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Abstract: In the dry season, the north of Thailand always experiences reduced air quality, reduced
visibility, and public health exposure from the burning of biomass domestically and in surrounding
countries. The purpose of this research was to investigate the distribution and the meteorological
control of PM2.5 accumulation, as well as its effect on visibility in northern Thailand in 2020. The
Geographic Information System (GIS) was applied for the analysis of the spatial distribution, while
Pearson’s correlation coefficient was utilized to examine the association between PM2.5 and meteoro-
logical variables. The results showed that the PM2.5 concentrations were in the range of 16–195 µg/m3

in 2020. The high level of PM2.5 in Lampang, Chiang Rai, and Chiang Mai provinces was in the range
of 150 to 195 µg/m3 from January to May. Favorable meteorological conditions included low wind
and relative humidity, and high temperatures contributed to high PM2.5 concentrations in northern
Thailand. Domestic burning and burning in neighboring countries contribute to huge amounts of
smoke that cause low visibility in northern Thailand, especially at 1 km above ground level, with a
reduced visibility in the range of 70–90% for all provinces in April.

Keywords: PM2.5; PM2.5 meteorology; visibility; air quality; northern Thailand

1. Introduction

In Southeast Asia, agricultural wastes are eliminated by crop management through
the use of fires as well as deforestation for cropland [1,2]. This normally happens during
the dry season, around November to April, as a result of extensive fire emissions at the
onset of the Asian summer monsoon [3,4]. Simultaneously, a layer of temperature inversion
from high pressure is present in many Southeast Asian countries, such as Thailand, Laos,
and Burma, which, in conjunction with the increasing fire activity, contributes to the air
quality problem in this region [3]. Previous studies have demonstrated that fire emission is
the primary factor influencing ambient air quality in Mainland Southeast Asia, particularly
for particulate matter with an aerodynamic width of less than 2.5 m (PM2.5) [3,5].

Air pollution from biomass burning is a common occurrence in northern Thailand,
which is located in the north of the peninsula of Southeast Asia. This is particularly
apparent from January to April [3]. Concerns regarding the region’s air quality are made
worse by the large amount of biomass emissions coming from domestic sources and nearby
countries including Burma, Laos, Vietnam, and Cambodia [6,7]. Furthermore, the problem
of air pollution in northern Thailand is probably dominated by a mix of meteorological and
geographic factors. Weather conditions that exacerbate particle matter building, burning of
stubble in advance of impending rain and crop planting, and the multiple areas in northern
Thailand’s narrow hills that serve as desirable basins for air pollutants all contribute to air
pollution [8,9].

In order to properly assess and manage PM2.5 pollution, it is crucial to quantify the
main contributing factors. According to previous research [10,11], weather factors can
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considerably disperse, remove, and induce pollutants as well as exert an influence on
long-term variations in PM2.5. As a result, the distribution of PM2.5 is largely determined
by weather patterns [12]. To support the government and policymakers in managing
air quality, several previous studies have suggested a forecasting model for PM2.5 based
on the association between meteorological factors and particulate matter. For example,
Akbal and Ünlü [13] revealed the use of an advanced deep learning approach to expand
understanding of particulate matter prediction by applying advanced machine learning
with several trained methodologies, including Gaussian process regression, random forest
regression (FRF), two different types of support vector machines (SVM), and artificial
neural networks (ANN), which used meteorological factors as explanatory variables to
predict PM2.5 [14]. Based on ANN along with k-mean clustering, principal component
analysis (PCA) that contains wind speed and direction, temperature, precipitation, relative
humidity, and solar radiation is also performed to forecast PM2.5 [15]. A hybrid deep
learning method that includes the coupling of wavelet transformation and ANN with
different structures and several meteorological data points including temperature, wind
direction, and humidity also had good performance in forecasting PM2.5 [16]. As such,
Akdi et al. [17] recently developed harmonic regression (HR), which is a univariate time
series modeling approach that has advantages over classical time series approaches.

Low atmospheric visibility, which is a direct result of high-level particulate accu-
mulation, provides the public with the clearest understanding of air quality, and it has
been typically utilized as a surrogate for pollutant concentrations during times and in
places where there were no monitoring systems for air quality [18]. For instance, severe
air pollution was recently characterized by haze weather, which is described as an atmo-
spheric occurrence with horizontal visibility less than 10 km caused by the dispersion of
huge fine particles [19]. Both the general public and the scientific community were very
concerned about this phenomenon [20–22]. Studies conducted in the past have investigated
the relationship between meteorological variables and ambient air pollution. For instance,
Yang et al. [21] determined that weather-related factors were responsible for 1.8 of the
15 µg/m3/decade variation in PM2.5 in the east of China between 1985 and 2005. Accord-
ing to a study by Zhang et al. [23], between 2013 and 2017 the proportionate contribution of
climatic factors to large polluting events in the Beijing–Tianjin–Hebei region was stronger
than 50%. Many studies have also attempted to establish a connection between PM2.5 and
atmospheric visibility [24,25]. Due to geographical variations in air pollution and mete-
orological conditions as well as various analytic techniques, these earlier investigations,
which were primarily conducted in a single city, have showed conflicting results. Therefore,
in order to fill these information gaps, a study on the impact of PM2.5 on visibility was
performed in multiple cities in northern Thailand throughout a haze episode. Furthermore,
relationships between meteorological factors, such as relative humidity, surface tempera-
ture, wind speed, and PM2.5, were studied to improve the understanding of those patterns
during the haze period in northern Thailand.

2. Materials and Methods

To analyze PM2.5 pollution and its effect on visibility in northern Thailand, several
datasets, including ground-based measurements from the Pollution Control Department
(PCD) in northern Thailand, the aerosol optical depth (AOD) data from Modern-Era Ret-
rospective Analysis for Research and Applications version 2 (MERRA-2), and satellite
images from both the Visible Infrared Imaging Radiometer Suite (VIIRS) of the National
Oceanic and Atmospheric Administration (NOAA)-20 and the VIIRS-National Polar Part-
nership (NPP) were used for the analysis. The Pearson correlation was applied to analyze
the relationship between PM2.5 and meteorological factors using data from the ground-
based measurement of PCD in northern Thailand. Spatial analysis of PM2.5 and AOD was
performed by Geographical Information System (GIS)-based Inverse Distance Weighted
(IDW) interpolation.
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2.1. Study Area and Air Pollution Data

We acquired hourly averaged pollution data from the Thai Pollution Control De-
partment (PCD) in northern Thailand. Individual data were provided, including PM2.5,
temperature, wind speed, and relative humidity at 3 m. We only considered background
monitors with just enough data (about 25% missing data [26]) to verify that they repre-
sented the full period. As a result, the quantity of monitors with sufficient data was reduced
to seven, as indicated in Table 1. Figure 1 illustrates the seven urban ground-monitoring
stations chosen for this study. The quality assurance and quality control (QA/QC) systems
relied on protocols established by the United States Environmental Protection Agency
(EPA) [27]. The sampling performance criterion required the collection of quantifiable
data on all PM2.5 exposures and microenvironmental concentrations. QA was guided
by the following principles: (1) all processes must be thoroughly designed, tested, and
implemented in accordance with standard operating procedures approved by the research
director; (2) all data must be easily traceable; and (3) any deviations and irregularities must
be documented [27].

Table 1. Description of observation location from PCD in northern Thailand.

Name Code Latitude Longitude

Chiang Mai Province Office, Chiang Mai CM 18.84 98.96
Mae Sai, Chiang Rai CR 20.42 99.88
Lampang Meteorological Office, Lampang LP1 18.27 99.50
Sop Pat, Lampang Province LP2 18.25 99.76
Muang, Lamphun Province LPh 18.56 99.00
Muang, Nan Province NAN1 18.78 100.77
Chaloemprakiat, Nan Province NAN2 19.57 101.08
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2.2. Data Used

We used the aerosol optical depth (AOD) data from Modern-Era Retrospective anal-
ysis for Research and Applications version 2 (MERRA-2, M2IMNXGAS), which provide
monthly mean data for this study. The data include an assimilation of both aerosol optical
depth analysis increment and aerosol optical depth analysis. The data also contain the pa-
rameter variation. In addition, this dataset is the most recent version of global atmospheric
reanalysis for the satellite that spans from 1980 to the present with a lag of approximately
three weeks following the end of each month (https://disc.gsfc.nasa.gov/datasets/M2
IMNXGAS_5.12.4/summary, accessed on 9 March 2023).

The Visible Infrared Imaging Radiometer Suite (VIIRS)—National Polar-orbiting Part-
nership (NPP) satellite image was utilized to determine the trajectory of the smoke plume
in northern Thailand. This confluence of wavelengths is referred to as real color or natural
color. The images depict land surface, sea, and atmospheric characteristics that appear
natural. Only near real-time imagery of the Visible Infrared Imaging Radiometer Suite
(VIIRS) Corrected Reflectance is available. The VIIRS sensor is on the Suomi National
Polar-orbiting Partnership (NPP) satellite, which is a joint mission between NASA and
NOAA. Worldview and the Global Imagery Browse Services can visualize the imagery
(GIBS) with a resolution of 750 m and 375 m for M Bands and I Bands, respectively.

In this investigation, the satellite image of fire from VIIRS NOAA-20 was utilized.
The Fire layer of the VIIRS displays active fire detection systems and heating anomalies.
The layer of fire is important for investigating the distribution in terms of spatiality and
temporality of fire, locating recurring hot spots, and identifying the air pollution source
from a plume that may have negative health effects on humans. Sensor resolution is 375 m,
picture resolution is 250 m, and temporal resolution is twice each day. The temperature
anomalies are shown as red dots (approximate center of a 375 m pixel). The nominal
observation times (equator crossover) for VIIRS S-NPP are 1:30 p.m. and 1:30 a.m., while
NOAA-20 operates approximately 50 min ahead of S-NPP. Due to its polar orbit, mid-
latitudes will receive three to four looks per day.

2.3. Data Analysis

To analyze the relationship between PM2.5 and meteorological variables including
wind speed, surface temperature, and relative humidity, the Pearson correlation coefficient
in Equation (1) was utilized in this study.

r =
n(∑ xy)− (∑ x)(∑ y)√[

n ∑ x2 − (∑ x)2
][

n ∑ y2 − (∑ y)2
] (1)

where r is correlation coefficient, while x and y represent values of the x and y variable in
a sample.

The Pearson correlation coefficient (r) is a linear correlation coefficient that can be used
to assess two or more correlated items. Due to the fact that it can indicate the degree of
linear association between atmospheric parameters and air pollutants, it can serve as a
measure of linearity. It can take values ranging from −1 to 1. A perfect linear relationship
(r = −1 or r = 1) means that one of the variables can be perfectly explained by a linear
function of the other.

Meanwhile, spatial analysis was described using interpolated maps that were trans-
formed to raster images (about 30 m resolution) and categorized to depict the distribution
of the number of participants in the research area using inverse distance weighted classifi-
cation (IDW). The IDW interpolation determines cell values by linearly weighting a series
of sample points. The inverse distance determines the weight. The extrapolated surface
might be that of a variable that is position-dependent. This method assumes that the effect
of the factor being mapping reduces as one moves away from the sampled location. The
parameters of the interpolated surface can also be changed by limiting the amount of input

https://disc.gsfc.nasa.gov/datasets/M2IMNXGAS_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2IMNXGAS_5.12.4/summary
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points used in the calculation of each output cell value. By restricting the amount of input
points analyzed, processing times can be reduced. Consider that input points located far
from the cell location where the prediction is being made may have little or no spatial
connection and so may be removed from the calculation [28,29].

The IDW approach, which is based on the concept of distance weighting, is utilized
to interpolate spatial data in this study. This method is useful for estimating unknown
depth data based on known (near) recorded depths. Equations (2) and (3) provide the
IDW formulas:

R = ∑N
i=1 wiRi (2)

wi =
dα

i

∑N
i=1 dα

i
(3)

where R represents the unknown depth data (cm), Ri represents the depth data measured
(cm), N is the number of points (in the search radius area), di is the distance from each
depth to the calculated grid node, α is the power and is also a control parameter, generally
assumed to be two, and wire presents the weighting of each depth.

The visibility was estimated as follows (4), which is based on work by Baumer et al. [30]:

Va = 3.912 (Zi)AOD−1
500 (4)

This approach also assumes that all aerosol is located within the mixing layer with a
height of Zi. Where Va is the maximum horizontal distance that the human eye can see,
Zi is constant with values of 1.0, 1.5, and 3 km [31], and AOD500 is the AOD at 500 nm.

3. Results and Discussion
3.1. PM2.5 Monitoring in Northern Thailand

Figure 2 illustrates the daily PM2.5 concentrations in five provinces, including Chiang
Mai, Chiang Rai, Lampang, Lamphun, and Nan in northern Thailand in 2020. The daily
average of PM2.5 concentrations was higher than both Thailand’s and the USEPA’s guide-
lines, particularly from January to May. The highest levels of PM2.5 concentrations were
found largely from March to April. The seasonal changes in emissions in this region are
very certainly influenced by biomass burning [14,32]. When the PM2.5 in the dry season
(February and March) are investigated, the highest range of PM2.5 concentration is revealed
to be in the range of 100–200 µg/m3. The high particulate pollution during dry season is
likely due to extensive biomass burning from agricultural burning in preparation for rice
planting season. Along with the long-range transport of air pollutants from neighboring
countries such as Laos, Vietnam, and Burma induced by meteorological conditions, these
factors contribute to the air pollution problem in northern Thailand [8].

3.2. Correlation between PM2.5 and Meteorological Condition

Figure 3 shows the correlation between PM2.5 and meteorological variables including
relative humidity (RH), surface temperature (Temp), and wind speed (ws) during January
and May 2020 in northern Thailand. The PM2.5 concentration for all months was negatively
related to relative humidity. Furthermore, a negative relationship was found between PM2.5
and temperature in January, while a positive relationship was found in the other months.
The PM2.5 in most of the months was also negatively correlated with wind speed, while
a negative relationship was found in March. The relationships of different air pollutants
with wind speed and wind direction are illustrated in Figure 4. In general, dominant PM2.5
concentrations originate from the southeast (0–1 m·s−1). In March, high concentrations of
PM2.5 (100 µg/m3 and above) originate from the southeast and west (0–0.8 m·s−1), while
the lowest concentration was found with the same wind direction when wind speeds were
low (0–0.5 m·s−1). These results reflect previous findings that high concentrations of PM2.5
were mostly associated with low wind speed conditions and when weak winds prevail
along the southeast [33,34] (Shelton et al., 2022; Hama et al., 2020).
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Figure 4. Polar plots of monthly concentrations of PM2.5 in (a) January, (b) February, (c) March,
(d) April, and (e) May 2020 in northern Thailand.
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The linear regression analysis between PM2.5 and meteorological variables is also
shown in Figures 5–7. Figure 5 demonstrates a mainly negative relationship between wind
speed and PM2.5 from January to May. These results are similar to previous studies, such
as those by Wang and Ogawa [35], Ren et al. [36], and Sirithian et al. [37]. In general, the
relative humidity and temperature were strongly correlated with the PM2.5 concentration;
in contrast, the wind speed was slightly correlated with the PM2.5 concentration in northern
Thailand. In cases where the wind speed is modest, pollutants could be blown away
within a particular geographical area, but if the wind speed is strong, the huge amounts
of pollutants could be transported from a long distance away. Between January and May,
Figure 6 depicts the positive connection between temperature and PM2.5. This result is sim-
ilar to findings observed by Zhang et al. [38] and Han et al. [39]. Except for January, when
a high negative correlation is observed, PM2.5 shows a mostly strong positive relationship
with temperature during the rest of the months. This is due to the fact that temperature
influences particle formation; hence, a high temperature increases the photochemical reac-
tion between precursors, whilst a low temperature might delay the process and contribute
to PM2.5. The linear correlation between PM2.5 concentration and relative humidity is
depicted in Figure 7. During most months, PM2.5 has a strong inverse relationship with
relative humidity, similar to findings by Liu et al. [40]. Positive correlations were found
in February, although the correlation coefficient is relatively low. When the humidity
exceeds 70% in April and May, PM2.5 concentration shows a strong negative correlation
with relative humidity. The Pearson correlation coefficient also highlights the relationships
between PM2.5 and meteorological variables. There is a strong negative correlation between
PM2.5 and relative humidity ranging between −0.88 and −0.49 and a weak correlation
between PM2.5 and wind speed ranging between −0.096 and 0.087, as well as a positive
correlation related to temperature ranging between 0.56 and 0.70. According to the findings,
an increase in surface temperature and a reduction in relative humidity during the summer
season had a significant impact on PM2.5 concentrations in northern Thailand.

In this study, there was a negative correlation between relative humidity and PM2.5. In
general, relative humidity regulates particle movement and therefore can induce particulate
matter to sink to the surface. As a result, if relative humidity increases, PM2.5 tends to
decrease [41,42]. Moreover, airborne particles condense and become dense enough for
both dry and wet deposition when relative humidity reaches the threshold, leading to
much lower PM2.5 concentrations [39]. There is also a strong positive correlation between
temperature and PM2.5. Since temperature affects particle production, a high temperature
may enhance the photochemical reaction involving precursors [38]. The higher tempera-
tures speed up photochemical reactions, which raise precursor levels of PM2.5 and other
secondary pollutants as well as PM2.5 concentrations [43,44]. However, there was a negative
correlation in January. This type of detrimental effect is mostly brought on by temperature-
related air convections and losses of PM2.5. In addition, the negative relationship is likely
due to high temperatures, which facilitate the air’s convection, which leads to the diluting
and dispersal of PM2.5 [44]. Turbulence, which is caused by intense thermal activity at
high temperatures, speeds up the distribution of PM2.5 [21,22]. In addition, because of the
low surface temperature in the winter, warming might cause temperature inversion layers,
which are unfavorable for airflow and may encourage the accumulation of PM2.5 [34]. The
wind’s direction also has a significant impact on PM2.5 concentrations. The wind carries
various amounts of contaminants in various directions [45]. In general, when the wind is
blowing at a moderate speed, contaminants can be dispersed within a small geographic
area, but when the wind is strong enough, it can carry significant amounts of pollutants
over considerable distances [45]. Furthermore, wind speed influences pollution levels in
many different geographic regions [46]. For example, it has less of an impact on pollution
levels in clean environments, such as forests, mountains, or coastal areas, while it increases
pollution levels in megacities and heavily industrialized areas [46].

In this study, the relationship between wind speed and PM2.5 is inverse. This is most
likely the outcome of several factors. The circumstances for PM2.5 diffusion are mostly made



Atmosphere 2023, 14, 538 9 of 20

perfect by an increase in wind speed, particularly a high wind speed [29]. Hence, increasing
wind speed has a greater impact on removing PM2.5 concentrations from the atmosphere.
Second, increased wind speed may result in larger evaporation losses and, thus, lower PM2.5
mass concentrations because wind speed is a key determinant in PM2.5 evaporation [30].
Wind speed may occasionally have a positive impact on PM2.5 concentrations. Initial
increases in wind speed in light winds may result in low levels of turbulence, modest
horizontal atmospheric movement, and a predominance of sinking movement in the upper
air, creating unfavorable circumstances for PM2.5 and other pollutants to disperse [28,35].
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3.3. PM2.5, and Aerosol Optical Depth

Figures 8 and 9 show the spatial distribution of PM2.5 (Figure 6) and aerosol optical
depth (Figure 7). In general, the levels of PM2.5 concentrations were in the range of 16
to 195 µg/m3 from January to May 2020. In January, the highest distribution of PM2.5
concentrations was found in Lampang province, ranging from 150 to 195 µg/m3, while a
range of 61 to 106 µg/m3 was found in the bulk of provinces. In February, the distribution
of PM2.5 concentrations in Chiang Rai province reached 195 µg/m3 at the top of the area.
At the same time, PM2.5 concentrations were in the range of 106–150 µg/m3 in the rest
of northern Thailand. In March, the PM2.5 concentrations were lower than in February,
excluding the upper part of Chiang Rai province. In April, the PM2.5 was more evenly
distributed than it was in March in the entire region, with the concentration ranging from
106 to 195 µg/m3 in most of the region. In May, the PM2.5 concentrations were similar to
April, except the highest concentration was found in Chiang Mai province. The results of
AOD from MERRA in Figure 4 correspond to the PM2.5 concentration in Figure 3. AOD
was generally in the range of 0.1 to 0.9 from January to April. In January, AOD was not too
high for the whole region, while it tended to increase in February, reaching 0.6 in Lampang,
Chiang Rai, and Phayao provinces. In March, AOD increased by 0.7 in many provinces,
such as Chiang Rai, Phayao, Nan, and Phrae. In April, AOD was extremely high in most
areas including Chiang Rai, Phayao, Nan, Phrae, Lampang, and Chiang Mai, ranging from
0.7 to 0.9.

There are numerous similarities between PM2.5 and AOD, despite the fact that their
association is not always reliable [47,48]. While AOD represents the entire atmospheric
column, PM2.5 primarily represents the atmospheric turbidity near the surface. Additionally,
because PM2.5 primarily represents the concentration of dry mass of fine particles, which
is barely influenced by coarse particles and water vapor, the AOD also takes into account
the influence of these two factors. According to this study, the AOD pattern in northern
Thailand and the PM2.5 concentration are most likely related. The similar pattern between
PM2.5 and AODs is most likely caused by the variations in aerosol type and properties in
this region according to Yang et al. [49], who examined the relationships between PM2.5
and AOD in 368 Chinese cities from February 2013 to December 2017 at various temporal
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and regional scales. In their study, urban regions, which are similar to the study area in this
paper, also showed a strong association between PM2.5 and AOD.
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3.4. Fire, Plume, and Visibility

The smoke plume and fire in the months of January, February, March, April, and May
2020 are shown in the images from NASA satellites taken by the Moderate Resolution
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Integrated Aging Spectroradiometer (MODIS). The massive plumes of smoke were seen
billowing across the majority of northern Thailand. No rain clouds are expected to arrive
to put an end to the burning and smoke that are engulfing the area. Furthermore, from
January to May, images of multiple fires growing in northern Thailand were captured by
the NOAA/NASA Suomi NPP and NOAA 20 satellites (Figure 10). The area appears to be
completely aflame (Figure 11). Agricultural burning is the most likely reason for the fires
in this region [3]. It is likely due to the farmers burning their fields to prepare for the new
planting season in Southeast Asia at this time of year.
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Figures 12–14 show the spatial distribution of visibility in northern Thailand in 2020.
At mixing height level at 1 km above ground level, low visibility generally occurred in
March and April by <4 km at Chiang Rai province in March (Figure 12c), and in the range
of 4–6 km in many areas of upper northern Thailand (Figure 12d) in April, while there was
very clear visibility in May (Figure 12e). In January, the visibility was very clear, ranging
between 13 and 18 km, while it was reduced to 6− < 4 km during February and April. In
general, at the mixing height level of 1.5 km above ground level, the visibility is clearer
than at 1.0 km, and the lowest visibility was also found in the range of 7–9 km in March
and April in Chiang Rai province. The visibility was very clear in January and May with
a value of 15–18 km; during February to April there was lower visibility. At the mixing
height level of 3 km, the visibility was mostly clear compared to other levels ranging from
11–18 km for all months.
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Figure 14. Spatial distribution of monthly averaged visibility at 3 km in (a) January, (b) February,
(c) March, (d) April, and (e) May in the year 2020.

In comparison to the very clear visibility in May, during the haze months (January
to April), PM2.5 tends to reduce visibility for all provinces (Figure 15). PM2.5 potentially
reduces visibility in the range of 20–70%, 60–80%, 60–90%, and 70–90% in January, February,
March, and April 2020 for all provinces. Massive fires in both domestic areas and areas
surrounding northern Thailand from January to April contribute to huge amounts of smoke
that cause low visibility in northern Thailand, especially at 1 km above ground level, with
reduced visibility in the range of 70–90% for all provinces in April. As displayed in Table 2,
during the haze episode (January to April), a 1 µg/m3 increase in PM2.5 essentially reduced
visibility 0.30 ± 0.05, 0.83 ± 0.33, 0.32 ± 0.07, 0.48 ± 0.05, and 0.31 ± 0.04 in Chiang Mai,
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Chiang Rai, Lampang, Lamphun, and Nan provinces, respectively. At the same time, it was
associated with a visibility reduction in range of 0.18–0.35 km, 0.20–1.74 km, 0.13–0.42 km,
0.34–0.56 km, and 0.23–0.42 km in Chiang Mai, Chiang Rai, Lampang, Lamphun, and Nan
provinces, respectively.
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Table 2. Per 1 µg/m3 increase in PM2.5 was associated with a visibility at mixing height level of 1 km
in five provinces of northern Thailand.

Month
Visibility (km)

Chiang Mai Chiang Rai Lampang Lamphun Nan

January 0.29 1.74 0.13 0.34 0.33
February 0.40 0.86 0.38 0.53 0.42

March 0.18 0.20 0.33 0.48 0.23
April 0.35 0.50 0.42 0.56 0.27

Mean 0.30 ± 0.05 0.83 ± 0.33 0.32 ± 0.07 0.48 ± 0.05 0.31 ± 0.04

The results of this demonstrate that the high level of PM2.5 is likely to be the pri-
mary cause of the reduction of visibility in northern Thailand, which is similar to findings
by Zhao et al. [50] and Sloane et al. [51]. Although there are other elements that affect
atmospheric visibility besides ambient air pollution, meteorological parameters, particu-
larly humidity, have a substantial direct and indirect impact on visibility degradation [52].
However, fine particulate matter is the main pollutant in most urban areas [53,54], and its
detrimental effects on visibility have drawn attention all over the world [55]. While the
haze event in northern Thailand takes place during the dry season with very low relative
humidity ranging from 30 to 60% (Figure 5b), PM2.5 is the primary reason for the area’s
poor visibility.
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3.5. Air Pollution Mitigation

It is evident that air pollution is a regional problem in Southeast Asia. Since air
has no boundaries, only regional cooperation can address the issue of air pollution [56].
Although most countries in Southeast Asia (SEA) are aware of the difficulties caused by
transboundary air pollution, no long-lasting solutions have been found [57]. Transboundary
international environmental law is desperately needed to prevent the polluting countries
from further deterioration. The ASEAN Agreement on Transboundary Haze Pollution
(AATHP), a legally enforceable regional agreement, was established to tackle the haze
issue in SEA [58]. The AATHP, however, is usually seen as a failure [59,60]. Reaching a
regional agreement on the issue of atmospheric pollution has proven challenging due to
uncertainties surrounding the identification of pollutant sources’ locations [61,62].

Although there are several ways to identify transboundary air pollution, none are
commonly used. Determining transboundary air pollution requires an understanding of the
relationships between pollution emissions and the types, amounts, and consequences of de-
positions in receiving areas [63]. The issue of transboundary air pollution may be resolved
by better knowledge of the scientific understanding of the source–receptor interaction in
this region [64]. Insufficient in situ sampling and measurement of air pollutants, uncertainty
in space-borne observation, and an inadequate emission inventory analysis (EIA) in the
area are a few of the concerns that need to be addressed. The foundation of satellite remote
sensing and numerical modeling approaches to determine transboundary air pollution is
in situ sampling and measurements. The density and distribution of monitoring sites over
SEA has not been adequate. Local administrations that run monitoring stations are present
in just seven out of the ten ASEAN nations. In less economically developed nations, poor
levels of maintenance at existing monitoring stations are another issue. Moreover, one of
the primary causes of air pollution in the Indochina peninsula is biomass burning [65]. The
three countries with the most fires in this region are Burma, Cambodia, and Laos, according
to satellite-borne measurements [66]. The results of the contributions to transboundary air
pollution from various geographic sources provide some information for policymaking.

Moreover, because fire from forests is a huge contributory source of smoke plume in
SEA, forest fuel management is recommended for policymakers [67]. Prescribed burning is
the best strategy for controlling forest fires in many nations. For example, during the dry
season, a significant amount of leaf litter is produced by the forest, particularly in the north
and west of Thailand. Specific parts may need to be incinerated for disposal, which must
be performed at the proper time and location [67]. This will lessen smog brought on by
out-of-control forest fires, preserve the health of the forest, and lessen damage from forest
fires. Despite the fact that there are ongoing efforts to reduce, recycle, and utilize forest
leftovers and large forest regions are always protected with fire barriers, it is challenging
to maintain and govern huge forests. A zero-burning policy can reportedly reduce open
burning activities in northern Thailand, according to Yabueng et al. [68]. Although biomass
fires’ fine particle levels have decreased, there are still extensive areas of smoke haze. The
PM2.5 fraction reduced during the period when the policy for prohibiting open fires was
extended from two months (middle of February through middle of April) to around three
months (middle of February through middle of May). Hence, while the regulation is being
implemented, open burning incidents can be decreased. According to the description above,
particulate matter, which contributes to several air pollution issues, is often generated by
biomass or lignocellulosic biomass waste. However, this substance might be turned into
high-value goods, such as biomaterials, biochemicals, and fuels [69]. This process of
valuing could also reduce the CO2 and PM emissions brought on by the direct burning of a
significant volume of biomass, which causes air pollution.

These initiatives are impossible to carry out without regional collaboration and the
political will to push forward policies that aim to address poor air quality. Due to these
considerations, tackling problems might be just as political or environmental. Governments
in the area will need to make long-term financial and political commitments to pollution
monitoring and research, as well as to sharing information and effectively responding to
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evidence of chronically poor air quality, in order to meet this challenge. For administrators
of the environment and decision makers in charge of making policies at the municipal,
national, and regional levels, this study could potentially offer information that is essential.
Without solid recommendations and counsel based on scientific knowledge and compe-
tence, decision making cannot be accomplished effectively. This is also true of diplomatic
efforts to reduce air pollution in this region that are successful and efficient.

3.6. Limitation of the Study

Linear regression cannot adequately describe the relationship between PM2.5 and
meteorological variables because these interactions are rarely linear in real environments.
For instance, various mechanisms explain how meteorological conditions influence the
accumulation and dispersion of PM2.5 [70]. Meteorological conditions and PM2.5 levels both
influence the complicated relationships between PM2.5 and meteorology [71]. As a result,
there are noticeable characteristics of meteorological influences on PM2.5 concentrations due
to considerable fluctuations in meteorological circumstances and PM2.5 concentrations. For
linearly separable data, however, linear regression performs remarkably well. Furthermore,
it is simpler to use and understand and effective for explanation.

4. Conclusions

This study aims to investigate the distribution of PM2.5 and how meteorological
conditions control its accumulation, as well as the effect of PM2.5 on visibility in northern
Thailand in 2020. Several datasets were used in this study, including ground-based measure-
ments from the Pollution Control Department in northern Thailand, aerosol optical depth
(AOD) data from Modern-Era Retrospective Analysis for Research and Applications ver-
sion 2 (MERRA-2), and satellite images from VIIRS S-NPP CORRECTED REFLECTANCE
(TRUE COLOR) and VIIRS NOAA-20. The spatial distribution was utilized by GIS analysis.
The daily average of PM2.5 concentrations exceeded both Thailand’s and the USEPA’s
standards, especially from January to May. The highest values of PM2.5 concentrations
were reported between 150 and 195 µg/m3 from March to April. The favorable weather
conditions induced the accumulation of PM2.5 in northern Thailand. PM2.5 had a negative
association with both wind speed and relative humidity, although it had a positive cor-
relation with temperature. The high PM2.5 values in northern Thailand were caused by
favorable climatic conditions. Because of the high concentration of PM2.5, AOD ranged
from 0.1 to 0.9 from January to April. AODs ranging from 0.7 to 0.9 have been recorded
in Chiang Rai, Phayao, Nan, Phrae, Lampang, and Chiang Mai provinces, particularly in
March and April. Between January and April, a massive fire from both domestic sources
and neighboring countries contributed to huge plumes of smoke that were a long-range
transport of pollutants to Thailand. As a result, visibility was reduced by up to 90% when
compared to normal conditions.
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