × 1014 m−3 6.13 × 1012 m−3 3.86 × 1010 m−3 1.11 × 1011 m−3

320 km 909 K 8.36 × 1012 m−3 5.15 × 1014 m−3 5.24 × 1013 m−3 1.34 × 1012 m−3 5.79 × 109 m−3 1.05 × 1011 m−3

Table 7. Background atmospheric temperature and numerical density of various molecules at different
altitudes under medium F10.7 and medium Ap environments (MM).

Altitude Temperature He O N2 O2 Ar H

120 km 404 K 4.21 × 1013 m−3 9.87 × 1016 m−3 2.70 × 1017 m−3 3.57 × 1016 m−3 1.12 × 1015 m−3 2.80 × 1012 m−3

160 km 779 K 2.27 × 1013 m−3 1.68 × 1016 m−3 1.78 × 1016 m−3 1.20 × 1015 m−3 2.55 × 1013 m−3 2.73 × 1011 m−3

200 km 894 K 1.68 × 1013 m−3 6.31 × 1015 m−3 3.56 × 1015 m−3 1.76 × 1014 m−3 2.65 × 1012 m−3 1.19 × 1011 m−3

240 km 931 K 1.36 × 1013 m−3 2.81 × 1015 m−3 8.91 × 1014 m−3 3.52 × 1013 m−3 3.70 × 1011 m−3 9.65 × 1010 m−3

280 km 943 K 1.12 × 1013 m−3 1.32 × 1015 m−3 2.40 × 1014 m−3 7.82 × 1012 m−3 5.72 × 1010 m−3 8.92 × 1010 m−3

320 km 947 K 9.29 × 1012 m−3 6.35 × 1014 m−3 6.71 × 1013 m−3 1.82 × 1012 m−3 9.26 × 109 m−3 8.47 × 1010 m−3

3.1. The Influence of Surface Material Outgassing on Detection

According to Table 3, the NRLMSISE-00 model, the Ideal Gas Law, and Equation (3),
the temperature, density, average molar mass, pressure, pumping speed, and the actual
number of outgassing particles for different solar activities, geomagnetic activities, and
altitudes can be obtained as shown in Tables 8–11. In Tables 8–11, as the altitude increases,
the pressure decreases and the actual number of outgassing particles increases. Due to
the limited computing power, the number of outgassing particles at each altitude in the
simulation is set based on the proportions in Tables 8–11.

Table 8. Data related to outgassing at different altitudes under the LL case.

Altitude Density Average
Molar Mass Pressure Pumping Speed

Actual Number
of Outgassing

Particles
Proportion

100 km — — 2.99 × 10−2 Pa — — —
120 km 1.60 × 10−8 kg/m3 25.921 g/mol 1.97 × 10−3 Pa 6.33 × 10−1 m3/s 2.36 × 1017 0.230
160 km 1.07 × 10−9 kg/m3 22.992 g/mol 2.46 × 10−4 Pa 1.03 × 101 m3/s 2.89 × 1017 0.282
200 km 2.06 × 10−10 kg/m3 20.509 g/mol 5.68 × 10−5 Pa 9.37 × 101 m3/s 5.67 × 1017 0.553
240 km 5.27 × 10−11 kg/m3 18.512 g/mol 1.63 × 10−5 Pa 4.38 × 102 m3/s 7.51 × 1017 0.732
280 km 1.59 × 10−11 kg/m3 17.163 g/mol 5.34 × 10−6 Pa 1.61 × 103 m3/s 9.03 × 1017 0.880
320 km 5.37 × 10−12 kg/m3 16.244 g/mol 1.90 × 10−6 Pa 5.15 × 103 m3/s 1.03 × 1018 1.000
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Table 9. Data related to outgassing at different altitudes under the LM case.

Altitude Density Average
Molar Mass Pressure Pumping Speed

Actual Number
of Outgassing

Particles
Proportion

100 km — — 2.85 × 10−2 Pa — — —
120 km 1.65 × 10−8 kg/m3 25.775 g/mol 2.07 × 10−3 Pa 6.69 × 10−1 m3/s 2.58 × 1017 0.247
160 km 1.16 × 10−9 kg/m3 22.881 g/mol 2.79 × 10−4 Pa 9.89 × 100 m3/s 3.03 × 1017 0.290
200 km 2.38 × 10−10 kg/m3 20.510 g/mol 6.88 × 10−5 Pa 8.45 × 101 m3/s 5.89 × 1017 0.564
240 km 6.46 × 10−11 kg/m3 18.602 g/mol 2.10 × 10−5 Pa 3.71 × 102 m3/s 7.75 × 1017 0.742
280 km 2.06 × 10−11 kg/m3 17.293 g/mol 7.23 × 10−6 Pa 1.29 × 103 m3/s 9.25 × 1017 0.885
320 km 7.29 × 10−12 kg/m3 16.408 g/mol 2.70 × 10−6 Pa 3.91 × 103 m3/s 1.05 × 1018 1.000

Table 10. Data related to outgassing at different altitudes under the ML case.

Altitude Density Average
Molar Mass Pressure Pumping Speed

Actual Number
of Outgassing

Particles
Proportion

100 km — — 2.96 × 10−2 Pa — — —
120 km 1.66 × 10−8 kg/m3 25.607 g/mol 2.15 × 10−3 Pa 6.47 × 10−1 m3/s 2.52 × 1017 0.227
160 km 1.24 × 10−9 kg/m3 22.651 g/mol 3.46 × 10−4 Pa 9.84 × 100 m3/s 3.25 × 1017 0.293
200 km 3.07 × 10−10 kg/m3 20.604 g/mol 1.07 × 10−4 Pa 7.41 × 101 m3/s 6.64 × 1017 0.598
240 km 1.02 × 10−10 kg/m3 19.006 g/mol 3.99 × 10−5 Pa 2.65 × 102 m3/s 8.54 × 1017 0.769
280 km 3.90 × 10−11 kg/m3 17.831 g/mol 1.65 × 10−5 Pa 7.57 × 102 m3/s 9.97 × 1017 0.898
320 km 1.63 × 10−11 kg/m3 17.005 g/mol 7.25 × 10−6 Pa 1.92 × 103 m3/s 1.11 × 1018 1.000

Table 11. Data related to outgassing at different altitudes under the MM case.

Altitude Density Average
Molar Mass Pressure Pumping Speed

Actual Number
of Outgassing

Particles
Proportion

100 km — — 2.82 × 10−2 Pa — — —
120 km 1.71 × 10−8 kg/m3 25.451 g/mol 2.26 × 10−3 Pa 6.84 × 10−1 m3/s 2.77 × 1017 0.246
160 km 1.34 × 10−9 kg/m3 22.510 g/mol 3.86 × 10−4 Pa 9.45 × 100 m3/s 3.39 × 1017 0.301
200 km 3.43 × 10−10 kg/m3 20.531 g/mol 1.24 × 10−4 Pa 6.77 × 101 m3/s 6.81 × 1017 0.605
240 km 1.18 × 10−10 kg/m3 19.003 g/mol 4.81 × 10−5 Pa 2.33 × 102 m3/s 8.73 × 1017 0.775
280 km 4.69 × 10−11 kg/m3 17.873 g/mol 2.06 × 10−5 Pa 6.42 × 102 m3/s 1.01 × 1018 0.901
320 km 2.02 × 10−11 kg/m3 17.073 g/mol 9.33 × 10−6 Pa 1.58 × 103 m3/s 1.13 × 1018 1.000

The simulation results of the influence of surface material outgassing on detection
for different solar activities, geomagnetic activities, and altitudes were zero for all cases,
except for the MM case, where there was a transmission probability of 0.0011% at 280 km.
The simulation results in the MM case at 120 km and 320 km are shown in Figure 6.
According to the simulation results and Table 5, it can be estimated that the number
of outgassing particles entering the sampling port at 280 km in the MM case can reach
1.11 × 1013. According to the sampling port area, rocket speed, simulation time, and nu-
merical density of various molecules in the background atmosphere, it can be calculated
that the number of atmospheric particles entering the sampling port at 280 km in the MM
case is 8.45 × 1014. Combining the simulation results and the above two calculation re-
sults, it can be concluded that the influence of surface material outgassing on detection is
very small.
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3.2. The Influence of Attitude Control Jet on Detection

The simulation results of the influence of the attitude control jet on detection for
different solar activity, geomagnetic activity, and altitude are shown in Table 12 and Figure 7,
and the simulation results in the LL case at 120 km and 320 km are shown in Figure 8.
According to the results, it can be observed that the transmission probability gradually
decreases at 120 km as the solar activity and geomagnetic activity become intense, while
the opposite situation is observed at 160 km, 200 km, and 240 km, where the transmission
probability increases as the solar activity and geomagnetic activity become intense; above
240 km, the transmission probability is 0 and there is no trend.

Table 12. Simulation results of the attitude control jet for different solar activities, geomagnetic activities,
and altitudes.

Altitude LL LM ML MM

120 km 0.047% 0.038% 0.033% 0.029%
160 km 0.006% 0.007% 0.010% 0.010%
200 km 0% 0.003% 0.004% 0.003%
240 km 0% 0% 0% 0.001%
280 km 0% 0% 0% 0%
320 km 0% 0% 0% 0%

From Tables 4–7, it can be seen that the numerical density decreases as altitude increases.
Additionally, the molecules’ average speed in the background atmosphere increases as
temperature increases. However, the average collision frequency decreases according to
Equation (3). Therefore, the lower the altitude, the more intense the collision. At the same
altitude, the temperature increases due to intense solar activity or geomagnetic activity,
and the numerical density of the background atmosphere increases; thus, the average
collision frequency increases. The transmission probability decreases as the average collision
frequency increases because the background atmosphere is dense and collisions are intense
at 120 km, while the transmission probability increases as the average collision frequency
increases because the background atmosphere is thin at 160 km, 200 km, and 240 km. Above
240 km, the background atmosphere is very thin, the average collision frequency is less than
1 Hz, and the transmission probability decreases to 0.
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Figure 7. Simulation results of the attitude control jet under different environments. The x-axis
represents the gradual intensification of solar activity and geomagnetic activity, where F10.7 represents
the degree of solar activity and Ap represents the degree of geomagnetic activity. The y-axis represents
the transmission probability, which is the ratio of the number of particles received at the sensor
sampling port to the total number of particles.
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Based on the storage conditions of the gas used for attitude control in the mission, with
a pressure of 42 MPa, a temperature of 303 K, and a volume of 6 dm3, the number of gas
molecules used for attitude control was calculated to be 6.77 × 1025. Based on the sampling
port area, the average speed of the platform, the overall flight time, and the numerical
density of various molecules in the background atmosphere, the number of atmospheric
particles entering the sampling port was calculated to be 1.53 × 1018. Combining Table 12
with the above two calculation results, it was necessary to reduce the attitude control at low



Atmosphere 2023, 14, 603 12 of 18

altitudes and decrease the transmission probability. Therefore, the jet-related parameters
were optimized to decrease the transmission probability.

3.3. The Influence of Nozzle Outlet Cross-Sectional Area on Detection
3.3.1. N2

According to the principle of the de Laval nozzle, changing the jet speed must change
the outlet cross-sectional area of the nozzle. According to Equations (4) and (5), the speed of
sound can be calculated to be about 355 m/s, and the maximum speed can reach 869 m/s
after the acceleration of the de Laval nozzle.

After fixing other parameters and changing the jet speed to 120 km in the LL case,
the simulation results are shown in Figure 9. According to Figure 9, it can be observed
that the transmission probability shows an overall increasing trend as the speed increases.
However, there is a local decrease after 500 m/s and 700 m/s, respectively. From Figure 9,
the transmission probability can be reduced by increasing the jet speed to 800 m/s, i.e., by
increasing the nozzle outlet cross-sectional area to a radius of 4.14 mm. This can also
increase the thrust at the same time to reduce the jet time.
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Figure 9. Relationship between the speed of jetting N2 and transmission probability. The simulation
results are indicated by circles in the line graph. The primary x-axis at the bottom indicates the
speed of jetting N2, and the secondary x-axis at the top indicates the nozzle outlet radius at the
corresponding speed. The y-axis indicates the transmission probability, which is the ratio of the
number of particles received at the sensor sampling port to the total number of particles.

3.3.2. He

The inert gases N2 or He are usually chosen as the working gas for cold gas propul-
sion. If the working gas is changed to He, the speed of sound is about 1022 m/s, and
the maximum speed can reach 2051 m/s after acceleration by the de Laval nozzle. The
simulation results are shown in Figure 10 for this situation. According to Figure 10,
the transmission probability tends to oscillate and then increase as the speed increases;
the transmission probability oscillates between 1100 and 1800 m/s and increases after
1800 m/s; the transmission probability of jetting He is higher than the transmission
probability of jetting N2 as a whole. Therefore, N2 is more suitable for jetting.
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Figure 10. Relationship between the speed of jetting He and transmission probability. The simulation
results are indicated by stars in the line graph. The primary x-axis at the bottom indicates the speed of
jetting He, and the secondary x-axis at the top indicates the nozzle outlet radius at the corresponding
speed. The y-axis indicates the transmission probability, which is the ratio of the number of particles
received at the sensor sampling port to the total number of particles.

3.3.3. N2 Temperature

According to Equation (4), if the speed of sound is changed, the speed of jetting
can be changed while the outlet cross-sectional area remains unchanged. Based on
Equations (4) and (5), if the temperature of the gas is increased to 333 K, the mission design
of 765 m/s can be increased to 801 m/s. The simulation results for this situation are shown
in Figure 11. According to Figure 11, the jet speed increases with increasing temperature,
and the overall transmission probability tends to decrease. Therefore, the temperature of
the gas can be increased based on engineering needs.
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3.4. The Influence of Nozzle Rotation Angle and Outlet Angle on Detection
3.4.1. Rotation Angle

After fixing other parameters and increasing the nozzle rotation angle in the LL case to
120 km, the simulation results are shown in Figure 12. According to Figure 12, the larger the
nozzle rotation angle, the smaller the transmission probability. When the nozzle rotation
angle is greater than 25◦, the transmission probability decreases by an order of magnitude.
Additionally, when the nozzle rotation angle increases by more than 40◦, the transmission
probability basically decreases to zero. From Figure 12, it can be concluded that increasing
the nozzle rotation angle can effectively reduce the transmission probability.
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3.4.2. Outlet Angle

The simulation results are shown in Figure 13, with the other parameters fixed at
120 km in the LL case. According to Figure 13, the transmission probability oscillates as the
outlet angle increases. The minimum transmission probability is 0.034% for 22◦, and the
maximum transmission probability is 0.052% for 40◦. From Figure 13, the outlet angle can
be increased in the range of 30◦ to 36◦.
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3.5. The Influence of Nozzle Center Height on Detection

After fixing other parameters and changing the center height of the nozzle, the simula-
tion results are shown in Figure 14. From Figure 14, it can be seen that the transmission
probability with the increase of center height decreases and then increases. The decreasing
interval shows oscillating falls, and the minimum transmission probability is 0.025% at
250 mm. Then, in increasing intervals, there is a maximum transmission probability of
0.050% at 400 mm. Therefore, the nozzle center height can be increased to a range of less
than 250 mm to reduce the probability of transmission.
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Figure 14. Relationship between nozzle center height and transmission probability. The simulation
results are indicated by x-marks in the line graph. The x-axis represents the nozzle center height,
as shown in Figure 5c, which is the location of the nozzle. The y-axis represents the transmission
probability, which is the ratio of the number of particles received at the sensor sampling port to the
total number of particles.

4. Conclusions

In this paper, the collision process between gas molecules from surface materials
outgassing and the attitude control jet with the background atmosphere was modeled,
simulated, and analyzed using the physical field simulation software COMSOL and the
Monte Carlo method in the context of the Meridian Project sounding rocket mission. Using
the model, it can be investigated whether the gas molecules of two cases can enter the
sampling port of the mass spectrometer sensor for in-situ atmospheric detection, and the
methods to reduce the transmission probability can be investigated by simulating and
optimizing the parameters related to the jet and obtaining the following conclusions:

1. A simulation model based on COMSOL and Monte Carlo was proposed to simulate and
analyze the influence of surface material outgassing and attitude control jet on sounding
rocket detection under different solar activity, geomagnetic activity, and altitude;

2. Regardless of medium or low solar activity or medium or low geomagnetic activity,
surface material outgassing has little influence on sounding rocket detection. However,
a low-altitude attitude control jet has a greater influence on sounding rocket detection,
which can be reduced by reducing the number of low-altitude attitude controls and
decreasing the transmission probability;

3. According to the simulation, the transmission probability can be reduced by increasing
the cross-sectional area of the de Laval nozzle outlet or increasing the gas temperature
for attitude control within the allowable range of the project. Increasing the nozzle’s
rotation angle, the outlet angle within 36◦, and the center height within 250 mm can
decrease the transmission probability;

4. Since the NRLMSISE-00 model is higher than the actual atmospheric measurement
data, the actual transmission probability should be lower than the calculation results
of the simulation.
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