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Abstract: The treatment of polluted industrial flow remains a relevant topic for the purpose of
sustainable development and improvement of the general state of the environment. The removal of
particulate matter, and especially their fine and ultra-fine fractions, from the gas flow, is an urgent
task, but it poses many challenges and demands for purification technology. This paper presents
the results of the first stage of the research using a newly developed cleaning device operating by a
complex principle, which consists of a new generation two-stage centrifugal filtration device and an
electro-filter. The rate of air flow was varied from 0.3 to 1.16 m/s at the inlet and corresponds to an
air flow yield of 53 m3/h to 205 m3/h. The maximum pressure drop at an air flow of 255 m3/h is
26 Pa. Research has shown that the efficiency of removing ultra-fine particulate matter is up to 99.7%
for particles 0.3–0.5 µm in size at 200 m3/h of the air flow rate.

Keywords: gas flow; fine- and ultra-fine; particulate matter; electrostatic; removal efficiency

1. Introduction

Particulate matter emissions are one of the most pressing problems, and their size
is growing. In order to achieve ever higher air quality standards, additional attention is
paid to the characteristics of particulate matter pollution [1,2]. Particulate matter less than
5 µm in diameter (fine particulate matter (FPM)) is very harmful to human health because
it readily enters and accumulates in the lungs and respiratory tract. Long-term exposure to
dusty air inhalation results in damage to the respiratory tract. Pollutants affect not only
lung tissue but also the entire human body, so a person can develop pneumoconiosis and
so on, and can cause eye and skin damage [3].

Air pollution is a growing concern due to its harmful effects on human health and the
environment. One of the most significant contributors to air pollution is ultrafine particulate
matter, which can penetrate deep into the lungs and cause various health problems. Electro
cyclone-filters have recently emerged as a promising technology for the removal of ultrafine
particulate matter from gas streams. In this study, we investigate the gas flow parameters
and fractional removal efficiency of a newly developed electro cyclone-filter. The study
aims to understand the performance of the filter and optimize its design for better efficiency.
To achieve this goal, we used numerical simulations and experiments to analyse the flow
dynamics of the gas stream and the removal efficiency of the filter. This study contributes
to the development of advanced air pollution control technologies and provides valuable
insights for the design and optimization of electro cyclone-filters. The study draws on
recent research in the field of fluid dynamics and environmental engineering, including
references such as [4–9].

Gas stream cleaning technologies are applied according to the characteristics of the
contaminants and the parameters of the installation process line. Many configurations
include conventional cyclone-type devices that are as efficient as 90 percent for particles
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smaller than 5 microns [10,11]. The installation of an electrostatic apparatus is exclusively
suitable for fine cleaning or recovery part of the process; however, it has many limita-
tions as an independent device, and operation of the electrical system requires special
competence [12–14].

A multi-channel cyclone has been used relatively recently for the effective cleaning
of polluted gas flows from high concentrations of coarsely dispersed particulate matter.
However, the centrifugal forces used in the cyclone are not sufficient to settle the finely
dispersed particulate matter moving in the turbulent air flow. Finely dispersed particu-
late matter is effectively cleaned using electrostatic air cleaning filters [12–15]. However,
electrostatic filters that can work in the high concentration range, due to the large distance
between the charging and deposition electrodes, are bulky and, therefore, not suitable for
small flows and mobile devices [16–18]. There are studies on the application of traditional
treatment plants in the purification of a gas flow with specific surrounding conditions and
particle agglomeration, which complicates the maintenance of such technologies [19–21].
By exploiting the positive properties of the multi-channel cyclone and the electrostatic filter,
effectively using them as prerequisites for improving both purification principles, it is pos-
sible to create an apparatus to effectively precipitate high-concentration coarse–dispersed
particulate matter. The multi-channel cyclone reduces the load on the electrostatic filter by
collecting most of the particulate matter. Electrostatic filters with a reduced gap between
the charging and deposition electrodes can then be used to clean slightly polluted air. This
assumption makes it possible to reduce the size of the electrostatic filter, making it accept-
able to a much wider range of users. When the component of the tangential air flow rate is
properly used after leaving the multi-channel cyclone, it helps to align it according to the
direction with the movement of the charged particle in the electric field of the electrostatic
filter. It is possible to increase the rate of movement of the charged particle in the electric
field while reducing the settling time.

The degree of purification of the gas stream using traditional methods does not allow
the required level of purification. More and more works are presented for particulate matter
capture. One part of the work is directed to the purification of contaminated gases from
power sources, both on a large and small scale. For example, emissions from different types
of boilers for burning solid fuels are studied. Flow dilution technologies are studied to
reduce the concentration of particulate matter [22]. There are scientific works in which
liquid fuels from renewable sources are also used. Experimental data have been obtained
under domestic conditions in the combustion of edible oil [23].

The study of electrostatic filters is particularly common due to the large number of
variations when the electric field characteristics change, as well as in the study of particle
accumulation and agglomeration.

As mentioned earlier, to achieve high efficiency and reduce to the necessary levels
of particulate matter concentrations, it is necessary to use several methods by principle
of operation, which can be coordinated with each other. Such a process has been studied
using dry and wet cleaning, as well as the introduction of additional elements acting on
the pollutants in the gas stream. As a basis, it is assumed that the primary purification is
necessary to reduce the load on all subsequent stages. In subsequent stages, they can be
used as fibre filters [24] and apparatuses with liquid solutions that spray this reagent into the
gas stream [25]. In all cases, it is necessary to provide the limitations applied to each of the
methods, in order not to aggravate the situation and not to create secondary contamination.

This work is dedicated to the initial stage of research to create a new design of air
cleaning device for fine- and ultra-fine particulate matter that is suitable for use in a wide
range of concentrations, working conditions, chemical-physical nature, and dispersion
composition of these particles.

Overall, the study provided valuable information on the gas flow parameters and
fractional removal efficiency of the newly developed ECF system for ultrafine PM removal
and its potential applications for air pollution control.
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The purpose of this work is to carry out the initial testing of the experimental bench
and to study the aerodynamic parameters, such as air flow rate and pressure loss in the
system, and to determine the efficiency of removing individual fractions of ultra-fine
particulate matter for further analysis of this apparatus.

2. Materials and Methods

Based on the results of previous studies [23,26], a model of a multi-channel spiral
cyclone-electrostatic filter was developed. The initial version of the mock-up was produced
under laboratory conditions to study the flow characteristics of the gas flow and the
fractional trapping efficiency of the particles. The main part of the device is shown in
Figure 1. Only a schematic diagram of the device is provided, which describes the operation,
as a European patent application is being prepared for this device, which will be submitted
for consideration in the near future.
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curvilinear elements, (5) peripheral gas flow, (6) transit gas flow, (7) electrostatic deposition zone, 
(8) cleaned air duct. 
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centration determination was based on a class 3B laser source with a wavelength of 775–
795 nm and a power of 90 mW. The efficiency of the calculations was based on ISO 21501, 
that is, a 50% probability for particles with a size of 0.3 µm were determined with a 100% 
probability for more than 0.45 µm. 

A Palas RGB 1000 mobile particulate generator was chosen as the regulated particu-
late source. The device was used to set the parameters for the aerosol feeding in the air 
duct immediately after the fan was pushed toward the cleaning apparatus. Glass particles 
were used in the study. To calibrate particle emission, the speed of the working drum 
rpm, and the feed corkscrew, and the compressor pressure was equal to 3 bar. The average 
inlet concentration of particulate matter in the gas flow was 5.4 µg/m3. 

To calculate the mass concentration (C) in kg/m3 of particulate matter, a conversion 
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is assumed tо be 1500 kg/m3, and R is the particle radius, m, fоr each case; this radius in 
µm is equal to 0.3, 0.5, 1.0, 2.0, 5.0, and 10.0. 

An experimental mock-up bench with test points for aerodynamic parameters and 
particulate matter concentration tests is provided in Figure 2. 

In the first stage of the investigation, studies of the aerodynamic parameters of the 
flows were carried out in the presence of only part of the electrostatic filter. Studies of the 
air flow rate generated by the installed tubular fan and the distribution of air flow rate in 
the duct at different fan rates (from 10 Hz to 20 Hz) were performed. 

Figure 1. Schematic diagram of an electro cyclone-filter equipped with (1) inflow pipe, (2) inlet to
the cyclone channel, (3) centrifugal settling zone, (4) multi-channel cyclone-filter zones bounded by
curvilinear elements, (5) peripheral gas flow, (6) transit gas flow, (7) electrostatic deposition zone,
(8) cleaned air duct.

The experimental stand of an electro cyclone-filter consists of a centrifugal fan of
variable capacity with a precise frequency converter connected in series with the gas flow
inlet pipe. The particulate matter is injected into the gas inlet pipe by an automatic dosing
dispenser. The gas flow enters through the confuser into the cyclone primary channel in the
centrifugal separation zone. The flow makes a full lap before flowing into the multi-channel
cyclone-filter zone, which is made from the closed contour (channel) by the elements of
semi-rings. The flow moves around the deposition contour and divides into peripheral and
transitional flow at the edge of each element of semi-ring. The primary (centrifugal) and
secondary (multi-channel) separation chambers of the cyclone precipitate the particulate
matter by centrifugal forces and the centrifugal-filtration phenomenon accordingly, and the
particulate matter goes down through the slits in the bottom to the apparatus hopper for
accumulation (Figures 1 and 2).

In experimental studies, the following equipment was used to study gas flow dy-
namics: gas flow rate and static pressure are determined by thermocouples, Testo (Testo
SE & Co. KGaA, Titisee-Neustadt, Germany), range of rate measurements: 0.01–30 m/s,
deviation ± 0.05 m/s, and a differential pressure gauge DSM-1 (JSC Teltonika, Vilnius,
Lithuania), range of measurements: 0–20,000 kPa; deviation ± 5 Pa.
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Figure 2. An experimental electro cyclone bench with (1) air flow fan, (2) particle dispenser, (3) air 
flow rate/pressure test point in the contaminated flow duct, (4) particle number concentration point 
in the duct, (5) duct transition to mixer, (6) cyclone-filter part of the purifier, (7) hopper of the puri-
fier, (8) electrostatic filter part of the purifier, (9) outlet duct of the purified air, (10) test point of the 
air flow rate/pressure of the contaminated in the flow duct. 
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In the second stage, both parts of the device, the cyclone and the electrostatic filter of 
both zones, were connected in series and installed on a common experimental bench. The 
obtained research results are presented in Figure 3. 

Figure 2. An experimental electro cyclone bench with (1) air flow fan, (2) particle dispenser, (3) air
flow rate/pressure test point in the contaminated flow duct, (4) particle number concentration point
in the duct, (5) duct transition to mixer, (6) cyclone-filter part of the purifier, (7) hopper of the purifier,
(8) electrostatic filter part of the purifier, (9) outlet duct of the purified air, (10) test point of the air
flow rate/pressure of the contaminated in the flow duct.

A concentration of each fraction of particulate matter was performed using a numerical
particle counter (Fluke 985). The fraction levels were determined in six size ranges: less
than 0.3 µm, 0.5 µm, 1.0 µm, 2.0 µm, 5.0 µm, and 10.0 µm.

The sampling rate is 0.1 cfm (2.83 L/min). The device counting efficiency is 50% for
particles of 0.3 µm size and 100% for >0.45 µm size particles. Zero count level is equal to
1 count/5 min. The results were repeated until there was a repeatability and a difference
between the minimum and maximum of no more than 5%.

Each test was carried out under the same meteorological conditions, placing the
measuring equipment at significant points according to the diagrams in Figure 2. The
concentration determination was based on a class 3B laser source with a wavelength
of 775–795 nm and a power of 90 mW. The efficiency of the calculations was based on
ISO 21501, that is, a 50% probability for particles with a size of 0.3 µm were determined
with a 100% probability for more than 0.45 µm.

A Palas RGB 1000 mobile particulate generator was chosen as the regulated particulate
source. The device was used to set the parameters for the aerosol feeding in the air duct
immediately after the fan was pushed toward the cleaning apparatus. Glass particles were
used in the study. To calibrate particle emission, the speed of the working drum rpm, and
the feed corkscrew, and the compressor pressure was equal to 3 bar. The average inlet
concentration of particulate matter in the gas flow was 5.4 µg/m3.

To calculate the mass concentration (C) in kg/m3 of particulate matter, a conversion of
the numerical concentration of particles was used in accordance with Equation (1):

C = N·ρ·4
3
·π·R3, (1)

where N is the number of aerosol particles of a given size in m3 of air volume; by default
this volume is equal to 1 m3. ρ is the particle density in kg/m3, the density of glass particles
is assumed to be 1500 kg/m3, and R is the particle radius, m, for each case; this radius
in µm is equal to 0.3, 0.5, 1.0, 2.0, 5.0, and 10.0.

An experimental mock-up bench with test points for aerodynamic parameters and
particulate matter concentration tests is provided in Figure 2.

In the first stage of the investigation, studies of the aerodynamic parameters of the
flows were carried out in the presence of only part of the electrostatic filter. Studies of the
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air flow rate generated by the installed tubular fan and the distribution of air flow rate in
the duct at different fan rates (from 10 Hz to 20 Hz) were performed.

The aim of these studies was to determine the optimal conditions for uniform distri-
bution of the flow throughout the cross-section and to achieve a suitable air flow rate for
ionizing and settling particulate matter in the installed electrostatic filter, and thus remov-
ing them from the polluted air flow. In the second stage, the centrifugal and multi-channel
cyclone-filter part was connected in series with the electrostatic filter part to study the aero-
dynamic parameters and the settling efficiency of individual fractions of particulate matter.

3. Results
3.1. Aerodynamic Research in Apparatus System

In the first stage, the air flow rate was investigated only in the section of the electrostatic
filter. It is known that the optimal rate of gas movement into this type of filter must be
about 1 m/s in order to achieve a suitable rate of movement of the particles to electrify
them and settle on the deionizer. In addition, flow-equalizing grids were installed in the
duct, thus achieving an even distribution of air flow in the cross-section. Air flow rate
was: in the periphery 0.30–1.16 m/s (gas flow rate from 53 to 205 m3/h), and in the centre,
1.08 m/s (gas flow rate 190 m3/h and more). The rate of air flow at the outlet changed,
and reached: in the periphery 1.31–1.90 m/s (gas flow rate from 231 to 335 m3/h), and
in the centre, 0.47 m/s (83 m3/h). The average gas flow rates were approximately: inlet—
150 m3/h, outlet—215 m3/h. In this case, the average air flow rate in a single electrostatic
deposition zone reached 1.04 m/s, which satisfies the conditions. At different fan speeds
in the range of 10–20 Hz, the aerodynamic drag varied from 2 Pa to 26 Pa; in the optimal
case (15 Hz), the aerodynamic drag reached 11 Pa. The recalculated air flow rates at the
fan rate are: 10 Hz—55 m3/h, 12 Hz—103 m3/h, 15 Hz—165 m3/h, 18 Hz—218 m3/h,
20 Hz—255 m3/h.

In the second stage, both parts of the device, the cyclone and the electrostatic filter of
both zones, were connected in series and installed on a common experimental bench. The
obtained research results are presented in Figure 3.
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Figure 3. Variation of the air flow rate depending on the fan rate in the intake and exhaust air ducts.

3.2. Finely Dispersed Particulate Matter Removing Efficiency

In the third stage of the investigation, the efficiency of removing finely dispersed
particulate matter from the air was evaluated. Particle number concentrations were anal-
ysed in the inflow and outflow using a particle counter. Irrespective of the optimal case
determined, when evaluating the aerodynamic parameters, the cases were studied at
different fan speeds, that is, for the flow rate of the supplied air stream, and also in the
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case of different contamination of the supplied air flow with particulate matter before the
cleaning device.

At the optimal flow rate of the air flow (fan rate 15 Hz), we evaluated the concentrations
of particulate matter in the entire cross-section (5 points). In other cases of the study, the
results obtained are presented in Figure 4.
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The fractional efficiency of particulate matter sedimentation showed specific tenden-
cies of the purification process. According to the particle matter removal values, it can
br clearly seen that, at a flow rate of 55 m3/h, there is unfinished sedimentation, and, in
this case, the size of the particles does not matter. However, even in this case, the removal
efficiency varies in the range of 57–77%. Increasing the gas flow rate by slightly less than
twofold affected the removal efficiency of particulate matter by more than 2.5 times on
average. This trend was maintained to an air flow of 255 m3/h. In some cases, for example,
for particles of 5 µm at a gas flow rate that changed from 165 m3/h to 218 m3/h, efficiency
values decreased, but not by more than 2%. When looking at the removal data of 10 µm
particulate matter, the data changed quite critically, due to the very small count of particles
in the clean gas flow. Thus, even a single particle would change the removal efficiency
by several tens of percent. Considering all research cases only from the point of view of
cleaning efficiency, the priority variant corresponds to the nominal fan capacity, that is,
at the flow rate of 255 m3/h. However, when evaluating the optimal mode under real
operating conditions, it is necessary to take into account energy costs and the uniformity of
catching particles for all fractions.

The following deposition efficiency was achieved: for particles of 0.3 µm size—96.5%,
0.5 µm—96.8%, 1.0 µm—96.8%, 2.0 µm—95.5%, 5.0 µm—92.3%, and 10.0 µm—50.0%. In
this case, the number of particles with a size of 0.3 µm before cleaning reached an average of
43,742 pieces. After cleaning, there were 1546 pieces, and 5 µm particles totaled 17.3 pieces
and 1.3 pcs., respectively.

In evaluating the average removal efficiency of particulate matter, the 165 m3/h and
255 m3/h versions differ by 3%, with the latter having a value of 96.7 percent. In the closest
other cases, the average efficiency is reduced by more than 10%, and in the case at 55 m3/h,
the average efficiency is just under 70%.

The removal efficiencies of ultrafine particulate fractions are: 0.3 µm—from 71.5% to 99.7%,
0.5 µm—from 70.3% to 96.0%, 1.0 µm—from 69.8% to 96.2%, 2.0 µm—from 70.2% to 95.1%,
5.0 µm—from 77.3% to 96.9%, 10 µm—from 57.1% to 97.2%.
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4. Discussion

As expected, the optimal application case for the complex device was up to 15 Hz
when the flow rate of the outgoing flow was not higher than 0.5 m/s, which, considering the
resistance, did not exceed the allowed rate in the electrostatic filter above 1 m/s (Figure 5).
Aerodynamic resistance values, even at the highest selected fan rate (20 Hz), did not exceed
90 Pa, which is rational and a great advantage compared to other cleaning devices of similar
performance, considering the energy consumption for air cleaning using this device.
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Figure 5. Dependence of the aerodynamic resistance of the apparatus on the fan rate during the test
time rate.

As mentioned earlier in the description of the results, other characteristics should also
be taken into account when evaluating the different modes of operation of the cleaning
technologies in their actual operation. Among such characteristics, one of the most im-
portant, the static pressure drop in the system after the gas flow purification apparatus, is
usually presented as aerodynamic resistance. Its smallest value helps to save a significant
part of the energy of the flow, so, in this case, the consumption of electricity will be minimal.
However, the reduction of resistance is often controlled by reducing the velocity of the gas
flow in the apparatus, which uses the principles of the centrifugal method and leads to a
decrease in the efficiency of particle collection. Thus, it is necessary to evaluate the balance
of such reciprocal parameters as capture efficiency and aerodynamic resistance. Recently, it
has been generally accepted that different types of filters should not create more resistance
to flow than 50 Pa, which is especially important in the green course, including reducing
energy consumption in processes. In this study, in three out of five cases, the pressure drop
did not exceed 50 Pa for 10 min of the study. Therefore, these options can be considered an
energy priority, which may not have anything to do with cleaning efficiency. Therefore, it
is worth deciding, on a case-by-case basis, what to prioritize from the perspective of who
will operate the technology.

The results showed that the existing model design is promising for further scientific
evaluation. The efficiency of removal of ultra-fine fractions of particles from the air flow
reaches approximately 70%, and the average value of the removal efficiency of finely dis-
persed particles from 1 µm to 10 µm in size reaches more than 85%. In the cleaned air
stream, the fraction of particles reached the value calculated from the numerical concentra-
tion: 0.3 µm—0.58 µg/m3, 0.5 µm—0.37 µg/m3, 1.0 µm—0.97 µg/m3, 2.0 µm—1.71 µg/m3,
5.0 µm—2.0 µg/m3 and 10 µm—0.55 µg/m3.

The results of the deposition prove the distribution of the optimal flow rate in air
volumes ranging from 165 m3/h to 255 m3/h. However, particularly fine particles are
characterized by the fact that a flow rate above 0.52 m/s reduces their trapping. This is
because there is insufficient time for the particle to be in the ionization zone and because the
particle with a small charge flies past the deposition electrode and is not captured. Another
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reason may be the secondary entrainment of particles from the deposition electrode itself
as a result of the dynamic flux force exceeding the sum of electric and adhesion forces of
the particle with the electrode surface.

This initial phase of research allowed us to study the cases of aerodynamic parameters
and the achievable removal efficiency of individual fractions of particulate matter. In future
work, research will be carried out focussing on particles of different natures, and not only
aerodynamic but also electrostatic parameters of the experimental stand will be controlled.
These results will allow the cleaning process to be managed in a complex manner and
achieve greater cleaning efficiency by selecting optimal work indicators.

5. Conclusions

The intermediate results obtained allowed the installation of an experimental stand
for preliminary research. The design of the air cleaning device was tested in preliminary
studies, the characteristic aerodynamic parameters were determined, and the control
system was installed. The results obtained allowed us to determine the optimal cases for
the application of the air cleaning device. The latter cases, as the main ones, will be tested
as essential to minimise research time and pay more attention to the evaluation of the
characteristics of the pollutant, the deposition process, and the applications possibilities.

1. The optimal fan rate was 15 Hz, which corresponds to an air flow of 165 m3 per hour.
2. The pressure drop does not exceed 90 Pa at a flow rate in the inlet air duct of 2.35 m/s;

when the rate drops to 1.70 m/s (fan rate 15 Hz), the pressure drop is 46 Pa.
3. The optimal flow rate in the inlet air duct for the deposition of ultra-fine particulate

matter is 1.90 m/s, at which particles of 0.3–0.5 µm in size are captured with an
efficiency of more than 96.5%.

4. The average efficiency of trapping particles of sizes 0.3 µm to 10 µm at optimal flow
parameters exceeds 93%.
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23. Chlebnikovas, A.; Selech, J.; Kilikevičius, A.; Przystupa, K.; Matijošius, J.; Vaišis, V. Modeling of Two-Phase Flow Parameters of a
Multi-Channel Cylindrical Cyclone. Energies 2022, 15, 4690. [CrossRef]

24. Poongodi, K.; Murthi, P. Development of Fibre Reinforced Green Mortar Made with Waste Brick Material as Fine Aggregate for
Sustainable Masonry Construction. Mater. Today Proc. 2022, 68, 1575–1580. [CrossRef]

25. Agbadede, R.; Pilidis, P.; Igie, U.L.; Allison, I. Experimental and Theoretical Investigation of the Influence of Liquid Droplet Size
on Effectiveness of Online Compressor Cleaning for Industrial Gas Turbines. J. Energy Inst. 2015, 88, 414–424. [CrossRef]
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