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Abstract: Climate extreme events are becoming increasingly frequent worldwide, causing floods,
drought, forest fires, landslides and heat or cold waves. Several studies have been developed on
the assessment of trends in the occurrence of extreme events. However, most of these studies used
traditional models, such as Poisson or negative binomial models. Thus, the main objective of this
study is to use a space–time data counting approach in the modeling of the number of days with
extreme precipitation as an alternative to the commonly used statistical methods. The study area
is the Northeast Brazil region, and the analysis was carried out for the period between 1 January
1980 and 31 December 2010, by assessing the frequency of extreme precipitation represented by the
R10 mm, R20 mm and R* indices.

Keywords: climatological modeling; climate change; extreme rainfall frequency; environmental data;
nonhomogeneous Poisson processes; anisotropic processes

1. Introduction

Rainfall is one of the most important meteorological variables for climate modeling.
This variable usually presents high spatial and temporal variability, which represents a great
challenge when dealing with climate and meteorological phenomena. Thus, there have
been several improvements in the development and application of models in recent years,
such as cloud parameterization [1,2] simulations with different cumulus parameterization
schemes [3–5], simulations of different climate extreme scenarios [6], modeling through
probability distributions [7–9], a combination of statistical techniques for nonseasonal
forecasting [10], model output statistics for seasonal rainfall forecasting [11] and multimodel
seasonal forecasting as used by several prediction centers worldwide [1].

Despite advancements in the development of climate science tools, the occurrence
of extreme rainfall events remains fairly difficult to predict. These events occur in all
regions of the globe, and their impacts concern different sectors of society. This concern is
highlighted in the assessment reports of the Intergovernmental Panel on Climate Change
(IPCC). Researchers from around the globe have analyzed extreme rainfall events, whether
at a global [12–14], national [15–17], regional [18–22] or local scale, such as in the cities of
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Atlanta, Georgia [23], Exeter and New Hampshire in the United States [24], Stockholm in
Sweden [25] and Natal in Brazil [26].

Extreme precipitation events can cause either negative or positive impacts depending
on the intensity and duration of the event and on the local characteristics of the affected
region. In the semiarid portion of Northeast Brazil (NEB), the occurrence of heavy rainfall
events can benefit hydroelectric power generation in large watersheds [27]. In coastal NEB,
on the other hand, this type of event can lead to natural disasters such as flooding and
landslides [7]. Paradoxically, NEB is a region characterized by both rainfall deficits [28,29]
and surpluses [19,30,31]. The rainfall distribution over this region also presents remarkable
spatial and seasonal variability.

Several studies have identified that rainfall seasonality and interannual variability in
NEB are directly influenced by sea surface temperature anomalies both in the Pacific and
Atlantic Oceans [32–36]. However, the dynamics of extreme rainfall events regarding these
anomalies are slightly different [21,37]. The El Niño and La Niña (ENSO) phenomena, for
example, do not directly influence the intensity of extreme rainfall events in subregions
of NEB at the annual and seasonal scales [21,38], except for a few specific cases. The
effects of ENSO can be better perceived through frequency analysis, as suggested by some
studies [21,38,39]. Heavy rainfall extreme event assessments at different time scales (annual,
monthly and daily) have shown that these episodes can cause damage even during years
considered normal or dry because most of the precipitation can occur in the course of a
single month or even a few consecutive days [37]. This fact reveals the action of different
meteorological systems over NEB at different temporal and spatial scales.

The studies by Min et al. [40] and Donat et al. [41] indicate an overall increase in
the frequency of extreme rainfall events, which, according to Huntington [42] and Tren-
berth [43] are intensified by the increase in temperature. Future climate projections by the
IPCC reveal an increase in mean global temperature ranging from 1.5 ◦C to 4.8 ◦C until
2100 [44]. In Brazil, an increase in temperature between 0.5 ◦C and 6.0 ◦C is expected until
2100 [45]. According to Aumann et al. [46], the projected increase of 2.7 ◦C in the mean
temperature of tropical oceans may lead to a 60% increase in the frequency of extreme
precipitation events.

In this sense, several researchers have investigated trends in the occurrence of extreme
events in different regions of the globe, such as Spain [47], Portugal [48], Central Europe [49],
Central Asia [50], Pakistan [51], Sub-Saharan Africa [52], Ethiopia, Kenya and Tanzania [53],
Brazil [22,54–56], China [57–59] and the United States [60,61]. However, new techniques
that may provide indications of the frequency of extreme rainfall events are of the uttermost
importance for the development of adaptation actions for urban systems and for the
reduction in risks associated with extreme climate events [26,62,63]. In this context, the
main objective of this study is to use the space–time data counting approach proposed
by Morales et al. [64] in the modeling of the number of days with extreme rainfall as
an alternative to the commonly used statistical methods (such as Poisson and negative
binomial). In particular, we investigate the frequency of extreme precipitation in NEB
throughout a 31-year period from 1 January 1980 until 31 December 2010.

2. Materials and Methods
2.1. Data

The data used in this study were measured by the National Water Agency. The dataset
comprises daily rainfall (mm) time series available at 151 rain gauges distributed through-
out NEB (Figure 1) from 1 January 1980 to 31 December 2010. It is worth highlighting that
there are less than 1.16% of gaps in the dataset, which were filled through the multiple
imputation for missing data statistical technique [65], which in turn was developed by
Honaker et al. [66] at the R Core Team software developer. In the present study, NEB was
divided into homogeneous climate subregions as proposed by Oliveira et al. [21]: northern
coast (NC), northern semiarid (NS), northwest (NO), southern semiarid (SS) and southern
coast (SC). For each subregion, we analyzed extreme rainfall events through the following
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extreme precipitation indices [62]: R10 mm, defined as the number of days in which daily
precipitation was higher than or equal to 10 mm; and R20 mm, defined as the number
of days in which daily precipitation was higher than or equal to 20 mm. We also used
the R∗ index, which is defined as the percentage of days in which rainfall surpassed the
95% percentile for each point in the study area. In other words, for each point s in the study
region, we defined:

R∗(s) =
N

∑
t=1

1(P95(s),+∞)(yt(s)),

where

1(P95(s),+∞)(yt) =


1, if yt(s) > P95(s)

,
0, in any other case
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Figure 1. Location of the rain gauges (left panel), biome map (center panel) and NEB topography
(right panel) according to the division by federal states.

N is the number of days in the year, yt(s) is the daily precipitation in the point s and
P95(s) is the 95% percentile of observed rainfall at the [0, T) time interval.

2.2. Study Area

The study area comprises NEB, located in the tropical region between coordinates
1◦ S and 18◦ S and 34.5◦ W and 48.5◦ W (Figure 1). According to the Brazilian Institute for
Geography and Statistics (IBGE—Instituto Brasileiro de Geografia e Estatística), NEB has a
territorial extent of 1,558,196 km2 (18% of the total national territory) and a population of
53,078,137 (27.8% of the total Brazilian population) and encompasses nine federal units:
Maranhão, Piauí, Ceará, Rio Grande do Norte, Paraíba, Pernambuco, Sergipe, Alagoas and
Bahia [67]. NEB is characterized by a variety of its natural aspects (vegetation, topography,
climate, etc.). It has rich biodiversity divided among four biomes: Atlantic Forest, Dry
Forest (Caatinga), Brazilian Savanna (Cerrado) and the Amazon Rainforest, comprising
21%, 64%, 12% and 4% of NEB’s territory, respectively, as shown in Figure 1 [67]. There is
an evident topographic heterogeneity in NEB, which is characterized by a lengthy coastline
and altitudes reaching up to 2033 m. The main physical features are the Borborema Plateau
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(higher altitudes in the Bahia and Paraíba states), the Diamantina Plateau (central portion
of the Bahia state), the Mangabeiras Plateau and the Goiás Serra Geral mountain range
(predominantly west of the Bahia state) [68].

Approximately 64.7% of the NEB territory is under a semiarid climate characterized
by a high spatial and temporal variability in rainfall distribution [69]. NEB presents annual
accumulated rainfall lower than 500 mm in semiarid regions and up to 1500 mm in coastal
regions [19,70]. The SC/SS and NO/NS subregions have the maximum rainfall occurring
in the summer (Dezember to February, DJF) and autumn (March to May, MAM), respec-
tively [21]. The main atmospheric systems driving seasonal rainfall in the SC/SS subregions
are the South Atlantic Convergence Zone (SACZ) [71,72] and Upper Tropospheric Cyclonic
Vortices (UTCV).

The orographic characteristics of Northeast Brazil play an important role in the spatial
and temporal distribution of rainfall in the region [73–76]. The presence of elevations,
mountains and plateaus, as well as the proximity of the coast, can cause interference in the
distribution of rainfall in the region [73], for example, this occurs in Chapada Diamantina
and Serra da Borborema, which act as barriers to the passage of humid air masses, which
can lead to a greater concentration of local rainfall [73,77]. In addition, the proximity to the
coast may favor the formation of storms and weather systems that cause extreme rainfall in
the region [77].

Palharini et al. [17] state that, in addition to other factors, extreme rainfall events can
be influenced by the orographic characteristics of the region. Souza et al. [78] supported the
occurrence of higher rainfall rates occurring in the highest and lowest area indices on the
Sertaneja Depression. Macedo et al. [79] associated the occurrence of drought events with
the cities of Araruna and Coremas, located in the NEB, the local orography. The altitude of
the region can also contribute to the occurrence of natural disasters, such as the events that
occurred in the city of São Gabriel in Bahia [17] and in the Cariri region of Ceará [80].

2.3. Statistical Methods
2.3.1. Model

In this paper, extreme rainfall frequency in the Northeast region of Brazil is modeled
using the methods proposed by Morales et al. [64]; Morales and Vicini [81]; Morales and
Rodrigues [22]. This model assumes that a nonhomogenous Poisson process of Goel [82]
occurs at any point in a geographic region of interest denoted by G, G ⊂ R2, in the time
interval [0, T). However, in practice, this process is observed at n fixed points (monitoring
stations) in this region G, defined by sj =

(
xj, yj

)′, the geographic coordinate corresponding
to the j-th monitoring station, j = 1 . . . , n. The mean function value m and intensity λ for
this process are

m
(
sj, t
)
= θj

(
1− e−βtα

)
, (1)

and
λ
(
sj, t
)
= θjβαtα−1e−βtα

.

where β, α > 0 and θj = θ
(
sj
)

is a positive function such as θj = eWj , where Wj = W
(
sj
)

is
a random quantity that incorporates spatial dependence in the functions m and λ.

2.3.2. Spatial Component

The spatial component is incorporated through the Gaussian process W(.) given by

W(.) ∼ PG
(

µ(.), σ2(.)ρφ

)
,

where µ(.) = x(.)Ψ is the mean of the process, x(.) is a covariance vector associated with
the coefficient vector Ψ, v2(.) is the process variance, ρφ is a valid correlation function, and
the correlation between Wi and Wj, for every si, sj ε G, is defined as

ρφ

(
sj, sk

)
=
√

vjvkρφ

(∣∣d( sj
)
− d( sk)

∣∣),
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where vj = v
(

sj
)

is the variance of Wj and d is a function that maps the original coordinates
of the G space to a new D space in which the isotropy assumption is satisfied [83].

2.3.3. Parameter Interpretation

Goel processes have been used in the modeling of counting data for various envi-
ronmental applications [64,81], mostly due to their versatility in the modeling of various
behaviors of the intensity function of nonhomogeneous Poisson processes. For example, for
α ≤ 1, the function λ decreases; for some combinations of α = 1 and near-zero β values,
the function λ is approximately constant (homogeneous Poisson process); for α > 1, the
function λ can only increase in the (0, T] interval; or in other configurations, the function
λ can only increase until a certain threshold value t∗ and then it shifts its trend. The
calculation of the change point t* is performed using the following Expression (2).

t∗ =
(
(α− 1)/αβ)1/α

)
. (2)

Another advantage of this model is the interpretation of parameters. For example,
the vector of regression coefficients Ψ measures the linear association of covariables X in
explaining the spatial variability of the mean process. On the other hand, φ, v and d model
the covariance structure of the spatial process.

2.3.4. Spatial Interpolation of the R10 mm, R20 mm and R* Indices

Let Al = [τl−1, τl), τ0 = 1, l = 1, . . . , L, be the time intervals in the year l, L the
number of years, and , Nl the number of days in the interval l. The R10 mm index for any
s ∈ G in year l is given by

R10mml(θ | s, Al) =
m(s, τl | θ)−m(s, τl−1 | θ)

Nl

where θ is the set of parameters of the model proposed by Morales and Vicini (2020) [81]
and m(s, t) defined in (1) is the number of days with daily precipitation higher than 10 mm.
Thus, the expected value of R10 mm is

E(R10mml(θ | s, Al) | D) =
∫
θ

R10mml(θ | s, Al)π(θ | D)dθ,

π(θ | D) is the posterior distribution of θ.
The estimation of the R20 mm index is analogous to that of the R10 mm index.
The R* index for s ∈ G in year l is given by

R∗l (θ | s, Al) =
m(s, τl | θ)−m(s, τl−1 | θ)

Nl

where m(s, t) is the number of days in which daily precipitation exceeded P95. Thus, the
expected value of R* in year l is given by

E(R∗l (θ | s, Al) | D) =
∫
θ

R∗l (θ | s, Al)π(θ | D)dθ,

The details of the spatial interpolation of m(s, t) are fully described in Morales et al. [64]
and Morales and Vicini [81].
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3. Results and Discussion
3.1. NC Subregion
3.1.1. Results Obtained for the R10 mm Index

Among the results of the model adjusted to estimate the R10 mm index, we highlight
that α is significantly larger than 1, which indicates statistical evidence that the occurrence
of rainfall above 100 mm appears not to be constant (see Table 1). In other words, the
incidence rate of this type of event increases until 26 March 1992 and then starts decreasing.
The 95% confidence interval for this change point is found between 23 February 1989 and
29 September 1994. Another important result is that latitude seems to be an important
aspect explaining the R10 mm index. By moving north from NEB toward the equator, the
R10 mm index seems to decrease (see Figure 2). In Figure 2, one can notice that in the
year 1991, the proportion of R10 mm is higher for locations near the coastline, with values
ranging from 0.13 to 0.18. Locations farther from the coastline present R10 mm proportions
varying from 0.10 to 0.13. This spatial variability regarding the proportion of the R10 mm
index did not significantly change in the other years (see the space–time behavior of the
R10 mm index in the Supplementary Material). Rainfall over this region is caused mainly
by easterly wave disturbances (EWD) [84].
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Figure 2. Predictions of rainfall relative frequency that exceeded the 10 mm threshold in the NC, NS,
NO, SS and SC regions in 1991.

Table 1. Posterior mean, median and 95% credibility interval for the parameters β, α, φ, σ2 and
Ψ′ = (Ψ0, Ψ1, Ψ2) (Ψ0 is the intercept, Ψ1 is the coefficient associated with longitude and Ψ2 is the
coefficient associated with latitude) of the model adjusted for an estimate of the R10 mm index in the
NC, NS, NO, SS and SC regions.

Subregion Parameter Mean 50% 2.5% 97.5%

NC

β 6.42 × 10−6 6.38 × 10−6 5.86 × 10−6 7.11 × 10−6

α 1.04 1.04 1.03 1.05
φ 0.33 0.13 0.01 1.18
Ψ0 14.93 14.81 4.63 26.44
Ψ1 0.30 0.30 −0.04 0.66
Ψ2 −0.49 0.50 −0.78 −0.19

NS

β 1.42 × 10−5 1.41 × 10−5 1.24 × 10−5 1.61 × 10−5

α 1.01 1.01 1.00 1.03
φ 0.26 0.12 0.01 0.96
Ψ0 10.39 10.38 6.77 14.20
Ψ1 0.04 0.04 −.05 0.13
Ψ2 0.10 0.10 0.02 0.19

NO

β 8.08 × 10−6 8.09 × 10−6 7.23 × 10−6 8.77 × 10−6

α 1.02 1.02 1.01 1.03
φ 0.29 0.16 0.01 0.96
Ψ0 8.74 8.78 5.62 11.55
Ψ1 −0.03 −0.03 −0.09 0.03
Ψ2 0.13 0.13 0.60 0.20

SS

β 9.22 × 10−6 9.18 × 10−6 8.38 × 10−6 1.03 × 10−5

α 1.00 1.00 0.99 1.01
φ 0.07 0.04 0.01 0.33
Ψ0 1.75 1.67 0.00 3.74
Ψ1 −0.17 −0.17 −0.20 −0.13
Ψ2 0.00 0.00 −0.03 0.04

SC

β 1.28 × 10−5 1.27 × 10−5 1.15 × 10−5 1.41 × 10−5

α 1.00 1.00 0.98 1.01
φ 0.19 0.07 0.01 0.75
Ψ0 16.74 17.00 6.15 26.84
Ψ1 0.20 0.20 −0.06 0.44
Ψ2 −0.03 −0.02 −0.20 0.11
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3.1.2. Results Obtained for the R20 mm Index

Table 2 shows that the α parameter is significantly larger than 1 in the NC and NO
regions, and thus, in the NC region, the rate of occurrence of rainfall surpassing 20 mm
increases until 3 October 1989 and then decreases, with the 95% confidence interval located
between 22 September 1983 and 16 February 1994 for this change point. Conversely, in
region NO, the rate of occurrence of rainfall surpassing 20 mm increases until 6 June 1985
and then decreases, with the 95% confidence interval located between 29 August 1982 and
2 April 1988 for this change point. The estimated change point and its respective credibility
interval are calculated by substituting the α and β values obtained in the estimation process
into Equation (2).

Table 2. Posterior mean, median and 95% credibility interval for the parameters β, α, φ, σ2 and
Ψ′ = (Ψ0, Ψ1, Ψ2) (Ψ0 is the intercept, Ψ1 is the coefficient associated with longitude and Ψ2 is the
coefficient associated with latitude) of the model adjusted for an estimate of the R20 mm index in the
NC, NS, NO, SS and SC regions.

Subregion Parameter Mean 50% 2.5% 97.5%

NC

β 7.25 × 10−6 7.23 × 10−6 5.93 × 10−6 8.73 × 10−6

α 1.03 1.03 1.01 1.05
φ 0.6 0.19 0.01 2.12
Ψ0 16.84 17.04 4.20 28.80
Ψ1 0.40 0.41 0.00 0.81
Ψ2 −0.59 −0.60 −0.92 −0.22

NS

β 8.27 × 10−6 8.17 × 10−6 6.99 × 10−6 1.02 × 10−5

α 1.01 1.01 0.99 1.03
φ 0.25 0.13 0.01 0.84
Ψ0 9.43 9.55 3.36 14.54
Ψ1 0.02 0.02 −0.12 0.15
Ψ2 0.08 0.08 −0.02 0.19

NO

β 9.82 × 10−6 9.72 × 10−6 8.61 × 10−6 1.15 × 10−5

α 1.02 1.02 1.01 1.04
φ 0.40 0.17 0.01 1.29
Ψ0 8.04 7.98 4.58 11.66
Ψ1 −0.03 −0.03 −0.10 0.06
Ψ2 0.11 0.11 0.02 0.20

SS

β 1.65 × 10−5 1.65 × 10−5 1.42 × 10−5 1.87 × 10−5

α 0.98 0.98 0.97 0.99
φ 0.06 0.03 0.01 0.22
Ψ0 0.27 0.27 −1.86 2.37
Ψ1 −0.18 −0.18 −0.22 −0.13
Ψ2 0.01 0.01 −0.04 0.05

SC

β 1.20 × 10−5 1.19 × 10−5 9.57 × 10−6 1.46 × 10−5

α 0.97 097 0.95 0.99
φ 1.13 0.25 0.01 4.92
Ψ0 15.25 15.45 5.72 25.48
Ψ1 0.22 0.23 −0.02 0.47
Ψ2 −0.13 −0.13 −0.27 0.01

Latitude also significantly explains the mean R20 mm values, which also decrease the
more we displace north from NEB toward the Equator (see Figure 3). Figure 3 shows the
estimated surface for the proportion of days in which rainfall exceeded 20 mm for the year
1991, and one can notice that the proportion of the R20 mm index is higher in locations near
the coast, with values ranging from 0.03 to 0.05. Maximum rainfall in this region occurs
between April and July, while in locations farther from the coast, the R20 mm proportions
vary from 0.02 to 0.03.
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The surfaces estimated for the R20 mm index in other years presented a similar trend
and behavior compared to 1991 (see the space–time behavior of the R20 mm index in the
Supplementary Material). The spatial correlation of R20 mm indices between locations
separated by at least 9.7 km is 0.95; the spatial correlation of R20 mm indices between
locations separated by 190 km is 0.36; and the spatial correlation of R20 mm indices between
locations separated by 498 km is 0.07 (see Figure 4). Overall, the spatial correlation for this
index was anisotropic.
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3.1.3. Results Obtained for the R* mm Index

Table 3 shows that the α parameter is significantly larger than 1, and thus, the occur-
rence of rainfall exceeding the 95th percentile increases until 23 January 1990 and then
decreases, with the 95% confidence interval located between 4 October 1987 and 29 October
1992 for this change point. Longitude and latitude are not significant in explaining the
mean R* value, and the estimated surface for this index is homogeneous, with a proportion
of rainfall exceeding the 95th percentile ranging from 0.051 to 0.052 in 1991. The estimated
surface for the R* index changed each year and was significantly higher than 0.05 in 1989,
1990 and 1991 (see the space–time behavior of the R* index in the Supplementary Material).
The spatial correlation for the R* index is anisotropic (see Figure 5). In the NC region, daily
rainfall exceeding the 95th percentile is higher than 100 mm/day on average during the
period from March to May [7]. The National Center for Natural Disaster Monitoring and
Alerts (CEMADEN—Centro Nacional de Monitoramento e Alertas de Desastres Naturais)
registered more than 10 natural disasters associated with heavy rainfall in the city of Maceió,
located at the coast of the state of Alagoas, from January 2016 until February 2019 [7]. This
is quite concerning since the R* index varies from 0.04 to 0.06 over the NC region during
the studied period. The spatial correlation of the R* indices between locations is generally
strong; for example, the spatial correlation between locations separated by at least 9.7 km
is 0.99; the spatial correlation of R* indices between locations separated by 190 km is 0.96;
and the spatial correlation of R* indices between locations separated by 498 km is 0.92
(see Figure 4).
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Table 3. Posterior mean, median and 95% credibility interval for the parameters β, α, φ, σ2 and
Ψ′ = (Ψ0, Ψ1, Ψ2) (Ψ0 is the intercept, Ψ1 is the coefficient associated with longitude and Ψ2 is the
coefficient associated with latitude) of the model adjusted for an estimate of the R* mm index in the
NC, NS, NO, SS and SC regions.

Subregion Parameter Mean 50% 2.5% 97.5%

NC

β 1.03 × 10−5 1.03 × 10−5 8.31 × 10−6 0.21 × 10−5

α 1.07 1.07 1.06 1.10
φ 0.02 0.01 0.01 0.05
Ψ0 7.16 6.94 4.19 11.33
Ψ1 −0.02 −0.03 −0.12 0.12
Ψ2 0.01 0.02 −0.08 0.08

NS

β 1.44 × 10−5 1.42 × 10−5 1.28 × 10−5 1.62 × 10−5

α 1.05 1.05 1.04 1.07
φ 0.01 0.01 0.01 0.03
Ψ0 7.78 7.76 7.11 8.59
Ψ1 0.00 0.00 −0.02 0.02
Ψ2 0.01 0.01 0.00 0.02

NO

β 1.36 × 10−5 1.37 × 10−5 1.15 × 10−5 1.54 × 10−5

α 1.06 1.06 1.05 1.08
φ 0.01 0.01 0.01 0.04
Ψ0 7.66 7.66 6.67 8.55
Ψ1 0.00 0.00 −0.02 0.02
Ψ2 0.00 0.00 −0.02 0.02

SS

β 2.08 × 10−5 2.06 × 10−5 1.82 × 10−5 2.39 × 10−5

α 1.02 1.02 1.01 1.04
φ 0.01 0.01 0.01 0.02
Ψ0 7.68 7.71 7.05 8.14
Ψ1 0.00 0.00 −0.01 0.01
Ψ2 0.00 0.00 −0.01 0.01

SC

β 1.60 × 10−5 1.61 × 10−5 1.35 × 10−5 1.80 × 10−5

α 0.98 0.98 0.97 1.00
φ 0.02 0.01 0.01 0.05
Ψ0 8.08 8.01 5.88 10.76
Ψ1 −0.01 −0.01 −0.06 0.05
Ψ2 0.00 0.00 −0.02 0.03

3.2. NS Subregion
3.2.1. Results Obtained for the R10 mm Index

Table 1 shows the summary of posterior distributions for the β, α, ϕ and Ψ parameters.
The results showed that α is significantly equal to 1, indicating that the occurrence of rainfall
exceeding 10 mm decreases with time. Additionally, latitude seems to be an important
variable explaining the variability of the R10 mm index, which increases further north
toward the Equator. This trend can be observed in the estimated surface for the R10 mm
index in the year 1991, as shown in Figure 2. One can observe that the highest relative
frequencies occur at the coast of the Pernambuco, Paraíba, Rio Grande do Norte and Ceará
states, with values ranging from 0.09 to 0.10. On the other hand, the variability of the
relative frequency in the inlands of this subregion varies from 0.04 to 0.08. The behavior of
the relative frequency surface of rainfall exceeding 10 mm varies with time and decreases
in the inlands of the region (see the space–time behavior of the R10 mm index in the
Supplementary Material). Rainfall in this region is mainly driven by the displacement
of the Intertropical Convergence Zone (ITCZ) toward the Southern Hemisphere during
autumn, which characterizes the wet season in the region [21]. Figure 6 shows a spatial
deformation in the inlands of the Paraíba and Pernambuco states, indicating an anisotropic
spatial correlation function. A possible explanation for this deformation may be associated
with the fact that his region is surrounded by the Borborema Plateau in the Paraíba and
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Pernambuco states, with altitudes reaching more than 1000 m. The spatial correlation of
R10 mm indices between locations separated by at least 14 km (minimum distance between
gauges) is 0.97; the spatial correlation of R10 mm indices between locations separated by
343 km (mean distance between gauges) is 0.70; and the spatial correlation of R10 mm
indices between locations separated by 747 km (maximum distance between gauges) is
0.45 (see Figure 4).
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3.2.2. Results Obtained for the R20 mm Index

The results for the R20 mm index are similar to those of the R10 mm index. For
example, the estimated model also retrieved an α parameter significantly equal to 1, which
indicates a negative trend for the occurrence of rainfall exceeding 20 mm. Additionally,
latitude and longitude did not significantly explain the variability in the R20 mm index,
and thus, the spatial dependence for this index is explained solely by the spatial correlation
function (see Table 2). Although latitude is not significant, the estimated surface shows
that the relative frequency of rainfall exceeding 20 mm in the year 1991 is higher at the
coast of the region, with values ranging from 0.035 to 0.045, where the occurrence of
more intense precipitation events is expected [7]. Maximum rainfall values in this region
occur between April and July [85]. In the semiarid inlands of this subregion, however, the
relative frequency of rainfall exceeding 20 mm varies from 0.010 to 0.035. A decrease with
time in the R20 mm index is observed in the inlands of the subregion (see the space–time
behavior of the R20 mm index in the Supplementary Material). The estimates for the spatial
deformation and the φ parameter are similar to those obtained for the R10 mm model.
Thus, the spatial correlation function has the same behavior as the function for the R10 mm
index, as previously described.

3.2.3. Results Obtained for the R* mm Index

The α parameter is significantly larger than 1, which indicates that the occurrence of
rainfall events exceeding the 95th percentile increases until 19 June 1986 and then decreases
(change point). The 95% confidence interval for precipitation is located between 4 December
1984 and 11 December 1987. Figure 5 shows the R* estimates for 1991, and the space–
time behavior of this index is presented in detail in the Supplementary Materials section.
Neither latitude nor longitude significantly explained the variability in the R* index, which
indicates that the spatial dependence is explained solely by the spatial correlation function
(see Table 3). The results show that the relative frequency of rainfall events exceeding the
95th percentile in the years from 1984 to 1988 is significantly larger than 0.05, and in the
years from 2008 to 2010, it is significantly lower than 0.05 (see Supplementary Materials).
The highest values for the index can be found in the coastal region. Daily accumulated
rainfall can exceed 120 mm/day [86]. In Natal, a city located over the eastern coast of the
NS region, the probability of occurrence of precipitation higher than 40 mm/day in June
is 90.8% [7].

According to Kousky [87], Zhou and Lau [88] and Rodrigues et al. [19], the coastal
region of NEB is where the highest annual accumulated precipitation is registered. One can
also observe an anisotropic spatial correlation between the R10 mm index values over this
region. Figure 6 shows this deformation of the original spatial characteristics at points near
the coast. A possible explanation might be related to the presence of several topographic
features near this deformation, such as the Diamantina Plateau reaching up to 2033 m
in altitude. The spatial correlation of R10 mm indices between locations separated by at
least 9.7 km (minimum distance between gauges) is 0.97; the spatial correlation of R10 mm
indices between locations separated by 190 km (mean distance between gauges) is 0.57;
and the spatial correlation of R10 mm indices between locations separated by 498 km
(maximum distance between gauges) is 0.23 (see Figure 4). Figure 4 shows a strong spatial
correlation for the R* index, with values of approximately 0.99 between locations separated
by 14 km; the spatial correlation of R* indices between locations separated by 343 km is
0.97; and the spatial correlation of R* indices between locations separated by 747 km is 0.94
(see Figure 4).

3.3. NO Subregion
3.3.1. Results Obtained for the R10 mm Index

Table 1 shows that the value of α is significantly larger than 1, which indicates that the
occurrence of rainfall exceeding 10 mm increases until 24 April 1986 and then decreases,
with the 95% confidence interval for the change point located between 24 August 1983 and
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17 September 1989. Latitude significantly explains the variability of the R10 mm index,
which increases in locations further north of NEB. For example, Figure 2 shows that for the
year 1991, the relative frequency values in the northern portion of the subregion varied from
0.14 to 0.19, while in the southern portion, they varied from 0.10 to 0.14. The NO region
presents the highest accumulated rainfall values in NEB, which may be associated with
its proximity to the Amazon region [21]. In the Supplementary Materials, one can observe
the small variability in the space–time trends of the R10 mm index. On the other hand,
Figure 6 shows a deformation in the original space, suggesting that the spatial correlation
is anisotropic. It is worth highlighting that this deformation comprises an area with three
biomes with contrasting characteristics: the Amazon rainforest, the Cerrado (Brazilian
savanna) and the Caatinga (dry forest), with accumulated rainfall ranging from 700 mm
(Caatinga and Cerrado) to 5000 mm (Amazon). This factor associated with the main
meteorological systems acting over this region may explain the deformations found [81].
The spatial correlation of R10 mm indices between locations separated by at least 5.6 km
(minimum distance between gauges) is 0.99; the spatial correlation of R10 mm indices
between locations separated by 214 km (mean distance between gauges) is 0.57; and the
spatial correlation of R10 mm indices between locations separated by 590 km (maximum
distance between gauges) is 0.22 (see Figure 4).

3.3.2. Results Obtained for the R20 mm Index

Table 2 shows that the α parameter is significantly larger than 1, and thus, the occur-
rence of rainfall exceeding 20 mm increases until 6 June 1985 and then decreases, with the
95% confidence interval for this change point located between 28 August 1982 and 2 April
1988. The coefficient associated with latitude is significant in explaining the mean R20 mm
index value, which is positive and increases when latitude decreases (see Figure 3). The
northern coast presents the highest annual accumulated rainfall [19,30], when compared
to other NEB regions. The wet season occurs between February and May [19]. Figure 3
shows the estimated surface for the proportion of days that exceed the 20 mm rainfall
threshold in the year 1991. One can observe that the R20 mm proportion is higher in the
northern portion of the subregion and near the coast, with values ranging from 0.065 to
0.090. Locations farther from the coast present proportions that vary from 0.040 to 0.065.
The surfaces estimated for the R20 mm index in other years present a similar behavior (see
the space–time behavior of the R20 mm index in the Supplementary Material). The spatial
correlation for the R20 mm index was anisotropic (see Figure 6). The spatial correlation of
R20 mm indices between locations separated by at least 5.6 km is 0.98; the spatial corre-
lation of R20 mm indices between locations separated by 214 km is 0.46; and the spatial
correlation of R20 mm indices between locations separated by 590 km is 0.12 (see Figure 4).

3.3.3. Results Obtained for the R* Index

The α parameter is significantly larger than 1, which indicates that the occurrence of
rainfall events exceeding the 95th percentile increases until 5 March 1987 and then decreases
(change point). The 95% confidence interval for precipitation is located between 17 August
1985 and 18 April 1989. Figure 5 shows R* estimates for the year 1991, which varies smoothly
at approximately 0.052. The results for the northern NEB coast were similar to the results
for the eastern coast, with high rainfall rates. Values higher than 100 mm/day are expected
every two years [7]. Approximately 14 cities in this region suffered from hydrological
natural disasters classified as floods, landslides or flash floods [7]. In the Supplementary
Materials section, one can observe the spatial and temporal behavior of the R* index.
Neither latitude nor longitude are significant in explaining the variability of the index,
which indicates that the spatial dependence is explained solely by the spatial correlation
function (see Table 3). The relative frequency of rainfall exceeding the 95th percentile in
the years 1984 to 1987 is significantly larger than 0.05. For the years from 2008 to 2010,
however, R* is significantly lower than 0.05 in this region (see Supplementary Materials).
Figure 4 shows a strong spatial correlation for the R* index, with values of approximately
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0.99 between locations separated by 5.6 km; the spatial correlation of R* indices between
locations separated by 214 km is 0.98; and the spatial correlation of R* indices between
locations separated by 590 km is 0.95 (see Figure 4).

3.4. SS Subregion
3.4.1. Results Obtained for the R10 mm Index

Among the results shown in Table 1, it is worth highlighting that the α parameter is
significantly equal to 1, which indicates that the occurrence of rainfall exceeding 10 mm
decreases with time. Another observed result is that the longitude coefficient significantly
explains the variability of the R10 mm index, which is negative and therefore increases in
value when moving westward in the subregion. This behavior can be observed by analyzing
the estimated surface for the R10 mm index in the year 1991, as presented in Figure 2, which
shows higher relative frequencies ranging from 0.08 to 0.14 in the western SS subregion.
At the eastern portion of the subregion, the relative frequency is lower, varying from 0.04
to 0.08. Additionally, this behavior presents little temporal variability (see the space–time
behavior of the R10 mm index in the Supplementary Material). This region is under the
influence of a semiarid climate, with generally low rainfall values [19,86,89]. The wet
season occurs between December and February. The main atmospheric systems causing
maximum seasonal rainfall over the region are the SACZ [71,72] and UTCV. Figure 6 shows
a spatial deformation in the inlands of Bahia state, indicating that the spatial correlation
function is anisotropic. From a topographic perspective, a potential explanation for this
deformation over this particular region is the fact that it is located in the Mangabeiras
Plateau and the Goiás Serra Geral mountain range, which encompass a wide area west
of Bahia state with altitudes reaching up to 800 m. A positive trend in R10 mm values
can be observed for 1991, as shown in Figure 2. The spatial correlation of R10 mm indices
between locations separated by at least 4 km (minimum distance between gauges) is 0.99;
the spatial correlation of R10 mm indices between locations separated by 420 km (mean
distance between gauges) is 0.77; and the spatial correlation of R10 mm indices between
locations separated by 1326 km (maximum distance between gauges) is 0.43 (see Figure 4).

3.4.2. Results Obtained for the R20 mm Index

The results shown in Table 2 indicate that the α parameter is significantly smaller than
1, which in turn suggests that the occurrence of rainfall exceeding 20 mm is decreasing
over time. This result raises concerns since this region already presents low precipitation
rates [19,21]. The results were similar to those found for the R10 mm index, with the
longitude coefficient significantly explaining the variability of the R20 mm index, which
is also negative and therefore indicates increasing values in the western portion of the
subregion. This portion comprises part of the MATOPIBA (Maranhão, Tocantins, Piauí and
Bahia states) region, which is widely covered by soybean croplands [90]. The positive trend
in R20 mm index values can be observed for the year 1991 in Figure 2, which shows that
the higher relative frequencies range from 0.04 to 0.06, while in the eastern portion of the
subregion, they vary from 0.02 to 0.04. The behavior of the spatial correlation function is
similar to that found for the R10 mm index, which was described in the previous paragraph.

3.4.3. Results Obtained for the R* Index

The α parameter is significantly smaller than 1, which indicates that the occurrence of
rainfall events exceeding the 95th percentile decreases with time. Figure 5 shows the estimates
for the R* index in the year 1991, when its values varied smoothly at approximately 0.052. The
spatial and temporal behavior of this index can be observed in the Supplementary Materials
section. Neither latitude nor longitude were significant in explaining the variability of the
R* index, which indicates that its spatial dependence is dictated by the spatial correlation
function (see Table 3). It is also noteworthy that the relative frequency of rainfall exceeding the
95th percentile from 1980 to 1987 is significantly larger than 0.05. For the years from 2000 to
2010, however, R* is significantly lower than 0.05 in this region (see Supplementary Materials).
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Figure 4 shows a strong spatial correlation for the R* index, with values of approximately
0.99 between locations separated by 4 km; the spatial correlation of R* indices between
locations separated by 420 km is 0.96; and the spatial correlation of R* indices between
locations separated by 1326 km is 0.89 (see Figure 4).

3.5. SC Subregion
3.5.1. Results Obtained for the R10 mm Index

Among the results obtained for the SC subregion, it is worth highlighting that the α
parameter is significantly lower than 1, indicating that the occurrence of rainfall exceeding
10 mm decreases with time. Another important result refers to the coefficients associated
with latitude and longitude, which were not significant in explaining the variability of
the R10 mm index. Thus, spatial variability is explained solely by the spatial correlation
function (see Table 1). Figure 2 shows the estimated surface for R10 mm values in the
year 1991. The highest relative frequencies occur in the eastern portion of the subregion,
with values ranging from 0.10 to 0.14. On the other hand, the variability in the relative
frequency in the western portion varies from 0.04 to 0.10. The SC subregion comprises the
southern coast of Bahia state, where rainfall does not vary much throughout the year but
higher volumes are registered in November. The wet season in this region occurs during
summer [21]. Rainfall is mainly modulated by the SACZ [71,72]. The behavior of the relative
frequency surface of rainfall exceeding 10 mm presents some temporal variability (see the
space–time behavior of the R10 mm index in the Supplementary Material). In Figure 6,
one can notice a spatial deformation at the southern portion of the region, indicating that
the spatial correlation is anisotropic. The topographical explanation is analogous to that
of the NC region, since both subregions are relatively close to the previously described
plateaus and topographic features. The spatial correlation of R10 mm indices between
locations separated by at least 5 km (minimum distance between gauges) is 0.99; the spatial
correlation of R10 mm indices between locations separated by 192 km (mean distance
between gauges) is 0.72; and the spatial correlation of R10 mm indices between locations
separated by 474 km (maximum distance between gauges) is 0.45 (see Figure 4).

3.5.2. Results Obtained for the R20 mm Index

The results obtained for the R20 mm index are similar to those referring to the R10 mm
index. For example, the α parameter is significantly lower than 1, indicating that the occur-
rence of rainfall exceeding 20 mm decreases with time. Similarly, the coefficients related
to longitude and latitude were not significant, and thus spatial variability is explained
solely by the spatial correlation function (see Table 2). However, the behavior of the spatial
correlation function is different for the R20 mm index. The spatial correlation of R20 mm
indices between locations separated by at least 5 km is 0.95; the spatial correlation of
R20 mm indices between locations separated by 192 km is 0.14; and the spatial correlation
of R20 mm indices between locations separated by 474 km is 0.01 (see Figure 4).

3.5.3. Results Obtained for the R* Index

The α parameter is significantly lower than 1, which indicates that the occurrence
of rainfall events exceeding the 95th percentile decreases with time. Figure 5 shows
that the estimates for the R* index in 1991 vary smoothly at approximately 0.052. In the
Supplementary Materials section, one can observe the spatial and temporal behavior of this
index. Neither latitude nor longitude was significant in explaining the variability of the R*
index, and therefore, it is explained solely by the spatial correlation function (see Table 3).
Figure 4 shows a strong spatial correlation for the R* index, with values of approximately
0.99 between locations separated by 5 km; the spatial correlation of R* indices between
locations separated by 192 km is 0.96; and the spatial correlation of R* indices between
locations separated by 474 km is 0.92 (see Figure 4).
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4. Conclusions

Studies analyzing extreme precipitation events are of uttermost importance, especially
because of the potential impacts caused by such events. The objective of this study was
to model the number of days with precipitation exceeding 10 mm, 20 mm and the 95th
percentile in various regions of Northeast Brazil by using a statistical model for space–time
counting. Through this approach, it was possible to analyze the frequency of extreme
rainfall events while also considering temporal and spatial variability in NEB. Overall,
the results indicate that the estimates for the occurrence of extreme events depend on the
studied period and location. The eastern coast was the NEB region with the highest count
of events. The semiarid region, on the other hand, presented the lowest count. In 1991, the
occurrence of rainfall exceeding 10 mm/day varied from 16% to 20% on the eastern coast of
the NC subregion. In the semiarid SS subregion, in the same year, the occurrence of rainfall
exceeding 10 mm/day was as low as 8%.

By analyzing the results found in this study, we can conclude that the adequate use
of the proposed statistical method for space–time counting is promising, with reliable
estimations of the frequency of occurrence of extreme precipitation in NEB. The results
retrieved by the model were capable of representing the spatial and temporal variability of
extreme rainfall in NEB. The results of the space–time analysis of the extreme frequency
of rainfall in the Northeast Region of Brazil have several practical applications. They can
be used to assist decision makers on a wide range of precipitation-related issues. For
example, they can be used to help design stormwater drainage systems that can handle
expected precipitation, or to identify areas that are associated with a high risk of natural
disasters such as floods and landslides. Furthermore, the results can be used to help water
resource managers plan for the effects of extreme rainfall on the region’s water supply.
It can contribute to identify areas with a high probability of occurrence of water scarcity.
The information can also be used to help farmers plan their crop cycles and irrigation
practices. Contributing to optimizing crop yields and minimizing losses due to drought
or flooding. In general, we strongly believe that the results found in this study can aid in
the monitoring and management of water resources by providing crucial information for
the formulation of public policies in Northeast Brazil regarding planning, adaptation and
mitigation in the face of the risks associated with extreme events, particularly regarding
vulnerable populations.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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