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Abstract: Atmospheric synoptic weather patterns have a significant impact on the concentration,
dispersion, and transportation of air pollution in various regions and times around the world. To
assess the impact of atmospheric synoptic weather patterns and long-range air mass transportation,
we used weather classification techniques from the BP training model and the HYSPLIT model. Our
research uncovered four weather conditions linked to PM10 concentration categories ranging from
normal to extreme. Weather conditions 3 and 4 are the most significant conditions supporting the
occurrence of extreme concentration events that are heavily influenced by anti-cyclones. Despite
weather conditions influencing high concentrations, 60% of long-distance air mass transport to
Secunda from Mpumalanga province increased to extreme PM10 concentrations. Furthermore, long-
term weather shifts have been observed to positively impact reducing the concentration of PM10

extreme events.
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1. Introduction

Atmospheric synoptic weather parameters play a significant role in determining the
transportation, dispersion, and concentration of air pollutants in different geographical
areas [1]. Various parameters play different roles; however, wind direction and speed,
turbulence, and stability have the greatest influence on pollutant dispersion in the atmo-
sphere [1]. In the presence of calm and stable weather conditions, surface concentrations
rise due to weak turbulence dispersing pollutants both vertically and horizontally. In
addition, air pollutants disperse rapidly in highly turbulent winds, reducing pollutant
concentrations [2,3]. Since the 1900s, scientists have been studying the effects of atmo-
spheric weather changes on air pollution. Different studies repeatedly reported similar
findings, that changing atmospheric weather conditions have a significant effect on seasonal
movements and the concentration of air pollution in different regions, particularly in areas
sensitive to air pollution [4]. According to the majority of studies, Asia and Africa are
among the countries most affected by high levels of particulate matter (PM) and surface
ozone (O3) [5]. Despite geographical differences, air pollution concentrations are affected
by weather circulation; for example, in India, the country is heavily affected by O3 concen-
trations in urban areas during the summer season, while the air is affected by PM2.5 and
PM10 during the winter season [5]. On other hand, in China, dust storms occur in cities
located near the desert regions as a result of increased wind intensity, particularly during
the dry season [6]. In addition, according to [7], persistent mesoscale convection and an
active Red Sea trough situation both contribute to and initiate dust events and increase
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PM10 high-concentration events in Middle Eastern urban cities. In terms of the impact of
seasonal weather changes on air pollution, since weather varies by geographical location, it
is critical to assess the influence of synoptic weather system meteorology to understand
how local weather influences extreme air pollution events, particularly in the world’s major
cities [8,9].

Sub-Saharan Africa (SSA) continues to have high levels of air pollution in comparison
to the rest of the world [10]. Urbanization, industrialization, and population growth
have all been linked to a worsening trend in air quality in SSA countries such as South
Africa [11]. South Africa’s heavy reliance on coal-fired power generation, heavy industries,
and mining activities contributes significantly to increasing air pollution [12]. Several air
quality management policies and strategies have been implemented in South Africa to
address deteriorating air quality. These include designating air pollution-prone areas as
priority areas for the effective management of scarce air quality management resources,
identifying and controlling priority pollutants, and enacting legislation to reduce industrial
emissions [11–13].

Several studies have been carried out to investigate the effect of weather on air quality
in South African cities. Research shows that synoptic weather changes influence extreme
weather events as well as inter-annual and decadal climate variability in South Africa [14].
This means that, despite experiencing relatively dry and warm conditions at times, the
country occasionally experiences years that are unusually wet and cool in comparison
to the long-term average [14,15]. This type of variability is a natural part of the Earth’s
climate dynamics, and it is caused in part by oscillations and complex configurations of
global and regional climate systems working together to produce weather [15]. Based on
weather changes in South Africa, it is critical to investigate pollution trends and how they
are affected by these changes, particularly in the most vulnerable cities such as Secunda.
Secunda, in the Highveld priority area, has the highest concentration of particulate matter
in South Africa [16]. The Highveld priority area is one of the world’s top five air pollution
hotspots, according to a NASA report of 2018, while Secunda has been reported to have
the highest concentrations of PM10, SO2, and NO2 in more than 70 countries, including
Norway and Portugal [17].

Various studies agree about the intensity and contribution of Secunda concentration
in South Africa. For example, [18] observed that the highest diurnal concentration level
of hourly averaged ambient PM2.5 was recorded in Secunda city, and suggested that
Secunda city has the highest concentration of PM compared to other areas in Mpumalanga.
Furthermore, [19] suggests that Secunda City does have the highest concentration of
PM, and it has long contributed to the country’s extreme PM concentration for a very
long time. Despite its significant contribution to global air quality, little research has
been conducted to investigate the influence of local and regional weather circulations in
Secunda’s extreme PM10 concentration. For the first time, this study examines the effect of
atmospheric synoptic weather patterns and long-range transportation of air mass on the
extreme PM10 concentration events over a long period of time (2009–2022). The aims of
our study are: (a) to analyze the spatial and temporal distribution pattern of ground PM10
concentration in Secunda from 2009 to 2022; (b) to evaluate the proximity patterns linked to
the occurrence of extreme concentration; (c) to classify meteorological conditions of various
PM10 concentration levels using the BP neural network; (d) to verify the classification
results, and (e) to evaluate the contribution of long-range air mass transportation to the
occurrence of extreme concentration events.

2. Materials and Methods
2.1. Site Description

Figure 1 shows the location of Secunda city in the Mpumalanga province of South
Africa. It is roughly 80 miles (130 km) east of Johannesburg in an area with abundant coal
deposits and appropriate water supplies, and is home to South Africa’s second largest
oil-from-coal production plants. The city has a population of around 40,198 residents and



Atmosphere 2023, 14, 406 3 of 19

is predicted to grow to 205,005 by 2050. Secunda has a total area of 174.71 km2 and a
population density of 230 people per square kilometer [20].
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Figure 1. The location of Secunda in Mpumalanga province of South Africa. The red star shows the
location of the air quality monitoring stations, the yellow triangle shows the coal-fired power plant,
and the black-dot shows the location of the coal mines.

2.1.1. Data Collection and Analysis

The atmospheric meteorological weather data were extracted from ERA5 (ECMWF- Re-
Analysis) datasets [21,22], and the air quality and surface weather data were obtained from
the South Africa air quality information service (SAAQIS) [23]. Th Open air R package [24],
and the Grid Analysis and Display System (GrADS) were used for statistical analysis data
visualization [25]. Before the weather classification, weather data were calculated and
averaged based on seasonal trends to establish the overall synoptic weather patterns for
each season, and after that the application of the BP neural network model was applied to
classify weather conditions favorable for extreme concentration events.

2.1.2. Backpropagation (BP) Neural Network

The backpropagation (BP) neural network algorithm, which is a multi-layer feedfor-
ward network trained using the error backpropagation algorithm, is one of the most widely
used neural network models. Its learning rule is to use the gradient descent method, which
uses backpropagation to regulate the network’s weight and threshold values in order to
achieve the minimum error sum of squares [26,27].

The sample data for the BP training model were drawn from the main PM10 pollution
categories, which were determined based on the hourly, daily, and monthly, ground PM10
distributions in the study area. Monthly and daily mean values, including PM10 extreme
concentrations, were estimated for a 13-year period (2009–2022) in Secunda, to analyze
spatial distribution characteristics. The meteorological parameters considered in this study
include average relative humidity (RH), average wind speed (w/s), average zonal wind
component (U), average meridional wind vector (V), average sea level pressure (SLP),
average temperature (Tm), and average planetary boundary layer (PBL). The physical
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parameters primarily affecting extreme pollution were obtained as input parameters for
the BP training model by evaluating the relationship between ground PM10 concentrations
and meteorological parameters using the correlation coefficient (CC), which was calculated
as follow [28]:

CC =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)(yi − y)2

when n is the sample size, x is the PM10 concentration, y is the meteorological parameter,
and x and y are the averages of x and y.

2.1.3. Classification Method for the Meteorological Condition of PM10 Pollution Levels

Figure 2 depicts how the method used to classify weather conditions influences the
occurrence of extreme concentrations. The overall method used consisted of three major
aspects: (1) the correlation between meteorological conditions and PM10 concentration
categories, (2) classifier training using the BP neural network, and (3) classification using
the trained BP classifier [27,28]. The concentration was divided into four categories based
on the daily average concentration according to the South African air quality standards
(0–50: normal air quality; 51–100: moderate air quality; 101–200: extreme air quality; >201:
dangerous air quality). As a result, the meteorological conditions were classified into four
different levels related to the concentration category.
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Figure 2. Complete flowchart of the backpropagation (BP) neural network-based classification
method for meteorological conditions affecting PM10 pollution categories.

2.1.4. Relationship between Meteorology Patterns and Extreme Concentration of PM10

Table 1 shows the relationship between meteorological conditions and PM10 concen-
tration categories. A daily PM10 concentration of 0–50µg/m−3 is classified as Category
1 (C1), and the associated meteorological conditions are regarded as unfavorable for the
occurrence of extreme PM10 concentrations (WC1). A daily PM10 extreme concentration of
51–100µg/m−3 is classified as Category 2 (C2), and the associated meteorological conditions
are regarded as moderately favorable to the occurrence of PM10 extreme concentrations
(WC2). A daily PM10 concentration of 101–200g/m−3 is classified as category 3, and the
associated meteorological conditions are thought to favor the occurrence of extreme PM10
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concentrations (WC3). Finally, a daily concentration of more than 201g/m−3 is categorized
to be very suitable for the occurrence of extreme concentrations (WC4).

Table 1. The relationship classification between atmospheric meteorological variables and
PM10 concentration.

Weather Classification

Categories PM10 Concentration Level The Corresponding Weather
Condition

Category 1 0–50 Non-supportive
Category 2 51–100 Moderate supportive
Category 3 101–200 Very Supportive
Category 4 >201 Extreme supportive

2.1.5. Training

The Secunda city training model was developed after the sample data of BP training
model input parameters, including weather variables, were grouped together according
to the corresponding PM10 levels (shown in Table 1). Furthermore, in order to produce
good training module results, we selected nearby cities within a 100-km radius of Secunda,
developed the training module for each city, and compared the results with Secunda. The
classification performance of a single model was compared to that of other individual
models. The multi-model comparison aided in the development of a better understanding
of regional PM10 concentrations and the synoptic weather impact. The input layer, hidden
layer, and output layer of the BP neural network was used to train the classifiers. The
BP neural network was trained using signal forward propagation and error backward
propagation, with weight and threshold adjustments repeated until the learning and
training times were met, or the output error was reduced to an acceptable level. The number
of nodes in the input layer was determined by the number of input parameters (which in this
study was six), and the number of nodes in the output layer was determined by the number
of PM10 concentration categories (which is four in this study). The number of hidden layers
and nodes was carefully chosen based on the training error and classification accuracy. The
number of hidden layers and nodes was determined through comparative testing.

Using the No. 1 model as an example, comparison results revealed that one and
two hidden layers had classification accuracies of 65.6% and 87.3%, respectively. As a result,
increasing the number of hidden layers to two improved the training model’s performance.
Furthermore, the training error decreased as the number of hidden layer nodes increased;
however, when the number of hidden layer nodes became too large, the models modified.
The number of nodes in the first layer was set between seven and nine to save computing
resources while achieving optimal discriminability, and the number of nodes in the second
layer was set between eight and ten. The mean square error was used as the BP neural
network’s performance function. During the training process, each parameter was scaled
to (0, 1) using minimum-maximum normalization. The hidden layer and output layer
activation functions or transfer functions were logarithmic sigmoid transfer components
and linear transfer functions, respectively. The BP neural network’s training function was
gradient descent with momentum and adaptive learning rate backpropagation. The data
from a PM10 concentration period from 2009 to 2022 were used for training and validation
in this study. The obtained BP classifier gained the “knowledge” to answer the question
about the influence of meteorological conditions on PM10 pollution after training.

2.1.6. Classification

When a new meteorological parameter is supplied to the trained BP classifier, clas-
sification results can be obtained. For the PM10 extreme concentration, the classification
output would be 1, 2, 3, or 4, corresponding to non-supportive, moderate-supportive, very
supportive, and extremely supportive, respectively. For example, when new meteorological
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data arrive and are fed into the trained BP classifier, if the output is 1, it indicates that the
meteorological conditions are extremely unfavorable to the occurrence of extreme PM10
concentrations. The performance of the trained BP classifier was assessed both qualitatively
and quantitatively by comparing it to observations. The classification accuracy (the per-
centage of correct samples in the total number of samples) was calculated to quantitatively
validate the classification results. The classification result was correct when it matched
the observation; otherwise, it was incorrect. When both the classification result and the
observation are 1 the classification is correct.

2.1.7. Long-Range Transportation of Air Mass HYSPLIT Model

After finalizing the classification of meteorology weather in air quality, the HYSPLIT
model was applied to evaluate the effect of long-range transportation on extreme concen-
tration events in category 3 and category 4 (because these are the only categories with high
extreme events). HYSPLIT is a comprehensive system for simulating simple air parcel
trajectories as well as complex transport, dispersion, chemical transformation, and de-
position scenarios [29]. HYSPLIT remains one of the most extensively used atmospheric
transport and dispersion models [30]. Back trajectory analysis is a prominent approach to
understanding the origin and connection of air masses to sources and receptors [30]. The
HYSPLIT model employs the Lagrangian approach for advection calculations as trajec-
tories from the initial locations and by adding random components as turbulent eddies
for dispersion calculations as trajectories or air parcels move from their initial locations,
as opposed to the Eulerian method, which employs a fixed three-dimensional grid as a
reference to calculate air pollutant concentrations [31] Figure 3 shows the complete flow of
the HYSPLIT model from settings, input to output data.
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3. Results
3.1. Characteristics of Surface PM10 Concentration

Figure 4 depicts the monthly surface concentration comparison between Secunda and
other cities within a 100-km radius from 2009 to 2022. The difference between Secunda
concentration and that observed in other cities was strong between 2009 and 2014, then
decreased in 2015. Figure 5 depicts the hourly, daily, monthly, and seasonal PM10 concen-
trations in Secunda. According to Figure 5a hourly observation results, two concentration
peaks were observed during the morning hours (05:00–09:00 a.m.) and the other peak was
observed during the evening hours (17:00–22:00 p.m.). The concentration in these two
observed peaks exceeds 500 µg/m−3. Surprisingly this concentration trending occurred



Atmosphere 2023, 14, 406 7 of 19

throughout all observed years in all seasons. Figure 5c,d shows the monthly and seasonal
concentration, with low concentration observed during December, January, and February
months (during the summer season <50 µg/m−3), and high concentration in June, July,
and August (in winter season >100 µg/m−3).
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Figure 4. Overall monthly concentration between Secunda and other cities located within a range of
100km in the Mpumalanga province.
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Figure 5. Daily, hourly, monthly and seasonal concentration of PM10 observed at Secunda city.

3.1.1. Atmospheric Regional and Local Weather Circulation

Figure 6 depicts seasonal synoptic weather circulation during the summer, autumn,
winter, and spring seasons observed from 2009 to 2022 using ERA5 ECMWF synoptic
weather data and ground observation weather data. Figure 7 depicts seasonal local weather
conditions observed at Secunda station. As a result, there are two atmospheric weather
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circulation systems in South Africa that control the region and the local weather conditions
throughout the year. The first is controlled by tropical low-pressure, which normally occurs
during the summer season (December, January, and February) and causes rainy, warm, and
humid weather with a strong breeze with an average temperature of 25 ◦C. During the
winter season, the other synoptic weather system occurs when the South Atlantic Ocean
high pressure is closer to the western coast, the South Indian Ocean high pressure is closer
to the east coast, and the tropic high pressure is in the center or eastern side of South
Africa (June, July, and August). This weather system creates cold, dry, and calm weather
conditions with an average temperate of <15 ◦C.
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Figure 6. Seasonal atmospheric synoptic weather circulation system in South Africa. H represent
High pressure, and L represent Low pressure.
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Figure 7. Seasonal ground observation meteorological weather conditions observed at Secunda.

3.1.2. Classification of Meteorological Weather Conditions Influencing the PM10 Extreme
Concentration Events

The BP classifier was trained using weather conditions and PM10 concentration cate-
gories in various cities based on topography and sample count. In addition, the Secunda
model was compared to the unique BP training model that combines all six cities. Table 2
shows the sample numbers of four PM10 concentration categories during extreme hours
measured every winter months June, July, and August from 15:00 to 22:00 p.m. in all
selected cities, including Secunda, from 2009 to 2022. Table 3 displays the selected six
cities (Nos. 1–6) as well as single classifiers for all cities (No. 7). When training the BP
classifier, the sample numbers for the concentration categories should be approximately the
same. The categories with a large sample size had to be screened and obtained at random.
Spontaneous sampling was carried out in percentage to the distribution frequency of PM10
concentrations in each interval to ensure that the BP classifier training samples complied
with the actual distribution pattern. The particular extraction method was as follows: first,
the total sample number (n) and the sampling frequency at varying concentrations intervals
(p, unit %) at each level were determined, and then the product of p and n was calculated to
obtain the number of samples to be randomly sampled at different concentration intervals
at each level.

Table 2. The BP classifier training model for six cities in Mpumalanga province near Secunda, and
the trained classifier’s classification accuracy for the test samples.

Model
Number

City

Sample Number of Four Levels for Training and Test Classification Accuracy of
Test Samples

C1 C2 C3 C4
Selected
Sample

Numbers

Classification
Accuracy (%)

No.1 Balfour 19,590 10,918 5320 1199 3320 77.2
No.2 Ermelo 18,820 10,639 3342 1173 3075 86.2
No.3 eMalahleni 17,230 10,489 1249 999 3120 72.9
No.4 Hendrina 16,992 10,733 582 199 992 82.4
No.5 Middelburg 17,117 10,992 669 109 993 79.5
No.6 Secunda 10,022 10,999 9548 2302 3359 89.4
No.7 All cities 22,590 19,918 5320 1199 5932 83.9
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Table 3. Classification accuracy for the trained six cities model and the trained single model.

Classification Accuracy

City 6 Models Trained Models % Single Train Model %

Balfour 60.4 80.8
Ermelo 77.5 85.3

eMalahleni 76.2 82.5
Hendrina 62.8 70.1

Middelburg 60.3 73.8
Secunda 79.4 90.4

The sample data were separated into training and test samples. The classification
accuracy of the test samples was greater than 70% for all seven BP classifiers (shown in
Table 2). Three of the BP classifiers had classification accuracy greater than 80%. The
classification accuracy of the trained six individual BP classifiers was higher for category 1,
as shown in Table 2, particularly in cities with lower concentrations, such as Middelburg
and Hendrina. When compared to other cities, the classification accuracy of category 3
and category 4 was higher with the trained single model in Secunda, with higher PM10
concentrations of extreme events. The reason for this was that there were a large number of
category 3 and 4 samples when training a single BP classifier for all six cities, which helped
to improve the model’s performance. Table 4 shows that the classification accuracy of all
six cities was greater than 60%, and that the classification accuracy of all cities was greater
than 70% when using a single model. Because the trained single model outperformed the
trained all-individual models in classification, the weather associated with each category
from the single model was used to evaluate weather conditions.

Table 4. Results for the atmospheric weather classification which influence the occurrence of dif-
ferent PM10 concentration categories. The meaning of all synoptic weather conditions are as fol-
lows: (a) Tropical low pressure (TRP-LP); (b) Tropical low pressure and South Atlantic Ocean
high pressure (TRP-LP + SAT-HP); (c) South Atlantic ocean high-pressure and Tropical high
pressure (SAT-HP + TRP-HP); (d) South Indian Ocean high pressure and Tropical high pressure
(SIND-HP + TRP-HP).

Weather Classification

Weather
Associated
with Each
Categories

Synoptic
Weather System Temp W/S HR PBL Occurrence PM10

Associated Weather ◦C m/s−1 % m % µg/m−3

WC1 Humid heat,
strong breeze TRP-LP 30 6 80 1100 69% <50

WC2 Warm, humid, and
moderate breeze TRP-LP + SAT-HP 25 3 70 940 78% <100

WC3 Cold, moist, light
wind speed, stable SAT-HP + TRP-HP 15 1.12 51 300 82% >101

WC4 dry, cold, and calm SIND-HP + TRP-HP 5 0.05 33 280 67% >200

3.1.3. Weather Conditions associated with PM10 Concentration Categories (WC)

The weather classification results produce four different weather conditions that
are associated with each concentration category, as shown in Table 4 (see concentration
categories in Table 1). Weather condition 1 (WC1) and weather category 2 (WC2) are
classified as unfavorable to the occurrence of extreme concentration events. The WC1 and
WC2 weather conditions are characterized as humid, warm, and strong wind, with an
average temperature of 30 ◦C, a humidity of 80%, and a planetary boundary layer height
of 1100 m. The synoptic weather condition associated with WC1 and WC2 (Figure 8) is



Atmosphere 2023, 14, 406 11 of 19

tropical low pressure, which creates strong atmospheric conditions suitable for dispersing
and transporting pollutants, thus helping to reduce the ground concentration. On the
other hand, WC3 and WC4 are weather conditions that are associated with supporting
the occurrence of extreme concentration events of PM10. WC3 and WC4 are characterized
as cold, calm, and dry (with an average temperature of <10 ◦C, and a wind speed of
0.12 m/s−1). The weather condition in WC3 and WC4 is influenced by the atmospheric
high pressure (anti-cyclones) located in both coastal areas of South Africa. Such weather
conditions normally influence atmospheric stability, which forms a weak condition for
pollutants dispersion and transportation. Figure 9 depicts the relationship between PM10
concentration and various weather conditions. The extreme concentration rises quickly in
WC3 and WC4, indicating that the weather in these two categories has a significant impact
on the occurrence of PM10 extreme concentration events in Secunda. The results show a
significant negative correlation coefficient.

3.1.4. Synoptic Weather Changes and their Impact on Ground Concentration

Our research evaluated the influence of atmospheric synoptic meteorology on long-
term concentration trends (Shown in Figures 4 and 5). We applied the weather difference
calculation technique to assess the difference in the synoptic weather circulation system
at two different periods and its role in the long-term trending of PM10 concentration. Our
study used sea level pressure, planetary boundary layer, wind speed, and wind vector
at 950 hPa extracted to ERA5 ECMWF. The meteorological data were separated into two
periods, each consisting of three months of severe concentration: period (1) in June, July,
and August between 2009 and 2015, and period (2) in June, July, and August between
2016 and 2022. Following separation, the second step was to compute the average of the
synoptic weather patterns of overall extreme concentration months (June, July, and August)
from 2009–2022. The final step was to calculate the average difference in synoptic weather
conditions between periods (P1) and (P2) by subtracting them from the overall average for
each period.

The weather in P1 is controlled by the tropical high-pressure, South Atlantic Ocean
high-pressure, and South Indian Ocean high-pressure centered on the east, and west sides
of South Africa, which creates stable, calm, dry, and cold weather conditions as shown
in Figure 10. The weather condition in P2 is only dominated by the South Indian Ocean
anti-cyclone, and the South Atlantic Ocean anti-cyclone. The difference in P1 and P2
concentrations is associated with the tropical high-pressure center on the east coast of South
Africa, which influences the atmospheric stability conditions that normally occur when
air masses move unnaturally in a vertical direction, reducing mixing and dispersing of
pollutants, causing pollutants to concentrate close to the ground and affecting temporary
but severe events of air pollution, especially on P1.

3.1.5. Long-Range Transportation of Air Mass

Figure 11 depicts the HYSPLIT backward trajectory evaluation for 24 h of air mass
movement at 10, 500, and 1000 m above ground level (MAGL). The primary objective was
to investigate the long-distance transportation of the air mass during extreme concentration
events and how it contributes to the extreme concentration on the surface in Secunda. In the
trajectory analysis, 1647 extreme events from categories 3 and 4 (>101 µg/m−3) were used
(HYSPLIT model setting see Figure 3). Following the completion of the trajectory analysis,
the origin of the air mass was traced manually. This procedure was used to determine
the possible location of the transported air mass during the specified time period. The
trajectories were divided into three categories: (a) air masses transported to Secunda from
within the Mpumalanga province; (b) air masses transported to Secunda from neighboring
provinces, and (c) air masses transported to Secunda from outside South Africa (see results
in Table 5). Figure 11 depicts the air mass at a surface level (10 MAGL) transported from
within South Africa, particularly from the eastern provinces, and the extreme concentration
can be attributed to high domestic emissions from a variety of sources. Unlike the air mass
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movement at 10 MAGL, the air mass movement at 500 MAGL and 1000 MAGL had a large
number of extreme events traced within South Africa, and only a few events traced from
outside the country. Table 5 shows that neighboring provinces account for more than 60%
of the air mass transported to Secunda at all levels. And Figure 11d depicts the contribution
of air mass transportation to the extreme concentration based on trajectory direction using
a scale of <3% (categorized as having a low contribution) to >3%. (categorized as having
high contribution). According to Figure 11d, air masses transported from the northwest
(NW), west (W), southwest (SW), and northeast (NE) contribute up to 5% of total extreme
concentration events.
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Figure 8. The classified atmospheric synoptic weather system based on PM10 concentration categories.
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Figure 9. The correlation coefficient between PM10 and the classified weather condition patterns.

Table 5. The traced air mass transportation origin within a period of 24 h during the extreme PM10

concentration events.

Air mass Trace Origin

Trace. Source Meters above the
Ground Level

Location 1 (%) Location 2 (%) Location 3 (%)

Within the Province Nearby Province Outside the Country

Secunda City 10 MAGL 30 68 2
500 MAGL 32 60 23

1000 MAGL 21 60 19
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4. Discussion

The primary goal of this research was to assess the impact of atmospheric weather
patterns and long-distance transportation on PM10 surface extreme concentration events in
Secunda City. The hourly concentration was extremely high in the morning and evening
(>400 µg/m−3), while a low concentration was observed in the afternoons (<50 µg/m−3)
(Figure 5a). Meanwhile, the monthly concentration showed the inter-seasonal concentration
of PM10, with high concentrations exceeding the NAAQS standard during the winter
season (June, July, and August) (>101 µg/m−3) and low concentrations observed during
the summer season (December, January, and February) (50 µg/m−3). In order to understand
the atmospheric weather impact, we applied the BP network training model’s weather
classification technique to identify different weather conditions and how they affect the
occurrence of severe PM10 concentrations. The classification of different weather conditions
that affect different PM10 concentration categories is described in Table 1. The results
show 2 weather conditions associated with PM10 extreme concentration (WC3–WC4). WC3
and WC4 are characterized as cold, dry, calm, and stable with an average temperature of
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5 ◦C, average wind speed of 1.05 m/s−1, average relative humidity of 50% RH) weather
conditions, and a planetary boundary layer height of 300 m, (see Table 4). WC3 and WC3
weather conditions are controlled by anticyclones (Southern Atlantic Ocean high pressure,
Southern Indian Ocean high pressure, and subtropics high pressure) located in coastal
areas of South Africa. Based on weather classification results (see Table 4) the anticyclone
synoptic weather condition has a significant impact on surface weather conditions which
influence the formation of extreme concentrations of PM10.

An anticyclone is a large mass of subsiding air from the upper atmosphere that causes a
high-pressure area on the Earth’s surface [28], which typically occurs on South Africa’s west,
east, and eastern coasts (see Figure 8). Because the air comes from the upper atmosphere,
which is cooler and thus has a lower saturation vapor pressure, the amount of water vapor
affiliated with it is limited on the descent, and the air warms at the dry adiabatic lapse rate,
resulting in dry conditions [29]. Anticyclone pressure gradients are gentle, resulting in low
winds or calms that cause poor surface air pollution transport. In the northern hemisphere,
the wind blows gently radially outward and rotates clockwise [32]. Once established,
anticyclones can provide several days, or even weeks, of settled weather, influencing long
extreme concentration events for several days (the longest event in Secunda lasted for
20 days from 10 June 2010 to 31 June 2010).

Fewer studies have concentrated on meteorological factors that could influence local
PM concentrations. Similar to our findings, higher air pollution has been linked to anti-
cyclonic conditions in other studies, while lower air pollution has been linked to cyclonic
conditions [27–31]. The skies are typically clear during this weather condition, with little
precipitation and increased stability [28]. These elements impede dispersion and encourage
the accumulation of air pollutants. Pollutant accumulation is favored during stagnation
episodes, which are frequently associated with anticyclones [29]. Low-pressure cyclonic
systems, on the other hand, have ascending air flows and are frequently accompanied by
cloudy skies and precipitation [30]. Some studies have examined the relationship between
meteorological factors and air pollution levels in select locations [31–43]. While some of
the dependencies found in these studies pertain to the geography of the particular region
studied, a number conclude that during the days with the full development of sea breeze
cells, the air quality of is become poor in morning and evening hours due to lack of particle
dispersion associated with stagnation episodes and/or warm advection aloft creating stable
temperature inversions [28–31,33]. These authors also confirmed that anticyclonic condi-
tions result in a very stable atmosphere with stagnation, and thus favor the accumulation
of pollutants, especially in the cold period of the year [28–31,33].

Despite WC1 and WC2 having a low influence of extreme concentration in Secunda
city (see Table 4), WC1 and WC2 are caused by the strong pressure gradients associated
with subtropics cyclones which increase wind speed over a great escarpment. These
strong winds lift large amounts of air pollutants from different point sources and transport
them hundreds to thousands of kilometers away. However, in such weather conditions
in northern Africa, the Middle East, and China where the world’s largest dust sources
are located, strong winds can lift large amounts of dust from bare, dry soils into the
atmosphere [44]. Once entrained into the atmosphere, dust is transported thousands of
kilometers away from the point sources [44–46]. In addition, the weather condition in
WC1 and WC2 has characteristics that influence O3 concentration, especially in an urban
area. However, since our study was limited only to PM10 concentration, our results can
be a good starting point for further analysis of O3 concentration in Secunda, since no
study has yest been conducted to evaluate such an issue. Figure 11 shows the long-range
transportation of air masses during extreme concentration events in C3 and C4 at 10, 500,
and 1000 m above the ground (MAGL). Overall, more than 60% of the extreme events
were transported to Secunda from nearby provinces at all heights, less than 25% were
transported from outside the country, and less than 35% were transported from within
the province. Figure 11d shows the contribution of the extreme concentration of each
trajectory based on the direction of the trajectory. More than 5.5% of extreme events are
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contributed by the transported pollutants from NW, W, SW, and NE from Secunda. With
these results, more evaluation is needed to evaluate the contribution of each source so that
good air quality management can take place. As there have been few studies devoted to
evaluating the contribution of atmospheric weather conditions on air pollution in Secunda,
this study provides very important knowledge of one of the most significant factors that
greatly influence the frequency of extreme PM10 concentration events in South Africa. The
findings of this study might be useful for developing vital air quality control plans and
strategies based on the atmospheric weather in the country’s most susceptible areas.

5. Conclusions

The main goal of this study was to evaluate the impact of atmospheric synoptic
weather patterns and long-range transportation on extreme concentration events in Secunda.
Based on the weather classification results of the BP training network model, extreme
concentration events of PM10 are associated with anticyclone synoptic weather conditions
WC3 and WC4. The anti-cyclone synoptic weather condition makes favorable weather
condition that influences the increase of surface extreme concentration events of PM10. On
the other hand, the long-range transportation airmass has a significant influence on extreme
concentration events in Secunda. Based on the results, more than 60% of the airmass is
transported to Secunda from within Mpumalanga province where a large number of coal-
fired power plants, coal mines, and other heavy industries reside, contributing up to a 5%
increase in concentration intensity. Despite WC1 and WC2 having the lowest concentration
influence of extreme PM10 concentration, they represent favorable weather conditions for
extreme O3 concentration and dust storms. Our study is limited only to PM10 but these
results can be useful for further analysis of air pollutants in Secunda and other cities.
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