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Abstract: Observations from a hyperspectral infrared (IR) sounding interferometer such as the
Infrared Atmospheric Sounding Interferometer (IASI) and the Cross-Track Infrared Sounder (CrIS) are
crucial to numerical weather prediction (NWP). By measuring radiance at the top of the atmosphere
using thousands of channels, these observations convey accurate atmospheric information to the
initial condition through data assimilation (DA) schemes. The massive data volume has pushed
the community to develop novel approaches to reduce the number of assimilated channels while
retaining as much information content as possible. Thus, channel-selection schemes have become
widely accepted in every NWP center. Two significant limitations of channel-selection schemes are
(1) the deficiency in retaining the observational information content and (2) the higher cross-channel
correlation in the observational error (R) matrix. This paper introduces a hyperspectral IR observation
DA scheme in the principal component (PC) space. Four-month performance comparison case studies
using the Weather Research and Forecasting model (WRF) as a forecast module between PC-score
assimilation and the selected-channel assimilation experiment show that the PC-score assimilation
scheme can reduce the initial condition’s root-mean-squared error for temperature and water vapor
compared to the channel-selection scheme and thus improve the forecasting of precipitation and
high-impact weather. Case studies using the Unified Forecast System Short-Range Weather (UFS-
SRW) application as forecast module also indicate that the positive impact can be retained among
different NWP models.

Keywords: hyperspectral; infrared; principal component; data assimilation; weather prediction

1. Introduction

The use of hyperspectral infrared satellite sounding observations in data assimilation
systems remarkably improves the accuracy of numerical weather prediction models [1,2].
Operational centers assimilate these observations in the channel space by selecting a sub-
set of channels [3–7]. The channel-selection method brings a balance to NWP between
the computational efficiency and information content but leaves two issues unsolved:
(1) information content deficiency and (2) cross-channel error correlation. For issue (1),
various experiments have successfully increased the assimilated information content by
introducing more hyperspectral sounding channels into the DA system [8–10]. However,
the information content from the selected channels remains lower than the original observa-
tion [11,12]. For issue (2), multiple studies have demonstrated the feasibility of alleviating
cross-channel correlation in the observational error covariance (R) matrix by introducing a
cross-channel correlation-aware module into channel-selection schemes [13–17]. However,
these approaches can barely reach an equilibrium between adding more channels in the data
assimilation process and the cross-channel correlation increase in the R matrix. This is be-
cause hyperspectral IR sounders reduce the measurement error by adding more correlated
channels in the IR spectral region to increase the information redundancy. Both issues could
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restrict DA–NWP systems from taking full advantage of the next-generation low Earth
orbit hyperspectral IR sounders, e.g., Infrared Atmospheric Sounder Interferometer—New
Generation (IASI-NG), because of the higher spectral resolution [18].

Principal component analysis (PCA) [19] provides a better solution to the above issues
by converting the IR spectral observations to “imaginary” orthometric
variables— principal component (PC) scores. Studies using various hyperspectral IR sound-
ing instruments have revealed the capability of PCA to eliminate information redundancy,
retaining crucial independent information content, and improving the signal-to-noise ra-
tio [20–23]. Such advantages may indicate that the assimilation of PC scores can correct the
initial condition better than a channel-selection scheme, resulting in more noise-reduced
and independent observational information. Furthermore, the orthogonality of PCs can
reduce cross-channel correlation in the R matrix (Figure A1 in Appendix A). PC-based
fast radiative-transfer models such as the principal-component-based radiative-transfer
model (PCRTM) [24], the Havemann–Taylor fast radiative transfer code (HTFRTC) [25], and
principal-component-based radiative transfer for TOVS (PC-RTTOV) [26] possess higher
computational efficiency than channel-based models, for example the community radiative-
transfer model (CRTM) [27] and the radiative transfer for TOVS (RTTOV) [28]. In addition,
a study conducted by Matricardi and McNally [29] found no detectable loss of accuracy and
notable computational efficiency in the ECMWF’s 4DVar DA system when assimilating 20
PC scores derived from the 165-channel radiance observations. Other investigations [30,31]
have also confirmed the capability of the PC score to retain observational information via
different approaches:

(1) Matricardi and McNally [29] generated 20 PC scores from 165 out of 8461 IASI chan-
nels in their research, which meant a genuine portion of observational information
was unavoidably discarded. Moreover, the PC-based fast-forward radiative-transfer
model (RTM) in their study can only assimilate IASI observations, meaning further
validation from other experiments using different instruments.

(2) Collard et al. [30] focused on the noise cancellation capability of PCA and its impact
on the DA system by assimilating reconstructed radiance observations via a channel-
selection method. Their results indicated that signal-to-noise ratio improvement
(noise cancellation) can enhance the impact of IR radiance observations in the DA
system.

(3) Lu and Zhang [31] highlighted the PC scores’ information content preservation capability,
but the PC scores are still not generated from full-spectrum radiance observation.

Based on previous studies [29–31], three modifications were made in the present study.
First, observed PC scores were derived from full-spectrum radiance observations. Second,
the R matrix was generated from RTM-simulated and observation-derived PC scores to
better represent the observational error. Third, a PC-based RTM was deployed to simulate
multiple hyperspectral IR sounding observations. To specifically exploit hyperspectral IR
observation DA’s impact on NWP, no other remote-sensed observations were assimilated
in the experiments; conventional observations were excluded from DA for independent
performance evaluation.

Following the introduction, Section 2 focuses on the methods for generating the
background and observation error covariance, the structure of cost function, and the NWP
system workflow. Section 3 presents three case-study comparisons between using the
PC score and channel-selection DA scheme relative to a baseline experiment which does
not assimilate any observation, a 4-month-long forecast performance evaluation between
PC-score assimilation and the channel-selection DA (CTL) experiment, and two case studies
using the Unified Forecast System Short-Range Weather (UFS-SRW) application at a cloud-
resolving horizontal resolution (3 km). The results are discussed in Section 4. Section 5
provides our conclusions.
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2. Materials and Methods

Before starting the experiments, a hybrid 3-dimensional variational (3Dvar) DA system
was constructed to assimilate hyperspectral IR sounding observations in PC and channel
space [32]. The cost function in the system uses a hybrid 3DVar scheme [33], which is
equivalent to the NOAA/NCEP Rapid Refresh (RAP) assimilation and model forecast
system [34]. The DA system generates the analysis field by minimizing the cost function:

J(x) = (x− xb)
T B−1

hyb (x− xb) +
(

y− H(x)

)T
R−1

(
y− H(x)

)
(1)

where
Bhyb = a · Bstatic + b · Bensemble (2)

The flow-dependent background error covariance Bhyb in the hybrid 3Dvar combines
the static background error covariance matrix Bstatic and the ensemble background error
covariance matrix Bensemble. The Bstatic is created using the NMC method [35] from a
6-month-long RAP model forecast dataset (from 1 March 2021 to 31 August 2021) [36],
and the Bensemble is generated from a 31-member forecast output from the NOAA Global
Ensemble Forecast System (GEFS). In the following experiments, the Bhyb consisted of 80%
Bstatic and 20% Bensemble. The observational part can be linearized to:

y− H(xb)
− H′(xb)

· (x− xb) (3)

where H is the radiative-transfer model and H′ is its Jacobian. To ensure the DA system’s
capability to perform radiance- and PC-based Jacobian calculation, we used HTFRTC as
the radiative-transfer model and incorporated two DA approaches into the system. The
system calculated the Jacobian in PC (radiance) space in the PC-score (selected-channel
radiance) assimilation experiments.

Currently, the system can assimilate observations from IASI and CrIS. Their ob-
servational error covariances R are calculated in the PC and channel space using the
Hollingsworth–Lönnberg method [37,38] from observations gathered between 1 March
2021 and 31 August 2021. The data used in the calculation are available on the NOAA Com-
prehensive Large Array-Data Stewardship System. For channel-based DA, the matrices
only include the channels adopted by ECMWF [4] and NCEP’s [8] data assimilation system
(Figure 1b,d) in the calculation. For PC-based DA, we first converted full-channel observa-
tions from IASI or CrIS to 30 PC scores using HTFRTC’s PC coefficients then generated the
matrices (Figure 1a,c). Comparing the PC-based R matrices with the channel-based ones,
the PC score’s capability to diminish the cross-channel error correlation is superior to that
of the channel-selection scheme. The selected-channel radiance and the weighting function
to temperature and water vapor of the first 30 PCs (Figure A2 in Appendix A) have high
similarity, which indicates that both assimilation methods have the capability to modify
the tropospheric temperature and water vapor field.

Before initializing the DA process, cloud screening and quality control have to be
conducted to ensure (1) the observations are from clear-sky regions and (2) the quality of
each observation. In cloud detection, the clear-sky percentage in each field of view (FOV)
is determined by the Advanced Baseline Imager (ABI) Full Disk Clear Sky Mask from
GOES-16 (https://noaa-goes16.s3.amazonaws.com/index.html#ABI-L2-ACMF/, accessed
on 5 February 2023): If the ABI clear sky pixel amount within an observational (IASI or CrIS)
FOV is less than 80% of the total ABI pixel amount in the same FOV, then the observation
is discarded. After screening out the cloudy observations, the quality control process
excludes the disqualified clear-sky observation using a method described as follows: the
quality control converts clear-sky radiance observations to PC scores via QR decomposition
and calculates the first 30 PC scores’ mean bias (MB) and standard deviation (SD) with
reference to the simulated PC scores from the first guess; if more than 25 PC scores from
an observation are located within MB± 1.5SD, then all 30 PC scores are assimilated by
the DA system. The PC-score assimilation and radiance assimilation experiment shares

https://noaa-goes16.s3.amazonaws.com/index.html#ABI-L2-ACMF/
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the same cloud-screening and quality control method, but for the radiance assimilation,
the PC scores are converted back to spectral radiance after quality control. In this case, the
radiance assimilation experiment shares the same approach mentioned in Collard et al.’s
experiment [30].

Figure 1. Observational error covariance in PC space (a,c) and channel space (b,d) for CrIS (a,b) and
IASI (c,d).

The NWP model used in the experiment is the Advanced Research version of the
WRF [39]. The forecast domain (Figure 2) covers the conterminous United States with a
13 km horizontal resolution. Table 1 lists the primary attributes of the WRF configuration
in the following experiments. This configuration shares a high degree of similarity with
the operational RAP system [36]. In the following experiments, the initial and boundary
condition are provided by the RAP forecast product.

Figure 2. Spatial coverage of the forecast domain.
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Table 1. Model and physics configuration.

Model Settings

Version ARW 4.3, non-hydrostatic

Map projection Lambert

Grid points 400 × 257

Vertical Layers 51

Model top 50

Lateral boundary conditions RAP

Horizontal/Vertical Advection Fifth-order upwind

Time step Adjusted time step, maximum 45 s.

Damping option Rayleigh, dampcoef = 0.2s−1, zdamp = 5000m

Horizontal diffusion Sixth-order (0.12)

Forecast lead time 18 h

Radiation scheme RRTMG

Land surface scheme RUC

Land use category MODIS 24 category

Planetary-boudary and surface layer scheme MYNN

Shallow convection scheme Grell-Freitas

Deep convection scheme Grell-Freitas

Cloud Microphysics scheme Thompson aerosol aware

In each experiment (Figure 3), the forecasts are initialized twice a day, at 00:00 and
12:00 UTC. The system finishes 12 analysis cycles before commencing the forecast cycle.
Like RAP, the initial conditions for analysis cycles 2 to 12 derive from the former analysis
cycle’s 1 h lead-time forecast output. The exception is analysis cycle 1, the initial condition
of which is inherited from the RAP analysis field. The DA process is triggered if the IASI
or CrIS observation is received within the 1 h assimilation time window (plus and minus
30 min relative to the analysis validation time). For the analysis cycles’ lack of available
observations, a one-hour lead-time forecast is generated without launching the DA process.
In general, there are 8 out of 12 analysis cycles which have assimilated observations.

Figure 3. Forecast system workflow.

3. Results
3.1. PC-Score vs. Selected-Channel Radiance Assimilation: Case Studies

Three massive tornado outbreak cases were selected—2019Mar03 (12:00 UTC 3 March
2019 to 12:00 UTC 4 March 2019); 2020Mar03 (12:00 UTC 3 March 2020 to 12:00 UTC 4 March
2020); and 2020Apr12 (12:00 UTC 12 April 2020 to 12:00 UTC 13 April 2020)—to investigate
the performance of PC-score assimilation relative to selected-channel radiance assimilation.
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A control experiment was also conducted to summarize the baseline performance of the
NWP system.

The root-mean-squared error (RMSE) can reveal the difference in model perfor-
mance by measuring the departure between estimation and observation. Equation (4),
where (Model) represents the foreast result from experiment (OBS) and OBS Amount is
the number of observations, was used to derive the temperature and specific humid-
ity RMSE profile from the initial condition’s departure from aircraft and radiosonde
observations. The observations were gathered from the NOAA/NCEP website (https:
//registry.opendata.aws/noaa-rap, accessed on 5 February 2022). After deducting the base-
line experiment (forecast that does not assimilate any observation) RMSE from the PC-score
assimilation and selected-channel radiance assimilation experiment, these phenomena can
be clearly detected: the temperature in the initial condition of PC-score assimilation has
a smaller RMSE, especially at levels from 900 to 700 and above 600 hPa (Figure 4a). This
reduction in RMSE indicates the initial condition generated by PC-score assimilation (red
line) is better than that of selected-channel radiance assimilation (green line). The negative
specific humidity RMSE divergence above 800 hPa (Figure 4b) indicates that the water
vapor field that comes from the PC-score assimilation experiment quantitatively shares
the same performance as the temperature field when compared with the selected-channel
radiance assimilation.

RMSE =

√
∑(Model −OBS)2

OBS Amount
(4)

Figure 4. Temperature (a) and specific humidity (b) RMSE departure of PC-score assimilation (red
line) and selected-channel radiance assimilation (green line).

https://registry.opendata.aws/noaa-rap
https://registry.opendata.aws/noaa-rap
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Taking NCEP Stage IV quantitative precipitation estimation [40] as the unbiased obser-
vation, each experiment’s critical success index (CSI = a

a+b+c ) was calculated to evaluate
the precipitation prediction ability. The contingency table (Table A1) in Appendix A ex-
plains the variables in the CSI calculation. Like the approach for evaluating temperature
and water vapor, PC-score assimilation and selected-channel radiance assimilation remove
the baseline CSI (derived from the control experiment) to make the difference more legible
(Figure 5). For moderate precipitation, the PC-score assimilation experiment’s positive
CSI departure from the selected-channel assimilation experiment indicates it improves
its ability to predict rainfall between 2.5 mm/h and 7.5 mm/h. For heavy precipitation
(>7.5 mm/h), PC-score assimilation still has an advantage over selected-channel radiance
assimilation, albeit with a smaller margin.

Figure 5. CSI departure for precipitation within 2.5 and 7.5 mm/h (a–c) and above 7.5 mm/h (d–f)
from PC-score assimilation (red line) and selected-channel radiance assimilation (green line).

The fixed-layer significant tornado parameter (STP), derived from Equation (5), is
closely related to tornado outbreaks with F2 intensity or higher [41] when the value is higher
than 1. The algorithm considers the 0–6 km bulk wind difference (BWD6km), 0–1 km storm-
relative helicity (SRH1km), surface-based convective available potential energy (sbCAPE),
condensation-level height (LCL), and surface-parcel convective inhibition (sbCIN). In
this part, the grid-point STP derived from the forecast output at the tornado outbreak
time (rounded to the hour) was interpolated to each observed tornado outbreak location
using the bi-linear interpolation method. Figure 6 displays the STP intensity difference
between the PC-score and selected-channel radiance assimilation experiment with the
baseline STP deducted from each experiment. In all three cases, the STP from the PC-score
assimilation experiment is higher than that from selected-channel radiance assimilation.
This phenomenon demonstrates that assimilating PC scores extracted from full-spectrum
hyperspectral IR sounding observations can boost the forecast STP intensity at the tor-
nado outbreak location, which could help increase the probability of detection (POD) for
tornadoes.

STPf ixed layer =
sbCAPE
1500J/kg

· 2000m− LCL
1000m

· SRH1km
150m2/s2 ·

BWD6km
20m/s

· 200J/kg + sbCIN
150J/kg

(5)
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Figure 6. PC-score assimilation (red line) and selected-channel radiance assimilation (green line) STP
departure for the 2019Mar03 (a), 2020Mar03 (b), and 2020Apr12 (c) cases.

3.2. PC-Score vs. Selected-Channel Radiance Assimilation: Four-Month-Long Evaluation

The results presented in Section 3.1 demonstrate that assimilating full-channel IR
radiance–derived PC scores can enhance the NWP accuracy for tornado and precipitation
prediction compared to selected-channel radiance assimilation. However, this conclusion is
derived solely from case studies and requires further long time series validation. Slightly
different from the system settings in Section 3.1, this quasi-operational system in this section
generates an 18 h lead-time forecast at 00:00 and 12:00 UTC every day. The evaluation in
this section comprises a comparison of the PC-score DA system’s forecast against channel-
selection DA (CTL) output from 31 August 2021 to 1 January 2022.

The initial condition’s RMSE profiles (Figure 7a–d) demonstrate that the initial condi-
tion generated from PC-score assimilation agrees better than CTL to aircraft and radiosonde
observations. Similar to the results in Section 3.1, the improvements are more detectable at
levels above 600 hPa (within 850 and 600 hPa) for temperature (specific humidity). This
could result from the fact that (1) the temperature and water vapor’s Jacobians (weighting
functions) for IASI and CrIS in the PC space above 600 hPa are more sensitive than those
below 600 hPa, and (2) the Jacobian’s peak levels in the selected-channel experiment are
mostly located below 600 hPa (especially for temperature), which reduces the observation’s
impact on upper level atmospheric field modification. Likewise, the wind field accuracy
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can be improved by assimilating hyperspectral IR observation in PC space, as the u- and
v-component wind RMSE decreased in the initial condition, regardless of the marginal
improvement at 1000 hPa. In the 12 h lead-time forecast evaluation, the temperature predic-
tion ability above 600 hPa in the PC-score assimilation system’s performance is still superior.
Attributable to the assimilated information content conveyed by PC scores through statis-
tical adjustment via the B matrix in the DA process and the forecast model’s dynamical
adjustment, the wind prediction above 800 hPa (Figure 7e,g,h) is better than that of the CTL
forecast. As for specific humidity, the quasi-operational system’s performance supersedes
that of CTL from 1000 to 300 hPa (Figure 7d). The anomaly correlation coefficient (ACC) can
represent the systematic bias of a forecast by calculating the spatial correlation between the
forecast and analysis anomalies. The average ACC of temperature and specific humidity
(dots in Figure 8a,b) reveals that using the initial condition from PC-score assimilation can
alleviate the forecast bias. The deviation in ACC between the minimum (left-hand error
bar) and maximum (right-hand error bar) demonstrates that the forecast results from the
PC-score assimilation system exhibit consistently higher performance compared to those of
CTL. The middle- and upper-level wind evaluation results agree with the conclusions de-
rived from the temperature and water vapor evaluation, although the low-level evaluation
comes out in favor of CTL.

Figure 7. The temperature (a,e), specific humidity (b,f), u-component wind (c,g), and v-component
(d,h) wind RMSE profiles from the PC-score assimilation experiment and CTL analysis (a–d) and
12 h lead-time forecast (e–h).
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Figure 8. The ACC profiles of temperature (a), specific humidity (b), u-component wind (c), and
v-component wind (d) from the PC-score assimilation system (red) and CTL (black).

In the precipitation forecast evaluation, we first focused on the performance difference
in distinguishing the precipitation zone (intensity ≥ 1 mm/h) from the non-precipitation
area zone (intensity < 1 mm/h) using the Hanssen and Kuipers discriminant (PSS) [42] by
evaluating the model precipitation against the NOAA Stage IV quantitative precipitation
estimation. The following evaluations exclude the precipitation forecast within a 2 h
lead-time due to the forecast model’s spin-up effect. As shown in Figure 9a, the PC-
score assimilation forecast performs better in distinguishing the precipitation regions, as
evidenced by its PSS exceeding that of CTL by 0.11 on average. To evaluate the accuracy
in predicting the precipitation intensity, the grid-point rainfall was categorized into light
(1–2.5 mm/h), moderate (2.5–7.5 mm/h), and heavy (≥7.5 mm/h) precipitation. The
multi-category PSS in Figure 9b depicts that the forecast from the PC-score assimilation
prediction system is better at predicting precipitation category than CTL. The Kling–Gupta
efficiency (KGE), Equation (6) [43], where r is the spatial correlation between observation
and simulation σobs (σsim), is the standard deviation in observation (simulation). µobs (µsim)
is the observation (simulation) mean, demonstrating that the heavy precipitation accuracy
from CTL is higher in the first 7 h of the forecast lead-time (Figure 9c) but gets surpassed
by the quasi-operational system after 8 h. This improved performance of CTL for heavy
precipitation prediction may result from radar reflectivity in its DA system.

KGE = 1−

√
(r− 1)2 +

(
σsim
σobs
− 1
)2

+

(
µsim
µobs
− 1
)2

(6)

In the tornado forecast evaluation, the STP time series (Figure 10a) shows that the
quasi-operational system produces a higher intensity than CTL at the outbreak locations.
Nevertheless, the POD from the PC-score assimilation-prediction system is not continu-
ously superior: the CTL forecast has a marginal prediction advantage after 9 h of forecast
lead-time (Figure 10b). In the radar plot (Figure 11), continuous PC-score assimilation only
affects two out of five parameters that comprise the STP, namely SRH1km and BWD6km,
which are dynamic parameters related to atmospheric motion. In contrast, the LCL, sbCIN,
and sbCAPE are seldom enhanced. To magnify the contribution of the dynamic param-
eter in the tornado prediction, we substituted the STP with the energy–helicity index:
EHI = SRH1km · BWD6km/16, 000 and re-conduct the evaluation. This time, both the inten-
sity (Figure 12a) and POD (Figure 12b) exceeded those of CTL. In summary, assimilating
hyperspectral IR sounding–derived PC scores can enhance the performance of the NWP
system in predicting tornado outbreaks.
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Figure 9. Hanssen and Kuipers discriminant (a), multi-category Hanssen and Kuipers discriminant
(b), and Kling–Gupta efficiency (c) time series from the PC-score assimilation system (red) and
CTL (black).

Figure 10. Time series of the fixed-layer significant tornado parameter (a) and its POD (b) derived
from the PC-score assimilation system forecast result (red) and CTL (black).
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Figure 11. The contribution of each variable in the calculation of the significant tornado parameter,
with the red (black) line representing the PC-score experiment forecast result (CTL).

Figure 12. Time series of the EHI (a) and its POD (b) derived from the PC-score assimilation
experiment forecast result (red) and CTL (black).
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3.3. Convection-Resolving Resolution Case Studies

As a preliminary examination of the PC-score assimilation system’s compatibility
to different NWP models and different horizontal resolution, we replaced the WRF with
UFS-SRW in the system and increased the horizontal resolution to 3 km. The new domain
and physical scheme settings follow the default Rapid Refresh Forecast System (RRFS)
description, which is embedded in UFS-SRW version 1.0.0 [44]. Two case studies of tornado
and hail outbreaks illustrate that the PC-score assimilation can retain a positive impact
for severe weather prediction at a convection-resolving scale, regardless of the difference
between the IFOV resolution (lower than 12 km) and the initial condition’s horizontal
resolution.

Case 1 is a series of hailstorms that occurred in Wisconsin and Michigan between 12:00
UTC 7 September 2021 and 12:00 UTC 8 September 2021. The consistency between the
spatial distribution of the hourly maximum significant hail parameter (SHiP) is as follows:

SHiP =
MUCAPE · MUMixingRatio · LapseRate700−500mb · BWD0−6km · 500mbTemperature

42, 000, 000
(7)

where MUCAPE is the most unstable convective available potential energy, MUMixingRatio
is the water vapor mixing ratio at the most unstable level, LapseRate700−500mb is the lapse
rate from 700 to 500 mb, and 500mbTemperature is the ambient air temperature at 500 mb.
The hail outbreak location shows that the forecast initialized at 00:00 UTC 7 September
in the PC-score assimilation experiment captures the hail outbreaks in areas I, II, and III
(Figure 13b), while the SHiP in the NOAA High-Resolution Rapid Refresh (HRRR) forecast
indicates the potential for a hail outbreak over these three areas is low (Figure 13a). The
HRRR forecast initialized at 12:00 UTC 7 September misses many hail outbreaks in area
IV (Figure 13c), but rarely can we find any misses in the PC-score assimilation’s forecast
over that area (Figure 13d). These results demonstrate that the PC-score assimilation
experiment’s POD is higher than that of the HRRR forecast.

Figure 13. Comparison between the HRRR and pseudo-operational forecasts initialized at 00:00 UTC
7 September (a,b) and 00:00 UTC 7 September (c,d). The black and gray marks (with different shapes
representing the outbreak time) are the hail outbreak locations.
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From 12:00 UTC 15 December to 12:00 UTC 16 December, multiple tornadoes occurred
across Nebraska, Iowa, Minnesota, and Wisconsin (Case 2). In the forecast initialized at
12:00 UTC 15 December, the PC-score assimilation experiment (Figure 14b) has a smaller
miss ratio than HRRR (Figure 14a) because of the higher agreement between the EHI and
tornado outbreaks in Nebraska (area I). The same results are found in the forecast initialized
at 00:00 UTC 16 December over area II (Figure 14c,d).

Figure 14. Comparison between the HRRR and pseudo-operational forecasts initialized at 12:00 UTC
15 December (a,b) and 00:00 UTC 16 December 00:00 UTC (c,d). The black and gray marks (with the
different shapes representing the outbreak time) are the hail outbreak locations.

4. Discussion

In Sections 3.1 and 3.2, PC-score assimilation reveals its potential to improve the NWP
system’s forecast accuracy for temperature, water vapor, light to moderate precipitation,
and the mid- to upper-level wind field. However, the higher standard deviation in u- and
v-component wind as well as the lower performance in heavy precipitation prediction
over the first 8 h lead-time compared to the selected-channel assimilation experiment
reminds us that the PC-score assimilation scheme still needs improvement before opera-
tional deployment. PC-score assimilation’s compatibility with the Hyperspectral Infrared
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Atmospheric Sounder (HIRAS) onboard FY-3D/E and Infrared Fourier Spectrometer 2
onboard Meteor-3M also needs further investigation.

The two case studies with higher resolution (3 km) using UFS-SRW as a forecast
module indicate that PC-score assimilation in Section 3.3 can retain its performance at
a different resolution since the performance demonstrated in the experiments is mostly
comparable to HRRR. The additional performance improvement can be attributed to (1)
the hybrid data assimilation system’s improved performance at a convection-resolving
resolution [45,46]; (2) the forecast module’s coherence of the dynamical core, the Finite-
Volume Cubed-Sphere (FV3) dynamical core, in the regional and global ensemble prediction
scenario. However, additional experiments are still needed for precise confirmation.

While the performance of the PC-score assimilation is solid, it still has limitations.
First, the PC-based fast radiative-transfer model can only calculate radiance or brightness
temperature in the IR region, which significantly constrains our DA system from assim-
ilating other atmospheric observations. In other words, these DA systems must include
additional forward operators, including but not limited to radiative-transfer models, to
assimilate a comprehensive observation dataset, e.g., passive/active microwave sounding
and Global Positioning System (GPS) Radio Occultation observations. Thus, investigating
how well the PC-score assimilation scheme can perform in an integrated DA environment
is one of our priorities in the future. Second, it has become a general conclusion that the
assimilation of a geostationary hyperspectral infrared sounder has a positive impact in a
regional NWP system [47,48]. Whether PC-score assimilation generates equivalent impact
when assimilating the geostationary hyperspectral IR sound information still needs investi-
gation. Third, a practicable approach of combining geostationary and low-earth-orbiting
hyperspectral IR observations in the DA process also needs to be developed.

5. Conclusions

This study demonstrates that assimilating PC scores derived from hyperspectral
IR sounding observations via the hybrid 3DVar scheme can benefit the NWP system,
and improvements can be detected if compared against the selected-channel radiance
assimilation. The results presented in this study exhibit noticeable bias reduction in the
initial condition and improvements in several forecast variables, such as precipitation and
tornado outbreaks. We tested the PC-score assimilation scheme without assimilating other
types of observations, which can highlight the influence of hyperspectral IR observations
on improving the NWP performance. Case studies and a 4-month-long experiment suggest
that PC-score assimilation can produce a more reliable and trustworthy initial condition
and forecast, except for the low-level temperature and wind fields. To summarize, the
direct assimilation of PC scores demonstrates potential and the capability to improve the
accuracy of NWP relative to radiance assimilation by correcting the initial condition with
abundant and independent information from hyperspectral IR observations conveyed by
PC scores.
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Appendix A

Figure A1. Correlation coefficient matrix in principle component (a,c) and radiance (b,d) space for
CrIS (a,b) and IASI (c,d).
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Figure A2. Weighting function for CrIS and IASI in PC and radiance space. Profile dataset comes
from European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) 60-level
sample profile dataset from the Monitoring Atmospheric Composition and Climate (MACC) project
(available at https://nwp-saf.eumetsat.int/site/download/profile_datasets/60l_macc.dat.tar.bz2
(accessed on 3 February 2023)).

Table A1. Contingency table.

Contingency Table

Observation

Happen Not Happen

Happen a b

Forecast Not Happen c d
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