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Abstract: A key concern related to particulate air pollution is the development of an early warning
system that can predict local PM2.5 levels and excessive PM2.5 concentration episodes using vertical
meteorological factors. Machine learning (ML) algorithms, particularly those with recognition tasks,
show great potential for this purpose. The objective of this study was to compare the performance of
multiple linear regression (MLR) and multilayer perceptron (MLP) in predicting PM2.5 levels. The
software was trained to predict PM2.5 levels up to 7 days in advance using data from long-term
measurements of vertical meteorological factors taken at five heights above ground level (AGL)—10,
30, 50, 75, and 110 m—and PM2.5 concentrations measured 30 m AGL. The data used were collected
between 2015 and 2020 at the Microclimate and Air Pollutants Monitoring Tower station at Kasetsart
University, Bangkok, Thailand. The results showed that the correlation coefficients of PM2.5 predicted
and observed using MLR and MLP were in the range of 0.69–0.86 and 0.64–0.82, respectively, for
1–3 days ahead. Both models showed satisfactory agreement with the measured data, and MLR
performed better than MLP at PM2.5 prediction. In conclusion, this study demonstrates that the
proposed approach can be used as a component of an early warning system in cities, contributing to
sustainable air quality management in urban areas.

Keywords: PM2.5 prediction; vertical meteorological factors; multiple linear regression; multi-
layer perceptron

1. Introduction

Global research has focused on the air pollution parameter called PM2.5, which refers
to fine particulate matter with an aerodynamic diameter of less than 2.5 mm. In 2015,
PM2.5 was responsible for an estimated 4.2 million premature deaths globally [1], with most
fatalities being reported in Asia [2]. Southeast Asian regions are heavily affected by this
“silent killer” [3], with Bangkok, Thailand—one of Asia’s megacities—being particularly
affected by the PM2.5 problem.

During winter, ambient PM2.5 concentrations in many areas of Bangkok frequently
exceed the Thai national 24-h ambient air quality standard level of 50 µg/m3 [4]. Several
ground-based standard pollution monitoring stations operated by the Pollution Control
Department of Thailand (http://www.pcd.go.th/, accessed on 10 January 2023) are located
in the Bangkok metropolitan area. The present study used pollution and meteorological
data from the Microclimate and Air Pollutants Monitoring Tower station at Kasetsart
University, Bangkok, Thailand (hereafter called the KU tower). This station continuously
measures the vertical profiles of meteorological parameters and air pollutants that affect
PM2.5 concentrations near the ground [5]. The accumulation and spread of PM2.5 may
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vary even if emissions remain stable. Vertical experimental data are a primary source
of information for the lowest part of the atmospheric boundary layer [6]. Vertical tower
observations are generally limited by the tower height and rarely exceed 50 m. The KU
tower enables measurements to be taken up to 110 m above ground level (AGL).

Data obtained from 2015 to 2020 at the KU tower showed that ambient PM2.5 concen-
trations (24-h averages) exceeded the Thai national standard on 89 days and the maximum
allowable level of 37.5 µg/m3 of the upcoming national 24-h ambient air quality standard [7]
on 237 days. Unsurprisingly, the major sources of pollutants, especially particulates, are
road transport and burning biomass [8], which have many adverse effects on the popu-
lation [9–11]. Continuous monitoring of air quality is indispensable as a source of data
and provides a better understanding of the situation that can improve pollutant abatement
strategies. The emerging field of machine learning (ML) opens the possibility of proactively
mitigating the brunt of PM2.5 [12–14].

A key aspect related to the PM2.5 burden is establishing an early warning system
by using local meteorological factors to predict excessive PM2.5 concentration episodes.
PM2.5 short-term forecasting has become increasingly important. The use of artificial neural
networks (ANNs) has continued to increase [15] and it was recently shown that ambient
PM2.5 levels can be predicted using an artificial neural network based on satellite obser-
vations of aerosol optical depths [16,17]. Furthermore, machine learning algorithms have
been used to reliably forecast upcoming short-term high-concentration episodes as well
as peaks (<60 min) of fine particulate air pollution (PM2.5) 1 h in advance [18]. The use of
statistical models based on machine learning also seemingly allows the prediction of PM2.5
concentrations using meteorological data as well as traffic-related pollution burden [19].

Analyzing the precision and accuracy levels of forecasts using machine learning is an
ongoing process [20–25]. A recent study analyzed the prediction of PM2.5 concentrations
using multiple linear regression (MLR) and artificial neural network (ANN) models with
multilayer perceptron (MLP) and found that non-linear ANN models were more coherent
than MLR. [26]. Another recent study provided evidence that PM2.5 prediction using
ground-level meteorological factors was possible and estimated PM2.5 concentrations 1–5 h
in advance [27,28]. Knowledge of the vertical profiles of meteorological data is necessary
for improving PM2.5 prediction accuracy and precision.

Consequently, this research explores the applicability of long-term measurements
of ambient PM2.5 concentrations, prevalent vertical meteorological factors, and ML for
predicting future PM2.5 levels in an urban area. To achieve this goal, environmental spatial
data from the KU tower were used for supervised learning by prediction models using
machine learning tools based on multiple linear regression and multilayer perceptron.

2. Materials and Methods
2.1. Site Description and Measuring Devices

The air pollution and meteorological data sampling site was the KU tower (13.85 ◦N, 100.57 ◦E)
located at the Faculty of Environment, Kasetsart University (Figure 1). The tower is located in
the northeast corner of the university campus, which is considered an urban–institutional area of
the city, with major roads approximately several hundred meters from the measuring site. The
measuring site is located on a flat area with the majority of surrounding land use within a 5-km
radius being buildings and community land use (94%), with roads (4%) and water and other use
types (2%) comprising the rest [29]. Considering that there are currently over 11.6 million vehicles
registered in Bangkok (https://web.dlt.go.th/statistics/index.php, accessed on 25 February 2023),
and with the addition of commuting vehicles, the impact of the traffic’s contribution to local PM2.5
pollution is expected to be substantial.

https://web.dlt.go.th/statistics/index.php


Atmosphere 2023, 14, 589 3 of 15

Atmosphere 2023, 14, x FOR PEER REVIEW 3 of 17 
 

 

with the addition of commuting vehicles, the impact of the traffic’s contribution to local 

PM2.5 pollution is expected to be substantial. 

Concentrations of fine particulate matter (PM2.5, diameter <2.5 μm; PM10, diameter 

<10 μm) were measured using the Tapered Element Oscillating Microbalance (TEOM) 

1405 DF (Thermo Fisher Scientific Inc. Waltham, MA, USA). The instrument was located 

on the rooftop of the Faculty of Environment building at a height of 30 m and a distance 

of approximately 100 m from the Faculty of Environment building and the KU tower. 

There were no obstructions between the measuring sites that could affect data 

comparability. 

The measured meteorological parameters included temperature, relative humidity 

(DMA875, LSI Lastem, Milano, Italy), wind speed and wind direction (DNA827, LSI 

Lastem, Milano, Italy), air pressure (DQA208, LSI Lastem, Milano, Italy) and 

precipitation (DQA130#C, LSI LASTEM, Milano, Italy). The latter was only measured 10 

m AGL. We used data from long-term measurements of vertical meteorological factors 

at five heights above ground level (AGL)—10, 30, 50, 75, and 110 m—and PM2.5 

concentrations at 30 m AGL. All data used in this study were averaged over 1 h and 

collected and evaluated from 2015 to 2020. 

 

Figure 1. Location of data acquisition instruments at Kasetsart University, Bangkok, Thailand. 

2.2. PM2.5 Prediction Process 

The present study explored the applicability of machine learning (ML) in predicting 

PM2.5 burden using open-source software (Weka 3.8.4, SourceForge, San Diego, CA, 

USA), comparing the performances of MLR and MLP models. Weka is a collection of 

machine learning algorithms for data mining and recognition tasks. The process 

includes methods and tools for data mining problems, such as regression, classification, 

clustering, association rule mining, and attribute selection [30]. 

This study aimed to apply the models to generate high-quality predictions for mass 

concentrations of local PM2.5 at the measuring site days in advance and to verify the 

results using actual comprehensive long-term ambient meteorological and PM2.5 data. 

ML is a technique used to train computers (machines) to perform activities 

comparable to human understanding, such as learning from the past and making future 

predictions, faster and more objectively than an average human. The entire process can 

be described as follows: data collection and preparation, choice of model and its 

training, evaluation of model quality, and making predictions. 

Here, the results of two supervised ML models, MLR and MLP, are presented. MLR 

determines whether there is a linear relationship between dependent and independent 

variables and predicts the value of the dependent variable using linear output functions. 

Figure 1. Location of data acquisition instruments at Kasetsart University, Bangkok, Thailand.

Concentrations of fine particulate matter (PM2.5, diameter < 2.5µm; PM10, diameter < 10 µm)
were measured using the Tapered Element Oscillating Microbalance (TEOM) 1405 DF (Thermo
Fisher Scientific Inc. Waltham, MA, USA). The instrument was located on the rooftop of the
Faculty of Environment building at a height of 30 m and a distance of approximately 100 m from
the Faculty of Environment building and the KU tower. There were no obstructions between the
measuring sites that could affect data comparability.

The measured meteorological parameters included temperature, relative humidity
(DMA875, LSI Lastem, Milano, Italy), wind speed and wind direction (DNA827, LSI
Lastem, Milano, Italy), air pressure (DQA208, LSI Lastem, Milano, Italy) and precipitation
(DQA130#C, LSI LASTEM, Milano, Italy). The latter was only measured 10 m AGL. We
used data from long-term measurements of vertical meteorological factors at five heights
above ground level (AGL)—10, 30, 50, 75, and 110 m—and PM2.5 concentrations at 30 m
AGL. All data used in this study were averaged over 1 h and collected and evaluated from
2015 to 2020.

2.2. PM2.5 Prediction Process

The present study explored the applicability of machine learning (ML) in predicting
PM2.5 burden using open-source software (Weka 3.8.4, SourceForge, San Diego, CA, USA),
comparing the performances of MLR and MLP models. Weka is a collection of machine
learning algorithms for data mining and recognition tasks. The process includes methods
and tools for data mining problems, such as regression, classification, clustering, association
rule mining, and attribute selection [30].

This study aimed to apply the models to generate high-quality predictions for mass
concentrations of local PM2.5 at the measuring site days in advance and to verify the results
using actual comprehensive long-term ambient meteorological and PM2.5 data.

ML is a technique used to train computers (machines) to perform activities comparable
to human understanding, such as learning from the past and making future predictions,
faster and more objectively than an average human. The entire process can be described as
follows: data collection and preparation, choice of model and its training, evaluation of
model quality, and making predictions.

Here, the results of two supervised ML models, MLR and MLP, are presented. MLR
determines whether there is a linear relationship between dependent and independent
variables and predicts the value of the dependent variable using linear output functions.
An extensive mathematical description and formulations of multivariate analysis methods
are provided by Rencher and Christiansen [31].
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MLP accepts multiple inputs through one or more input neurons and can learn com-
plex decisions based on the weight of the data. It is a neural network in which input and
output mapping is not necessarily linear. A recent report provides a good description of
the processes and elementary steps involved in MLP modeling [32].

2.3. Validation Parameters

Pearson’s correlation coefficient (R), mean absolute error (MAE), and root mean square
error (RMSE) were used to validate the computational results. R is a number between
−1 and 1 that measures the strength and direction of the relationship between two variables.
In correlation analysis, R > 0.7 describes a strong correlation, whereas R > 0.4 represents a
moderate correlation. However, when appraising a correlation, it should be noted that the
transition between correlation classes is not a step function.

R =
∑ (xi −

−
x)(yi −

−
y)√

∑ (xi −
−
x)

2
∑ (yi −

−
y)

2
(1)

The mean absolute error (MAE) is a measure of the errors between observations and
predictions, where n is the number of testing samples, xi represents the observations, and
yi represents the predictions.

MAE =
1
n∑n

i=1|yi − xi| (2)

The root mean square error (RMSE) is sensitive to outliers. A smaller RMSE indicates
better agreement between observations and predictions, higher prediction stability, and
higher accuracy of the prediction model [33].

RMSE =

√
1
n∑n

i=1(yi − xi)
2 (3)

3. Results and Discussion
3.1. Relationship between PM2.5 Concentration and Meteorological Factors

The PM2.5 concentration was monitored continuously at a height of 30 m at the rooftop
sampling site of the Faculty of Environment, Kasetsart University, Bangkok, Thailand.
The data shown in Figure 2 encompassed a period of 6 years, from 2015 to 2020. The
presented monthly averages showed a distinct pattern, with a mid-year minimum and the
highest concentrations typically from November to March. Based on the stricter, recently
published upcoming Thailand national annual PM2.5 standard (15 µg/m3), it is evident
that the annual average PM2.5 concentrations at the measuring site have been exceeded
since 2015. Applying the current Thailand national annual PM2.5 standard (25 µg/m3),
which was valid at the time of data acquisition, provides an administratively acceptable
picture; however, the worrying environmental situation proves the appropriateness of the
new standard.

Analysis of month-by-month PM2.5 averages over the investigated period (2015–2020)
shows that the mass concentrations in January, February, March, November, and December
exceeded the Thai national annual PM2.5 standard (25 µg/m3), and the best air quality was
recorded in June–August. Based on the new annual PM2.5 standard (15 µg/m3), the air
quality from 2015 to 2020 met the permissible requirements during the period from May to
September, except in the year 2019. PM2.5 concentrations exceeded the current short-term
standard (50 µg/m3 within 24 h) in January 2019, consistent with earlier findings [34].

Some data for the years 2015 and 2017 were unavailable due to equipment maintenance
and are denoted as “dna” or “data not available” in Figure 2. These only negligibly impacted
the ML process. The overall morphology of data distribution (Figure 2) shows a typical
U-shaped form for Southeast Asia, with the lowest ambient PM2.5 concentrations recorded
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in July and August. Day-by-day PM2.5 concentration data from 2015 to 2020 (Figure 3)
show that the current daily PM2.5 standard (50 µg/m3) was exceeded on 4 days in 2015,
28 days in 2016, 10 days in 2017, 10 days in 2018, 16 days in 2019, and 21 days in 2020. The
upcoming daily PM2.5 standard of 37.5 µg/m3 was exceeded within 24 h on 18 days in
2015, 51 days in 2016, 42 days in 2017, 35 days in 2018, 38 days in 2019, and 52 days in 2020.
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Figure 3. Daily averages (over 24 h) of PM2.5 concentrations from 2015 to 2020 obtained at Kasetsart
University using TEOM. Some days are missing data due to equipment maintenance.

Meteorological factors such as wind speed and wind direction determine the levels
and spatial distribution of PM2.5 in the vicinity of the measuring site. Using data from
2015 to 2020, spatial dispersion and PM2.5 concentrations around the KU tower measured
at a height of 30 m were modeled using RStudio software [35]. The results are shown in
Figure 4a using a polar plot. A distinct pattern showing PM2.5 concentration gradients
from northeast to southwest can be observed and is understandable considering the wind
direction and wind speed at various levels, from 10 to 110 m above ground level (Figure 4b).
It must be mentioned that in the zone between the ground and the undisturbed wind flow,
the wind experiences friction depending on the surface structure. Within the urban area, its
speed decreases more abruptly, but its turbulence increases. In general, it can be estimated
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that ground wind velocity decreases to approximately 15% in relation to the undisturbed
flow [36]. However, currently, the computations and air quality predictions in this work
relate to a height of 30 m above the ground owing to the availability of PM2.5 emission data
needed to verify the quality of predictions.
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2015–2020, and the corresponding wind direction and wind speed distribution measured at the KU
tower at the indicated levels (b).

The correlations between PM2.5 concentrations and meteorological factors such as
wind speed (WS) (R = −0.148), temperature (T) (R = −0.141), relative humidity (RH)
(R = −0.219), barometric pressure (BP) (R = 0.415), and rain (R =−0.046) averaged from 2015
to 2020 are presented in Table 1. The results show that wind speed, temperature, relative
humidity, and rain are inversely correlated with PM2.5 concentration. Apparently, the main
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factor affecting PM2.5 was barometric pressure (R = 0.415) rather than wind. Local PM2.5
concentrations have a general tendency to increase due to increasing barometric pressure.
This condition is not beneficial for the dilution and spatial diffusion of pollutants and thus
increases the local PM2.5 concentration. Similar results have been reported previously [37].

Table 1. Correlations between PM2.5 concentration and meteorological factors obtained at a height of
30 m from 2015 to 2020.

All Seasons WS WD T RH BP Rain PM2.5

WS (m/s) 1.000
WD (◦) 0.003 1.000
T (◦C) 0.151 0.177 1.000

RH (%) −0.324 0.024 −0.540 1.000
BP (hPa) −0.208 −0.321 −0.442 −0.043 1.000

Rain (mm) 0.015 0.010 −0.092 0.122 −0.039 1.000
PM2.5 (µg/m3) −0.148 −0.142 −0.141 −0.219 0.415 −0.046 1.000

Table 2 shows the correlations between average PM2.5 concentrations and meteorolog-
ical factors segregated by seasons: winter (mid-October to February), summer (March to
mid-May), and the rainy season (mid-May to Mid-October). In the winter season, the corre-
lation with wind speed was higher than with the other meteorological factors (R = −0.214),
with a remarkable influence of barometric pressure. In the summer season, correlation with
relative humidity was higher than with the other meteorological factors (R = −0.261). In
the rainy season, the correlation between wind speed and wind direction was higher than
with the other meteorological factors; however, the influence of barometric pressure was
still remarkable, indicating the strength of convective inhibition in the atmosphere.

Table 2. Seasonal variations in the correlations between PM2.5 concentration and meteorological
factors obtained at a height of 30 m from 2015 to 2020.

Winter Season WS WD T RH BP Rain PM2.5

WS (m/s) 1.000
WD (◦) −0.246 1.000
T (◦C) −0.001 0.027 1.000

RH (%) −0.301 0.120 −0.421 1.000
BP (hPa) 0.094 −0.145 −0.515 0.037 1.000

Rain (mm) −0.009 0.015 −0.024 0.060 0.000 1.000
PM2.5 (µg/m3) −0.214 0.115 −0.147 −0.004 0.154 −0.020 1.000

Summer season WS WD T RH BP Rain PM2.5

WS (m/s) 1.000
WD (◦) 0.076 1.000
T (◦C) 0.224 0.254 1.000

RH (%) −0.253 −0.196 −0.856 1.000
BP (hPa) −0.417 −0.106 −0.484 0.339 1.000

Rain (mm) 0.001 −0.012 −0.105 0.079 0.019 1.000
PM2.5 (µg/m3) 0.091 −0.030 0.099 −0.261 −0.010 −0.023 1.000

Rainy season WS WD T RH BP Rain PM2.5

WS (m/s) 1.000
WD (◦) 0.273 1.000
T (◦C) 0.294 0.229 1.000

RH (%) −0.464 −0.366 −0.877 1.000
BP (hPa) −0.413 −0.172 −0.322 0.355 1.000

Rain (mm) 0.020 −0.034 −0.163 0.146 0.010 1.000
PM2.5 (µg/m3) −0.176 −0.157 0.072 0.020 0.118 0.006 1.000
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3.2. Ambient Concentrations of PM2.5 Predicted Using Multiple Linear Regression (MLR)

Using the meteorological factors acquired five levels above the ground at the KU
tower, the MLR model was trained and used for the prediction of PM2.5 concentrations
under six scenarios: 3 h, 12 h, 1 day, 2 days, 3 days, and 7 days ahead. The results of these
predictions are shown in Figure 5. For the 3- and 12-hour scenarios, very good correlations
(R = 0.86 and 0.69, respectively) were achieved between the observed and predicted data.
Moreover, a strong-to-moderate relationship was found for the other scenarios of 1 day,
2 days, 3 days, and 7 days ahead, with R = 0.76, 0.77, 0.77, and 0.52, respectively. Using
this approach, time series of PM2.5 concentrations for the year 2020 were predicted and
compared with the actual data (Figure 6). The x-axis represents the hours of the year. The
first 2000 h correspond approximately to the months of January–March 2020.
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Good agreement in the time series for the short time ahead and the 1 day ahead
was evident. For the 2- and 3-days-ahead conditions, the overall agreement between the
measurement and the prediction was reasonable, confirming general concentration trends;
however, the predicted values recurrently underestimated the PM2.5 level, similar to a
previous report [34], which can be linked to varying meteorological conditions.

3.3. Ambient Concentrations of PM2.5 Predicted Using Multilayer Perceptron (MLP)

In another model, a neural network was developed using a multilayer perceptron
(MLP) approach. The results of the PM2.5 prediction are shown in Figure 7. For the short-
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term scenario, a very strong correlation (R = 0.82) was obtained between the measured and
predicted data. With the exception of the 1-day ahead scenario, which showed a moderately
strong relationship (R = 0.66) between the observed and predicted PM2.5 concentrations,
the scenarios for predictions 2 and 3 days ahead showed very strong correlations, with
R = 0.73 and 0. 72, respectively. However, it must be noted that the prediction of PM2.5
concentrations using MLP occasionally exhibited limiting values, particularly visible in
Figure 7e, likely from bias that was introduced during the learning process to rectify the
errors of the training and data normalization [38]. However, the prediction bias did not
determinedly influence the trend of PM2.5 concentration prediction for the year 2020, as
shown in Figure 8, and overall agreement and mirroring of the general trends in the data
morphology were unmistakable.
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3.4. Comparison between MLR and MLP Techniques

The main aim of the training process of machine learning is to optimize the models
for predicting the dependent variable and reducing errors. To assess the performance
of the predicting models, the mean absolute errors (MAE) and root mean squared error
(RMSE), together with the correlation coefficients (R) for the MLR and MLP models and
various prediction scenarios are summarized in Table 3. Both statistical indicators (MAE
and RMSE) denote the solid quality of the prediction data. The decision on which indicator
is more advantageous is not immediately clear and would also depend on the distribution
of actual data. MAE assigns the same importance to each error, whereas RMSE emphasizes
the largest errors and is more sensitive to outliers. Here, the training was directed toward
optimizing both indicators applied to the MLR and MLP models, as shown in Table 3. It
is evident that although errors increased with prediction over a longer time, reasonable
values of forward predictions were obtained for up to 7 days. Based on the obtained results,
the preference for MLR was determined. This was confirmed using recently published data
from Northern Thailand [39].

Table 3. Statistical results of the assessment of the accuracy of multilayer perceptron (MLP) and
multiple linear regression (MLR) models.

Statistics

Conditions Ahead 3 h Ahead 12 h Ahead 24 h Ahead 48 h Ahead 72 h Ahead 7 Days

MLP MLR MLP MLR MLP MLR MLP MLR MLP MLR MLP MLR

Correlation coefficient (R) 0.82 0.86 0.64 0.69 0.66 0.76 0.73 0.77 0.72 0.77 0.49 0.52
Mean absolute

error (MAE) 6.62 6.00 9.08 8.47 8.68 7.54 10.67 7.54 8.84 7.69 11.62 10.39

Root mean squared
error (RMSE) 9.92 8.68 12.86 12.14 13.01 11.07 14.55 10.98 12.35 11.02 15.27 14.43

Finally, the MLR model of the 1 day ahead scenario was used to verify the usefulness
of the modeling approach, emphasizing the hour-by-hour quality of the prediction of
PM2.5 burden for two selected days: 8th and 9th of January 2020. These days were chosen
because of the PM2.5 concentrations that exceeded the Thai ambient air quality standard
without precipitation. The daily averaged vertical meteorological parameters used for
PM2.5 prediction were temperature (29.5 ◦C, 30.2 ◦C), relative humidity (56.3%, 58.1%),
barometric pressure (1008.9 hPa, 1008.3 hPa), and wind speed (1.7 m/s, 1.3 m/s) for both
days, respectively. The prevailing wind direction was northeast. Figure 9 shows the relative
error ((xobs/xpred) − 1) between the actual and observed data. The predicted data for the
PM2.5 concentrations were not constant during the 24-h period and varied as a function of
time, but only within +/− 20%, thus proving the quality of modeling.

Atmosphere 2023, 14, x FOR PEER REVIEW 14 of 17 
 

 

Table 3. Statistical results of the assessment of the accuracy of multilayer perceptron (MLP) and 

multiple linear regression (MLR) models. 

Conditions  

Statistics 

Ahead  

3 h 

Ahead  

12 h 

Ahead  

24 h 

Ahead  

48 h 

Ahead  

72 h 

Ahead  

7 Days 

MLP MLR MLP MLR MLP MLR MLP MLR MLP MLR MLP MLR 

Correlation coefficient (R) 0.82 0.86 0.64 0.69 0.66 0.76 0.73 0.77 0.72 0.77 0.49 0.52 

Mean absolute error 

(MAE) 
6.62 6.00 9.08 8.47 8.68 7.54 10.67 7.54 8.84 7.69 11.62 10.39 

Root mean squared error 

(RMSE) 
9.92 8.68 12.86 12.14 13.01 11.07 14.55 10.98 12.35 11.02 15.27 14.43 

Finally, the MLR model of the 1 day ahead scenario was used to verify the 

usefulness of the modeling approach, emphasizing the hour-by-hour quality of the 

prediction of PM2.5 burden for two selected days: 8th and 9th of January 2020. These days 

were chosen because of the PM2.5 concentrations that exceeded the Thai ambient air 

quality standard without precipitation. The daily averaged vertical meteorological 

parameters used for PM2.5 prediction were temperature (29.5 °C, 30.2 °C), relative 

humidity (56.3%, 58.1%), barometric pressure (1008.9 hPa, 1008.3 hPa), and wind speed 

(1.7 m/s, 1.3 m/s) for both days, respectively. The prevailing wind direction was 

northeast. Figure 9 shows the relative error ((xobs/xpred) − 1) between the actual and 

observed data. The predicted data for the PM2.5 concentrations were not constant during 

the 24-h period and varied as a function of time, but only within +/- 20%, thus proving 

the quality of modeling. 

 

Figure 9. Relative error between predicted PM2.5 concentrations and those observed on January 8 

and 9 January 2020, showing the accuracy of the developed method as a function of time. 

4. Conclusions 

Predicting air quality is a challenging task because of the dynamics of the 

atmosphere and the spatiotemporal variability of air pollutants. The consequences of air 

pollution necessitate constant and reliable air quality monitoring and are particularly 

important in locations where the number of monitoring stations is limited [40]. 

Complementary to conventional measurements, advanced prediction of upcoming 

pollution and excess PM2.5 concentration episodes using machine learning techniques 

based on meteorological parameters has become an increasingly important tool for early 

warning systems and preventive measures. 

In this study, two different models, MLR and MLP, were selected and the software 

Weka 3.8.4 was trained to forecast the expected PM2.5 level up to 7 days in advance. As a 

Figure 9. Relative error between predicted PM2.5 concentrations and those observed on 8 January
and 9 January 2020, showing the accuracy of the developed method as a function of time.



Atmosphere 2023, 14, 589 13 of 15

4. Conclusions

Predicting air quality is a challenging task because of the dynamics of the atmosphere
and the spatiotemporal variability of air pollutants. The consequences of air pollution
necessitate constant and reliable air quality monitoring and are particularly important
in locations where the number of monitoring stations is limited [40]. Complementary
to conventional measurements, advanced prediction of upcoming pollution and excess
PM2.5 concentration episodes using machine learning techniques based on meteorological
parameters has become an increasingly important tool for early warning systems and
preventive measures.

In this study, two different models, MLR and MLP, were selected and the software
Weka 3.8.4 was trained to forecast the expected PM2.5 level up to 7 days in advance.
As a reference, data from long-term measurements of meteorological factors and PM2.5
concentrations (years 2015–2020) were used. MLP and MLR were compared to determine
the quality of the predictions and assessment of the errors. Despite the differences between
the models, their predictions were comparable and stable. Predicting up to 7 days ahead
was therefore proven to be possible and reliable. Exploiting a particular 2-day period as
an example showed that even an hour-by-hour prediction of PM2.5 concentrations within
an error of less than 20% was possible. Thus, the feasibility of PM2.5 prediction using ML
has been proven. The results were obtained from data collected 30 m AGL, and this was
dictated by the availability of experimental data needed for verification of the computed
results. Considering that within urban areas air movement due to wind speed reduces
rather abruptly while its turbulence increases, an assumption of homogenously mixed
PM2.5 burden within the urban dome seems feasible. The findings presented here indicate
the importance of this research and its applicability as an early warning system for better
air quality management in urban areas.
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