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Abstract: The global climate has changed, and there are concerns about the effects on both humans
and the environment, necessitating more research for improved adaptation. In this study, we analyzed
extreme temperature and rainfall events and projected future climate change scenarios for the coastal
Savannah agroecological zone (CSAZ) of Ghana. We utilized the ETCCDI, the RClimDex software
(version 1.0), the Mann–Kendall test, Sen’s slope estimator, and standardized anomalies to analyze
homogeneity, trends, magnitude, and seasonal variations in temperature (Tmax and Tmin) and rainfall
datasets for the zone. The SDSM was also used to downscale future climate change scenarios based
on the CanESM2 (RCP 2.6, 4.5, and 8.5 scenarios) and HadCM3 (A2 and B2 scenarios) models for the
zone. Model performance was evaluated using statistical methods such as R2, RMSE, and PBIAS.
Results revealed more changepoints in Tmin than in Tmax and rainfall. Results again showed that
the CSAZ has warmed over the last four decades. The SU25, TXn, and TN90p have increased
significantly in the zone, and the opposite is the case for the TN10p and DTR. Spatially varied trends
were observed for the TXx, TNx, TNn, TX10p, TX90p, and the CSDI across the zone. The decrease
in RX1day, RX5day, SDII, R10, R95p, and R99p was significant in most parts of the central region
compared to the Greater Accra and Volta regions, while the CDD significantly decreased in the latter
two regions than in the former. The trends in CWD and PRCPTOT were insignificant throughout
the zone. The overall performance of both models during calibration and validation was good
and ranged from 58–99%, 0.01–1.02 ◦C, and 0.42–11.79 ◦C for R2, RMSE, and PBIAS, respectively.
Tmax is expected to be the highest (1.6 ◦C) and lowest (−1.6 ◦C) across the three regions, as well
as the highest (1.5 ◦C) and lowest (−1.6 ◦C) for the entire zone, according to both models. Tmin is
projected to be the highest (1.4 ◦C) and lowest (−2.1 ◦C) across the three regions, as well as the highest
(1.4 ◦C) and lowest (−2.3 ◦C) for the entire zone. The greatest (1.6 ◦C) change in mean annual Tmax

is expected to occur in the 2080s under RCP8.5, while that of the Tmin (3.2 ◦C) is expected to occur
in the 2050s under the same scenario. Monthly rainfall is expected to change between −98.4 and
247.7% across the three regions and −29.0 and 148.0% for the entire zone under all scenarios. The
lowest (0.8%) and highest (79%) changes in mean annual rainfall are expected to occur in the 2030s
and 2080s. The findings of this study could be helpful for the development of appropriate adaptation
plans to safeguard the livelihoods of people in the zone.

Keywords: climate change; temperature and rainfall extreme indices; climate projection; statistical
downscaling; SDSM; coastal Ghana

1. Introduction

The global climate has changed, and there are concerns about its impacts. Global
land surface temperatures increased by 0.85 ◦C between 1880 and 2012 [1]. The last three
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decades have been warmer than every other decade since 1850 [1,2]. While temperature
increases have been observed in nearly every region of the world, rainfall trends and
the magnitude of change vary by region and season [1,3–5]. The IPCC [1] reported an
increase in rainfall of 0.5–1% per decade in the middle and high latitude regions of the
Northern Hemisphere and 0.2–0.3% in the tropical regions during the twentieth century. In
their study, Maidment et al. [4] noted an increase and a decrease in annual rainfall in the
Sahel, Southern Africa, and Eastern Africa, respectively. Although the majority of climate
change research has focused on the changes in the average climate [6], significant attention
has been given in recent decades to the variability in climate [7]. Extreme climate or
weather events have negative effects on society, the economy, and the environment [8–12].
Numerous studies conducted over the past century have revealed significant changes in
climate variables [13–15]. Alexander et al. [3] and Frich et al. [13] have recorded changes
in the frequency and severity of extreme events on a global scale. Similar research has
been conducted in North America [16,17], Europe [18], Asia [14,19], South America [20,21],
Oceania [22,23], and Africa [24,25].

According to the IPCC’s fifth assessment report (AR5) [1], since 1950, the number of
cold days and nights and hot days and nights has decreased and increased, respectively,
in most land regions. In addition, the IPCC [1] reports with high confidence that the
frequency of extreme events such as heat waves has increased in larger portions of Europe,
Asia, and Australia, but with moderate confidence for other regions such as West Africa.
Over Africa and the West African region, confidence is moderate because of the limited
number of weather stations and their unequal distribution [26,27]. In addition, there is a
dearth of high-quality long-term data and limited availability of data [8,28,29]. As a result,
data on daily weather and climate extreme events are scarce in developing regions of the
world [24,30].

Few studies have focused on extreme weather or climate events [29]. According to De
Longueville et al. [31], the outcomes of extreme events in the West African subregion are
contradictory and inconsistent. For example, New et al. [24] noted an increase in extreme
rainfall in Nigeria. Hountondji et al. [32] reported stability in Benin’s rainfall indices from
1960 to 2000. On the contrary, Obada et al. [33] reported a general increase in all wet indices
in Benin over 1991–2010. Mouhamed et al. [34] found a significant decrease in the number
of cold nights, as well as frequent warm days and warm spells, and concluded that the
West African Sahel warmed from 1960 to 2010. Similarly, Barry et al. [26] emphasized the
frequency of warm days and nights and the rarity of cold days and nights in West Africa’s
climate. Ghana, which is also a part of West African territory, is not an exception to the
lack of long-term climate data and has limited research on extreme weather or climate
events. Increases in yearly temperature indices were observed by Larbi et al. [35] for the
Vea catchment in Ghana. Again, Atiah et al. [36] found a significant decrease in wet extreme
indices over Volta Lake and an increase in wet extreme indices over northern Ghana. In
addition, Braimah et al. [37] found no significant trends in the number of very wet and
extremely wet days in southern Ghana. Variability in temperature and rainfall, as well as
an increase in the frequency of extreme weather or climate events, have devastating effects
on society, especially in West Africa [38,39] and Ghana, where most of the population relies
on rain-fed agriculture [40,41].

As a result of the demand for additional investigation into the consequences of extreme
weather and climate events, the Expert Team on Climate Change Detection and Indices
(ETCCDI) has established a set of extreme rainfall and temperature indices [42]. Using
these indices, we may examine climate and weather extremes consistently [42]. There are
currently twenty-seven indices in use because of the modification of the ETCCDI due to the
difficulties in defining certain indicators, such as heat waves [42]. Anthropogenic activities
have been identified as the cause of the current 1 ◦C (0.8–1.2 ◦C) global warming compared
to pre-industrial levels [43]. This value is projected to increase by 0.5 ◦C between 2030
and 2052 [43]. Consequently, climate-related threats to humans and natural systems are
widespread [1,44–50].
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Various climate research centers have developed general circulation models (GCMs)
that aid in forecasting, modeling, and predicting weather and climate change to get an
accurate picture of the future climate change. GCMs are recognized as appropriate tools for
assessing climate change and variability [49]. However, the horizontal resolution of GCMs,
which ranges from 250 to 600 km, is insufficient for most local impact studies [44,45]. In
addition, the application of GCMs requires significant computational resources, making
it unrealistic for most developing nations [45]. Despite these limitations, numerous dy-
namical and statistical downscaling techniques and tools have been developed. Wilby and
Wigley [51] thoroughly reviewed the most frequently utilized downscaling techniques and
discussed their limitations and future application challenges. Statistical downscaling is
more flexible, cheaper, and easier to compute compared to dynamical downscaling [51,52].

In recent decades, there has been an increase in the use of statistical downscaling tools
in conjunction with GCM outputs such as the second generation Canadian Earth System
Model (CanESM2), the first, second, and third versions of the Canadian Coupled Global
Climate Models (CGCM1, 2, and 3), the Hadley Centre Coupled Model versions 2 and 3
(HadCM2 and 3), and the Institut Pierre Simon Laplace model (IPSL-CM5A-MR). As one of
its objectives, statistical downscaling evaluates the superiority of statistical over dynamic
models and compares many statistical models [44,45]. Widely used statistical downscaling
tools include the Statistical Downscaling Model (SDSM) and the Long Ashton Research
Station Weather Generator (LARS-WG). The SDSM uses a method based on regression [53],
whereas the LARS-WG relies on a stochastic weather generator [54]. The statistical down-
scaling method has been utilized in different regions of the world [55–61]. Numerous
research studies (e.g., [44,45,62–66]) have reported improved model performance using
the statistical downscaling technique. Khan et al. [67,68] also measured the uncertainty of
the same method when they downscaled the daily precipitation and the maximum and
minimum temperatures in Quebec, Canada.

As the application of statistical downscaling tools continues to increase, Ghana’s
contribution remains limited, particularly in coastal zones. Few research studies, such
as [44,69–71], have utilized the SDSM in Ghana. It should be noted that these studies are
confined to the river catchments and basin areas (Vea Catchment, White and Black Volta
Basins) of the country, to the exclusion of other equally important regions, such as the
coastal zones. The analysis of extreme weather or climate events and the projection of
future climate change for the coastal zones of Ghana are necessary considering the immense
socio-ecological contributions.

This present study has two purposes. The first part analyzed a suite of ETCCDI and
their trends over space and time in the coastal Savannah agroecological zone of Ghana.
Here, the study specifically analyzed changepoints and homogenization, the long-term
changes in extreme temperature and rainfall indices and trends, and the decadal variations
and anomalies of temperature and rainfall. The second part employed the SDSM tool to
downscale future climate change scenarios based on two GCMs (CanESM2 and HadCM3).
Here, the monthly changes in future maximum and minimum temperatures and rainfall
were projected for the 2030s, 2050s, and 2080s, as well as the projected annual change.
While the present study contributes to the limited literature on climate change in Africa
and Ghana in particular, the results also stand to benefit the agriculture sector of Ghana
and the smallholder farmers in coastal Ghana, to be precise. The present study therefore
encourages climate action in Ghana.

2. Materials and Methods

Here, we describe the methods and statistical measures used to analyze the ex-
treme temperature and rainfall indices (Section 2.2) and future climate change projections
(Section 2.3) in the zone.
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2.1. Study Area

The coastal Savannah agroecological zone is one of the six agroecological zones located
on the central and eastern coasts of Ghana (Figure 1). The zone is part of the central, Greater
Accra, and Volta administrative regions of Ghana (Figure 1). The elevation of the zone
ranges from the lowest point of−3.8 m from the coast to the highest point of 641.2 m inland
(Figure 1). The zone has two rainfall seasons: the major, from April to July (with maximum
rainfall in June), and the minor, from September to early November (with maximum rainfall
in October) [72,73]. The dry season begins in late November and continues until March.
Although the zone has a double maxima rainfall regime, it receives the least amount of
rainfall out of the six agroecological zones in Ghana [73]. The average monthly temperature
ranges from a minimum of 24.7 ◦C in August to a maximum of 32.7 ◦C in March [74]. Most
of the zone’s vegetation is grassland, with few trees in the central portion and shrubs,
thickets, and mangroves in the eastern portion [73]. Given its coastal nature, the zone
makes a substantial contribution to Ghana’s gross domestic product [73]. Agriculture,
fishing, tourism, trade, transportation, and services are the principal economic activities
in the zone [72]. Among the major towns are Accra (the capital city), Cape Coast, Elmina,
Moree, Saltpond, Apam, Winneba, Bortianor, Tema, Prampram, Ada Foah, Anloga, Keta,
and Denu (Figure 1). Table 1 shows the coordinates and population of the major towns,
which also served as the data stations for the study.

Atmosphere 2023, 14, 386 4 of 46 
 

 

2. Materials and Methods 
Here, we describe the methods and statistical measures used to analyze the extreme 

temperature and rainfall indices (Section 2.2) and future climate change projections (Sec-
tion 2.3) in the zone. 

2.1. Study Area 
The coastal Savannah agroecological zone is one of the six agroecological zones lo-

cated on the central and eastern coasts of Ghana (Figure 1). The zone is part of the central, 
Greater Accra, and Volta administrative regions of Ghana (Figure 1). The elevation of the 
zone ranges from the lowest point of −3.8 m from the coast to the highest point of 641.2 m 
inland (Figure 1). The zone has two rainfall seasons: the major, from April to July (with 
maximum rainfall in June), and the minor, from September to early November (with max-
imum rainfall in October) [72,73]. The dry season begins in late November and continues 
until March. Although the zone has a double maxima rainfall regime, it receives the least 
amount of rainfall out of the six agroecological zones in Ghana [73]. The average monthly 
temperature ranges from a minimum of 24.7 °C in August to a maximum of 32.7 °C in 
March [74]. Most of the zone’s vegetation is grassland, with few trees in the central portion 
and shrubs, thickets, and mangroves in the eastern portion [73]. Given its coastal nature, 
the zone makes a substantial contribution to Ghana’s gross domestic product [73]. Agri-
culture, fishing, tourism, trade, transportation, and services are the principal economic 
activities in the zone [72]. Among the major towns are Accra (the capital city), Cape Coast, 
Elmina, Moree, Saltpond, Apam, Winneba, Bortianor, Tema, Prampram, Ada Foah, 
Anloga, Keta, and Denu (Figure 1). Table 1 shows the coordinates and population of the 
major towns, which also served as the data stations for the study. 

 
Figure 1. Map showing the study locations and the coastal Savannah agroecological zone of Ghana. Figure 1. Map showing the study locations and the coastal Savannah agroecological zone of Ghana.



Atmosphere 2023, 14, 386 5 of 44

Table 1. Study locations, coordinates, and population. Source: Ghana Statistical Service (GSS) [73].

S/N Location Latitude Longitude Population

1 Accra 5◦ 60′ N 0◦ 18′ W 1,665,086
2 Ada Foah 5◦ 46′ N 0◦ 37′ E 71,671
3 Anloga 5◦ 47′ N 0◦ 53′ E 22,722
4 Apam 5◦ 17′ N 0◦ 44′ W 135,189
5 Bortianor 5◦ 30′ N 0◦ 20′ W 32,485
6 Cape Coast 5◦ 06′ N 1◦ 15′ W 169,894
7 Denu 6◦ 03′ N 1◦ 11′ E 160,756
8 Elmina 5◦ 05′ N 1◦ 20′ W 144,705
9 Keta 5◦ 45′ N 0◦ 30′ E 147,618
10 Moree 5◦ 07′ N 1◦ 12′ W 117,185
11 Prampram 5◦ 43′ N 0◦ 07′ E 14,897
12 Saltpond 5◦ 20′ N 1◦ 05′ W 144,332
13 Tema 5◦ 44′ N 0◦ 01′ E 402,637
14 Winneba 5◦ 21′ N 0◦ 37′ W 68,597

2.2. Data Sources and Methods of Analysis
2.2.1. Observed Data

Observed daily maximum (Tmax) and minimum (Tmin) temperature and rainfall data
that spanned from 1981 to 2021 was obtained from the Ghana Meteorological Agency
(GMet) and the National Aeronautics and Space Administration/Prediction of Worldwide
Energy Resources (NASA/POWER). Data for 11 stations, including Accra, Ada Foah,
Anloga, Apam, Cape Coast, Denu, Elmina, Keta, Saltpond, Tema, and Winneba, were
provided by the GMet, while those of Moree, Bortianor, and Prampram were acquired from
the NASA/POWER satellite data. The R-Instat software (version 0.70) was employed to
check for missing gaps in the station data obtained from the GMet. Under this analysis, the
number of missing gaps in each dataset was less than 2%. In developing nations, climate
data quality is a major obstacle [44], and as reiterated by Wilby et al. [75], the regions most
susceptible to climate variability also have the largest data gaps.

With less than 2% missing data in each dataset, the complete case analysis could
have been an acceptable method [76]. However, we used multiple imputation by chained
equations (MICE) to fill in the gaps. MICE was chosen because it has the capacity to fill
in missing values in the original dataset by creating multiple missing values [77,78]. In
this method, a prediction model is developed for the target attribute, and missing values
are imputed based on the observed values for a particular station. Thus, missing values
become indicative of the observed data. Recent research conducted by Abdullah et al. [79]
demonstrates the suitability of the MICE approach. See Azur et al. [80] for more information
about the MICE method, including the imputation procedure and relevant software.

2.2.2. Homogeneity Test and Homogenization

We utilized the RClimDex software (version 1.0) (http://etccdi.pacificclimate.org/
software.shtml accessed on 15 September 2022) to examine each station’s daily Tmax, Tmin,
and rainfall datasets for any anomalous values. Here, we first determined whether a
situation existed in which the daily Tmax was equal to or less than the Tmin and rainfall was
less than zero. Again, we highlighted outliers within four standard deviations in each of
the datasets [81]. Additional evaluations were performed on the detected outliers to keep
those that matched the value for a certain week or month. Without a suitable replacement
for the highlighted values, we marked them as missing.

The RHtestsV4 package (http://etccdi.pacificclimate.org/software.shtml accessed on
15 September 2022) was further employed to check for homogeneity in the Tmax and Tmin
datasets. So, the RHtestsV4 package made it possible to turn the daily Tmax and Tmin data
into monthly datasets. During this phase, there were also a number of other steps, such
as finding a reference dataset for the monthly Tmax and Tmin for homogenization, using
the RHtests_dlyPrcp package (http://etccdi.pacificclimate.org/software.shtml accessed on

http://etccdi.pacificclimate.org/software.shtml
http://etccdi.pacificclimate.org/software.shtml
http://etccdi.pacificclimate.org/software.shtml
http://etccdi.pacificclimate.org/software.shtml
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15 September 2022) for rainfall, and using the Quantile Matching (QM) adjustment method
for the final homogenization.

According to Wang and Feng [82], a reference dataset is utilized to increase the preci-
sion of homogeneity analysis. Using the Penalized Maximal F (PMF) test, the homogeneity
of the monthly Tmax and Tmin datasets from each of the 14 stations was evaluated [83,84].
This method is strongly advised for homogeneity analysis of reference datasets [82,85].
Through this analysis, it was determined that the Ada Foah station was homogeneous for
both the Tmax and Tmin datasets; therefore, it was used as the reference series.

The Penalized Maximal t (PMT) test was then used to determine whether the monthly
Tmax and Tmin datasets were homogeneous [83,84]. The base-minus-reference series was
analyzed using this test to determine the significance and location of the changepoint and to
develop a regression model to estimate the magnitude of the change [82]. Several research
studies, such as works of [79,86,87], have demonstrated the superiority of the PMT test for
inhomogeneity and changepoint analysis over other traditional approaches. Wang and
Feng [82,85] have advised against using daily Tmax and Tmin datasets for PMT tests due to
the noisy nature of daily time series and their computationally intensive nature, which may
cause erroneous changepoint detection. Therefore, the monthly Tmax and Tmin datasets
were utilized for the change point analysis. In addition, because the 14 stations lacked
metadata that could have assisted us in analyzing the detected changepoints, we kept only
Type-1 changepoints, which were significant even without metadata.

Due to the non-Gaussian and variable nature of rainfall [79], identifying an appropriate
reference series is always a challenge [82,85]. For changepoint detection in rainfall datasets,
the RHtests dlyPrcp package (http://etccdi.pacificclimate.org/software.shtml accessed
on 15 September 2022) was used rather than the PMT test. According to Wang et al. [88],
the RHtests dlyPrcp package converts a Box-Cox power transformation procedure into
a common trend two-phase regression-model-based test that can detect changepoints in
non-Gaussian datasets. Only the Type-1 changepoints were kept in this analysis.

Subsequently, the Tmax, Tmin, and rainfall datasets were homogenized with the use
of the QM adjustment method. In this case, the QM adjustments for the various non-
homogeneous datasets made use of the identified Type-1 changepoints. To make sure the
QM adjustment process did not create any duplicated values, the homogenized datasets
were again examined for unrealistic values. The outcome was a homogenized dataset in
which the patterns of daily Tmax, Tmin, and rainfall data were consistent both prior to and
after the changepoint analysis [88]. Wang et al. [88] went into greater detail about the QM
adjustment process.

2.2.3. Calculation of Extreme Climate Indices

In this study, we utilized 23 out of the 27 ETCCDI variables (http://etccdi.pacificclimate.
org/software.shtml accessed on 15 September 2022) to analyze extreme climatic events in
the coastal Savannah agroecological zone of Ghana. Table 2 shows the list of the indices that
were employed in this study. From Table 2, the 23 selected indices can be broadly grouped
into absolute, percentile, and threshold categories [3,13]. The indices were calculated using
1981–2010 as the baseline period.

2.2.4. Trend Analysis

The Mann–Kendall (MK) test [89,90] was used to analyze trends in extreme climate
indices, while Sen’s slope estimator was used to assess magnitudes of change [91]. The
MK is a nonparametric test that compares the presence of a trend in a time series to the
null hypothesis of no trend [92]. See da Silva et al.’s [92] work for more information
on the MK test and Sen’s slope estimator. In this analysis, the Kendall tau statistic and
its corresponding p-value were used to show the extent of the change, whether it was
increasing or decreasing, and its significance. The MK test and Sen’s slope estimator were
given confidence levels of 5% and 95% in this study, respectively. The MK test and Sen’s
slope estimator were applied to the 14 individual stations first, then to the three regions

http://etccdi.pacificclimate.org/software.shtml
http://etccdi.pacificclimate.org/software.shtml
http://etccdi.pacificclimate.org/software.shtml
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(central, Greater Accra, and Volta), and finally to the entire zone (the average indices of all
the 14 stations).

Table 2. Description and definition of climate indices.

Type Indices Description Definition Units

Temperature
indices

TR20 Tropical nights The annual count of days when daily minimum
temperature is greater than 20 ◦C Days

CSDI Cold spell duration index A sequence of 6 or more days where daily minimum
temperature is below the 10th percentile Days

WSDI Warm spell duration index A sequence of 6 or more days where daily maximum
temperature is exceeds the 90th percentile Days

SU25 Summer days The annual count of days where daily maximum
temperature exceeds 25 ◦C Days

TNx Max Tmin
Computes monthly or annual maximum of daily
minimum temperature

◦C

TNn Min Tmin
Computes monthly or annual minimum of daily
minimum temperature

◦C

TN10p Cool nights Computes monthly or annual proportion of minimum
temperature below 10th percentile Days

TN90p Warm nights Computes monthly or annual proportion of minimum
temperature above 90th percentile Days

TXx Max Tmax
Computes monthly or annual maximum of daily
maximum temperature

◦C

TXn Min Tmax
Computes monthly or annual minimum of daily
maximum temperature

◦C

TX10p Cool days Computes monthly or annual proportion of maximum
temperature below 10th percentile Days

TX90p Warm days Computes monthly or annual proportion of maximum
temperature above 90th percentile Days

DTR Diurnal temperature range Computes the mean daily diurnal temperature range. The
frequency of observation can either be monthly or annual

◦C

Precipitation
indices

R10 Number of heavy precipitation days Computes the annual count of days where daily
precipitation is more than 10 mm per day Days

R20 Number of very heavy precipitation days Computes the annual count of days where daily
precipitation is more than 20 mm per day Days

SDII Simple precipitation index
Computes the annual sum of precipitation in wet days
(days with precipitation over 1 mm) during the year
divided by the number of wet days in the years

mm

CDD Consecutive dry days Maximum number of days when precipitation is less than
1 mm Days

CWD Consecutive wet days Maximum number of days when precipitation is more
than 1 mm Days

RX1day Max 1-day precipitation amount Computes monthly maximum 1-day precipitation mm

RX5day Max 5-day precipitation amount Computes monthly maximum consecutive
5-day precipitation mm

R95p Very wet days Computes the annual sum of precipitation in days where
daily precipitation exceeds the 95th percentile mm

R99p Extremely wet days Computes the annual sum of precipitation in days where
daily precipitation exceeds the 99th percentile mm

PRCPTOT Annual total wet-day precipitation Computes the annual sum of precipitation in wet days
(days where precipitation is at least 1 mm) mm

We looked at the seasonal variability of climate indices again over the last four decades
(1981–1990, 1991–2000, 2001–2010, and 2011–2020). The year 2021 was excluded because
including it would have added one more year to the last decade, given that the data
period was 41 years long. Following the work of Abdullah et al. [79], we first examined
the decadal variations of Tmax, Tmin, and rainfall for the three regions using a graphical
representation. Following that, we used Welch’s two-sample t test (assuming unequal
variance) to see if the mean changes between decades were statistically significant [79,93].
Furthermore, we examined the seasonal (wet, minor, and dry season) values for Tmax, Tmin,
and rainfall in each decade for the three regions. Finally, we used the standardized anomaly



Atmosphere 2023, 14, 386 8 of 44

to examine changes in climatic variables over the last several decades. Based on the study by
Larbi et al. [35], we used the standardized anomaly computation shown below.

SA =
(x− µ)

σ
(1)

where x represents the seasonal value of the climatic variable, µ shows the long-term
average, and σ indicates the standard deviation.

2.3. General Circulation Models (GCMs) Data

In addition to the observed daily data described in Section 2.2.1, we used 26 daily
atmospheric reanalysis variables obtained from the National Center for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) for the periods
1961–2005 for the CanESM2 (https://climate-scenarios.canada.ca/?page=pred-canesm2
accessed on 17 September 2022) and 1961–2001 for the HadCM3 (https://climate-scenarios.
canada.ca/?page=pred-hadcm3 accessed on 17 September 2022). Predictors are large-scale
variables that are stored in GCM archives. The CanESM2 and HadCM3 NCEPs have
spatial resolutions of 2.5◦ and 2.5◦, respectively, with uniform longitude and latitude. The
CanESM2 predictors for the central area are available in a GCM box (BOX_001X_34Y) and
for Greater Accra and Volta (BOX_001X_35Y), while the HadCM3 predictors are available
in a single GCM box (BOX_01X_30Y) for downscaling.

The CanESM2 and HadCM3 NCEPs are used for model calibration, while the predic-
tors are used for validation and future projections. CanESM2 large-downscale predictor
variables are available under the RCP2.6, RCP4.5, and RCP8.5 scenarios for future climate
projections from 2006–2100, while HadCM3 large-downscale predictor variables are avail-
able under the A2 and B2 scenarios for future climate projections from 1961–2099. The study
makes use of model data from Coupled Model Intercomparison Project phases 3 (CMIP3)
and 5 (CMIP5). The principal interest is in assessing historical behavior and forecasting
future coupled atmospheric-ocean general circulation models (AOGCMs). To generate
future Tmax, Tmin, and rainfall, the statistical downscaling model (SDSM) was used. In
analyzing the effects of climate change on climatic variables, the reference periods for the
CanESM2 and HadCM3 are 1981–2010 and 1981–2006, respectively, while 2011–2100 and
2007–2099 are considered the future for the CanESM2 and HadCM3, in that order. Because
their daily predictor variables are freely available to be inputted into the SDSM [56], the
CanESM2 and HadCM3 GCMs were used in this study. Table 3 has a list of all 26 of the
CanESM2 and HadCM3 daily predictor variables from NCEP.

2.3.1. Statistical Downscaling Model (SDSM)

Wilby et al. [94] created the SDSM by combining stochastic weather generators with
multiple linear regression to construct local weather variables based on the statistical re-
lationship between large-scale predictors and local climate variables. Regression-based
downscaling is an established and often employed methodology [95]. The SDSM can
downscale GCM outputs by establishing a statistical link between GCM variables (predic-
tors) and local weather variables (predictands) using multiple linear regression models
and stochastic bias-correction approaches [96]. To generate the daily local Tmax, Tmin, and
rainfall using the SDSM, we used the CanESM2 acquired from the Canadian Center for
Climate Modeling and Analysis as CMIP5 and the HadCM3 from the United Kingdom
Hadley Centre as CMIP3, in addition to the NCEP data. Synthetic weather data were
made using the CanESM2 RCP2.6, RCP4.5, and RCP8.5 scenarios from 2011–2100 and the
HadCM3 A2 and B2 scenarios from 2007–2099.

The SDSM downscaling procedure includes the following steps: screening of predictor
variables; model calibration; weather generation and generation of synthetic daily weather
data; future ensemble data generation using predictor variables from the GCM; and sum-
mary statistics and results comparison for both observed and downscaled data [95,97].
Screening for significant predictors is an important step in statistical downscaling for model

https://climate-scenarios.canada.ca/?page=pred-canesm2
https://climate-scenarios.canada.ca/?page=pred-hadcm3
https://climate-scenarios.canada.ca/?page=pred-hadcm3
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calibration in the SDSM [94]. Statistical methods are used to choose predictors, and at least
two predictors are enough during the screening process [98].

Table 3. CanESM2 and HadCM3 predictor variables used for downscaling.

CanESM2 HadCM3

No. Variable Description Variable Description

1 mslp Mean sea level pressure mslp Mean sea level pressure
2 p1_f Surface airflow strength p_f Surface airflow strength
3 p1_u Surface zonal velocity p_u Surface zonal velocity
4 p1_v Surface meridional velocity p_v Surface meridional velocity
5 p1_z Surface velocity p_z Surface velocity
6 p1th Surface wind direction p_th Surface wind direction
7 p1zh Surface divergence p_zh Surface divergence
8 p5_f 500 hPa airflow strength p5_f 500 hPa airflow strength
9 p5_u 500 hPa zonal velocity p5_u 500 hPa velocity
10 p5_v 500 hPa meridional velocity p5_v 500 hPa meridional velocity
11 p5_z 500 hPa vorticity p5_z 500 hPa vorticity
12 p500 500 hPa geopotential height p500 500 hPa geopotential height
13 p5th 500 hPa wind direction p5th Mean sea level pressure
14 p5zh 500 hPa divergence p5_zh 500 hPa divergence
15 p8_f 850 hPa airflow strength p8_f 850 hPa airflow strength
16 p8_u 850 hPa zonal velocity p8_u 850 hPa zonal velocity
17 p8_v 850 hPa meridional velocity p8_v 850 hPa meridional velocity
18 p8_z 850 hPa vorticity p8_z 850 hPa vorticity
19 p850 850 hPa geopotential height p850 850 hPa geopotential height
20 p8th 850 hPa wind direction p8th 850 hPa wind speed
21 p8zh 850 hPa divergence p8zh 850 hPa divergence
22 prcp Precipitation r500 Relative humidity at 500 hPa
23 s500 Specific humidity at 500 hPa height r850 Relative humidity at 850 hPa
24 s850 Specific humidity at 850 hPa height rhum Near surface relative humidity
25 shum Surface specific humidity Shum 850 hPa geopotential height
26 temp Mean temperature at 2m temp Mean temperature

To downscale the data from the given predictand and selected predictor variables, the
calibration model was used in multiple regression equations. The model was designed
to downscale Tmax, Tmin, and rainfall on a daily and monthly basis. The modeled data
were adjusted to reflect the observed data using bias correction. The weather generator
makes excellent use of independent data to validate the calibrated model. This procedure
generates synthetic daily weather datasets for the specified period as well as a parameter
file generated during the calibration stage using regression model weights. As a result, the
SDSM provides a summary statistic that can be used to compare observed and modeled
data. All 26 large-scale predictors from the NCEP were screened in this study, and the two
that were found to be significant were used for model calibration.

The use of fewer predictors reduces computation time and improves the efficiency of
the downscaling process [99]. The period for calibrating and validating the model between
predictor and predictand data in the SDSM was divided into two parts: 1981–2010 and
1981–2006 for calibration, and 2011–2021 and 2007–2021 for validation of the CanESM2 and
HadCM3 GCMs, respectively. The model was then used to generate future three-segment
predictions for the 2030s (2011–2040), 2050s (2041–2070), and 2080s (2071–2100) for each
GCM. A simplified representation of the SDSM is depicted in Figure 2. The mean of the
generated scenarios was compared to the observed period, and the anomaly was revealed
by the absolute difference in temperature and the percentage difference in rainfall from the
monthly mean of the observed period to the future period. Positive and negative anomalies
indicate an increase or decrease in the predictand in future periods. Using the calculations
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in Birara et al. [56], the following was carried out to figure out how Tmax, Tmin, and rainfall
will change in the future:

∆P =
(Mm·P − Obs·P)× 100

Obs·P (2)

∆T = Mm·T −Obs·T (3)

where Mm·P and Mm·T show modeled rainfall and Tmax or Tmin, respectively, and Obs·P
and Obs·T represent the observed rainfall and Tmax or Tmin, in that order.
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2.3.2. Model Performance Assessment

A simulation of mean monthly Tmax, Tmin, and rainfall was checked during the
calibration and validation of the downscale model using the coefficient of determination
(R2), root mean square error (RMSE), and percent bias (PBIAS) expressed as:

To compare the explained variance of modeled data with the total variance of observed
data, the coefficient of determination (R2) is required.

R2 =
∑n

i=1(yi − x)2

∑n
i=1(xi − x)2 (4)

The RMSE expresses the difference between the modeled and observed values as follows:

RMSE =

√
∑n

i=1(xi − yi)
2

n
(5)

PBIAS = 100×
[

∑n
i=1 (xi − yi)

∑n
i=1 (xi)

]
(6)

where xi and yi are the observed and modeled data, respectively.
The R2 has a value between 0 and 1. A value close to 1 indicates that the model fits the

data perfectly. The better the model’s performance, the lower the RMSE. Using the PBIAS,
it was determined whether the model underestimated or overestimated the observed data.
The closer the PBIAS is to zero, the more precise the model.

3. Results
3.1. Results from Extreme Temperature and Rainfall Indices
3.1.1. Changepoints and Homogenization of Temperature and Rainfall

Table 4 shows the changepoints in daily Tmax and Tmin and rainfall. Here, all the
statistically significant changepoints are detected for the climatic variables. For Tmax and
Tmin, the detected monthly changepoints were used to adjust the daily data. The monthly
changepoints are converted to daily changepoints by transforming the preceding day of
the identified month to a daily changepoint (see Section 2.2.2). From Table 4, changepoints
for Apam, Bortianor, and Winneba were detected in October 2003. However, these were
changed to 31 September 2003, to produce segments for homogenization during the QM
adjustment. A similar situation occurred for Tmin. For instance, in both Accra and Tema, the
first changepoint appeared in January 1982, followed by December 1986 and February 1988.
However, to produce segments, the detected changepoints were converted to 31 December
1981, 31 November 1986, and 31 January 1988, respectively.

Table 4 also shows no changepoints for rainfall across all the 14 locations and a few
for Tmax (Apam, Bortianor, and Winneba). However, more changepoints were observed
for Tmin at most locations, except Anloga, Denu, and Keta. These changepoints can be
attributed to the abrupt daily temperature fluctuations at these locations.

3.1.2. Extreme Temperature Indices

Table 5 and Figure 3a–m show the long-term changes in extreme temperature indices
and the spatial distribution of the trends in temperature for the coastal Savannah agroe-
cological zone of Ghana. According to Table 5, the annual count of days where the daily
temperature exceeded 25 ◦C (SU25) increased significantly for all locations, all regions,
and for the entire zone during the analysis period. Figure 3a shows that while the trends
SU25 increased for all locations, the magnitude of change is higher for the locations in the
central region than for the remaining two regions (see Figure 1 to understand the regional
divisions). Similar significant increases were observed for the monthly or annual minimum
of the daily maximum temperature (TXn) and the proportion of warm nights (TN90p)
across all locations, regions, and the entire zone. From Figure 3g,k, the magnitudes of
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changes in TXn and TN90p are higher in the Greater Accra region and some areas of the
Volta region than in the central region. The proportion of cool nights (TN10p) and the
diurnal temperature range (DTR) significantly decreased for all locations, regions, and the
entire zone. Although the TN10p decreased significantly, the magnitude of the change
was greater in the central region and some portions of the Volta region than in the Greater
Accra region (Figure 3i), and the opposite occurred for the DTR (Figure 3m). Also, the cold
spell duration indices (CDSI) significantly increased for the locations of Accra, Ada Foah,
Anloga, Apam, Bortianor, Prampram, Saltpond, Tema, and Winneba, while a significant
decrease ensued in Cape Coast, Denu, Elmina, and Moree (Figure 3d). Under the same
analysis, all three regions and the entire zone decreased significantly.

Table 4. Changepoints in temperature (maximum and minimum) and rainfall datasets.

Location Tmax Changepoints a Tmin Changepoints a Rainfall Changepoints b

Accra 0 − 3 31 December 1981, 31 November 1986,
31 January 1988 0 −

Ada Foah Reference station
Anloga 0 − 0 − 0 −
Apam 1 31 September 2003 1 31 November 1986 0 −
Bortianor 1 31 September 2003 1 31 November 1986 0 −
Cape Coast 0 − 2 31 November 1981, 31 November 1986 0 −
Denu 0 − 0 − 0 −
Elmina 0 − 2 31 November 1981, 31 November 1986 0 −
Keta 0 − 0 − 0 −
Moree 0 − 2 31 November 1981, 31 November 1986 0 −

Prampram 0 − 3 31 December 1981, 31 November 1986,
31 January 1998 0 −

Saltpond 0 − 2 31 November 1981, 31 November 1986 0 −

Tema 0 − 3 31 December 1981, 31 November 1986,
31 January 1988 0 −

Winneba 1 31 September 2003 1 31 November 1986 0 −
a Detected from monthly data; b Detected from daily data.

Table 5. Trends in extreme temperature indices for the coastal Savannah agroecological zone of Ghana.

Locations SU25 TR20 WSDI CSDI TXx TNx TXn TNn TN10p TX10p TN90p TX90p DTR

Accra 0.231 0.000 0.000 0.000 0.014 0.008 0.033 0.016 −0.400 −0.220 0.383 0.217 −0.015
Ada Foah 0.000 0.000 0.000 0.000 0.003 0.010 0.026 0.026 −0.299 −0.113 0.376 0.104 −0.017
Anloga 0.000 0.000 0.000 0.000 0.003 0.010 0.026 0.026 −0.299 −0.116 0.376 0.104 −0.017
Apam 0.059 0.000 0.000 0.000 −0.004 0.007 0.030 0.008 −0.272 −0.041 0.378 0.020 −0.022
Bortianor 0.059 0.000 0.000 0.000 −0.004 0.007 0.030 0.008 −0.272 −0.041 0.378 0.020 −0.022
Cape Coast 0.571 0.000 0.000 −0.029 0.004 0.015 0.024 0.013 −0.409 −0.239 0.358 0.174 −0.012
Denu 0.167 0.000 0.000 −0.375 0.014 0.014 0.035 0.022 −0.432 −0.223 0.387 0.260 −0.012
Elmina 0.571 0.000 0.000 −0.029 0.004 0.015 0.024 0.013 −0.409 −0.239 0.358 0.174 −0.012
Keta 0.000 0.000 0.000 0.000 0.003 0.010 0.026 0.026 −0.299 −0.113 0.376 0.104 −0.017
Moree 0.571 0.000 0.000 −0.029 −0.008 0.015 0.024 0.013 −0.409 −0.239 0.358 0.174 −0.012
Prampram 0.053 0.056 0.000 0.000 0.008 0.013 0.032 0.022 −0.284 −0.037 0.399 0.058 −0.023
Saltpond 0.000 0.000 0.000 0.000 0.003 0.010 0.026 0.026 −0.299 −0.113 0.376 0.104 −0.017
Tema 0.231 0.000 0.000 0.000 0.014 0.008 0.033 0.016 −0.400 −0.220 0.383 0.217 −0.015
Winneba 0.059 0.000 0.000 0.000 −0.004 0.007 0.030 0.008 −0.272 −0.041 0.378 0.020 −0.022
Central region 0.290 0.000 0.000 −0.167 0.003 0.011 0.030 0.014 −0.335 −0.146 0.383 0.117 −0.016
Greater Accra region 0.000 0.016 0.000 −0.197 0.006 0.009 0.033 0.019 −0.332 −0.140 0.393 0.116 −0.019
Volta region 0.073 0.000 0.000 −0.233 0.007 0.012 0.029 0.024 −0.354 −0.142 0.393 0.156 −0.016
Entire zone (all locations) 0.176 0.006 0.000 −0.195 0.005 0.011 0.032 0.018 −0.346 −0.169 0.388 0.127 −0.018

Note: The values in the table are from the Sen’s slope estimator, which shows the magnitude of change per year.
The values in bold are significant at 5% and 95% confidence levels, as observed from the MK test and Sen’s slope
estimator, respectively. The values not in bold are insignificant at the same confidence level.
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Figure 3. Spatial distribution of trends in extreme temperature indices from 1981 to 2021 in the 
coastal Savannah agroecological zone of Ghana. (a) SU25, (b) TR20, (c) WSDI, (d) CSDI, (e) TXx, (f) 
TNx, (g) TXn, (h) TNn, (i) TN10p, (j) TX10p, (k) TN90p, (l) TX90p, (m) DTR. The symbol size varies 
by trend slope. 
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decrease, including in the central region, is observed in the maximum 5-day precipitation 
amount (RX5day). The simple precipitation index (SDII) significantly decreased in Cape 
Coast, Elmina, Moree, and Saltpond. The number of days of heavy precipitation (R10) also 
decreased significantly in Cape Coast, Elmina, Moree, and Saltpond. From Figure 4a–d, 
the magnitudes of changes in RX1day, RX5day, SDII, and R10 are greater in some areas 
of the central region than in the other two. The number of consecutive dry days (CDD) 
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Figure 3. Spatial distribution of trends in extreme temperature indices from 1981 to 2021 in the coastal
Savannah agroecological zone of Ghana. (a) SU25, (b) TR20, (c) WSDI, (d) CSDI, (e) TXx, (f) TNx,
(g) TXn, (h) TNn, (i) TN10p, (j) TX10p, (k) TN90p, (l) TX90p, (m) DTR. The symbol size varies by
trend slope.

The monthly or annual maximum of daily maximum temperature (TXx) (Figure 3e)
significantly increased only for Accra, Denu, and Tema, whereas the monthly or annual
maximum of daily minimum temperature (TNx) (Figure 3f) increased for Cape Coast,
Denu, Elmina, Moree, Prampram, the central region, Volta region, and the entire zone.
The monthly or annual minimum daily temperature (TNn) significantly increased in Ada
Foah, Anloga, Keta, Saltpond, and the entire zone. Figure 3h reveals that the magnitude
of change in TNn is higher in the Volta region and some areas of the central region than
in the Greater Accra region. Moreover, the proportion of cool days (TX10p) significantly
decreased for Accra, Cape Coast, Denu, Elmina, Moree, and Tema, and for the central and
Volta regions and the entire zone, whereas the number of warm days (TX90p) significantly
increased for Accra, Cape Coast, Denu, Elmina, Moree, and Tema, and the Greater Accra
region. From Figure 3j, the decrease in TX10p is higher in the central region compared to
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that in the other two regions, while the magnitude of change in TX90p (Figure 3l) is higher
in some portions of the Volta and Greater Accra regions.

3.1.3. Extreme Rainfall Indices

Table 6 and Figure 4a–j show the long-term changes in extreme rainfall indices and the
spatial distribution of the trends in rainfall for the coastal Savannah agroecological zone
of Ghana. From Table 6, the maximum 1-day precipitation amount (RX1day) significantly
decreased in Cape Coast, Elmina, Moree, and Saltpond. A similar and significant decrease,
including in the central region, is observed in the maximum 5-day precipitation amount
(RX5day). The simple precipitation index (SDII) significantly decreased in Cape Coast,
Elmina, Moree, and Saltpond. The number of days of heavy precipitation (R10) also
decreased significantly in Cape Coast, Elmina, Moree, and Saltpond. From Figure 4a–d, the
magnitudes of changes in RX1day, RX5day, SDII, and R10 are greater in some areas of the
central region than in the other two. The number of consecutive dry days (CDD) decreased
significantly in Accra, Ada Foah, Anloga, Denu, Keta, Prampram, the Greater Accra and
Volta regions, and the entire zone. That is, the Greater Accra and the Volta regions recorded
more dry days than the central region (Figure 4f). The annual sum of very wet days (R95p)
significantly decreased in Cape Coast, Elmina, Moree, Saltpond, and the central region.
As shown in Figure 4h, the R95p in the central region is significantly lower than in the
other two regions. A similar trend is observed in the annual sum of extremely wet days
(R99p) (Figure 4i). From Table 6, both increasing and decreasing trends are observed for
the consecutive wet days (CWD) and the annual total of wet-day precipitation (PRCPTOT).
However, the trends were insignificant. This is also evident in Figure 4g,j.

Table 6. Trends in extreme rainfall indices for the coastal Savannah agroecological zone of Ghana.

Locations RX1day RX5day SDII R10 R20 CDD CWD R95p R99p PRCPTOT

Accra −0.105 −0.228 −0.011 −0.060 −0.029 −0.364 0.258 −1.086 −0.552 2.994
Ada Foah 0.000 −0.375 −0.016 −0.128 −0.030 −0.500 0.070 −2.099 −0.619 0.396
Anloga 0.000 −0.375 −0.016 −0.128 −0.030 −0.500 0.070 −2.099 −0.619 0.396
Apam −0.058 −0.111 −0.002 0.000 −0.031 −0.123 −0.082 −1.649 −0.343 2.892
Bortianor −0.058 −0.111 −0.002 0.000 −0.031 −0.123 −0.082 −1.649 −0.343 2.892
Cape Coast −0.333 −0.895 −0.018 −0.279 −0.078 0.067 0.101 −4.500 −1.892 −3.694
Denu 0.016 −0.244 −0.010 −0.087 0.000 −0.500 0.282 −1.600 0.000 1.852
Elmina −0.333 −0.895 −0.018 −0.279 −0.078 0.067 0.101 −4.500 −1.892 −3.694
Keta 0.000 −0.375 −0.016 −0.128 −0.030 −0.500 0.070 −2.099 −0.619 0.396
Moree −0.333 −0.895 −0.018 −0.279 −0.078 0.067 0.101 −4.500 −1.892 −3.694
Prampram −0.086 −0.250 −0.014 −0.164 0.000 −0.378 0.308 −2.000 −0.679 0.542
Saltpond −0.333 −0.895 −0.018 −0.279 −0.078 0.067 0.101 −4.500 −1.892 −3.694
Tema −0.098 −0.209 −0.004 0.000 −0.039 −0.143 0.449 −1.091 −1.225 2.496
Winneba −0.058 −0.111 −0.002 0.000 −0.031 −0.123 −0.082 −1.649 −0.343 2.892
Central region −0.248 −0.724 −0.013 −0.222 −0.082 0.000 −0.044 −3.967 −1.521 −2.049
Greater Accra region −0.096 −0.199 −0.010 −0.083 −0.043 −0.294 0.218 −1.319 −1.000 1.654
Volta region 0.022 −0.272 −0.014 −0.102 −0.032 −0.500 0.195 −1.850 −1.850 1.161
Entire zone (all locations) −0.127 −0.496 −0.026 −0.163 −0.077 −0.214 0.104 −2.759 −1.439 −0.758

Note: The values in the table are from the Sen’s slope estimator, which shows the magnitude of change per year.
The values in bold are significant at 5% and 95% confidence levels, as observed from the MK test and Sen’s slope
estimator, respectively. The values not in bold are insignificant at the same confidence level.

3.1.4. Decadal Variations in Temperature and Rainfall

Figure 5a–c depict the average daily maximum (Tmax) and minimum (Tmin) tempera-
tures and rainfall in the coastal Savannah agroecological zone of Ghana over the last four
decades. The results of Welch’s two-sample t test comparing the mean changes between
decades for Tmax, Tmax, and rainfall in the central, Greater Accra, and Volta regions are
presented in Table 7. Figures 6a–f and 7a–c depict the standardized anomalies of Tmax
and Tmin and rainfall, relative to the 1981–2020 mean. Based on Figure 5a, the decadal
variability of Tmax is greatest in the Volta region, followed by the Greater Accra region,
and the central region has the lowest variability. Tmax increased substantially in the first
(1981–1990), second (1991–2000), and fourth (2011–2020) decades but decreased in the
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third (2001–2010). The Tmin increased considerably across all regions and in each decade.
Notwithstanding, the Volta region experienced a larger increase compared to the other
two regions (Figure 5b). From Table 7, the Welch’s t test showed that Tmax decreased
significantly only between the first and second decades in all three regions, while Tmin
decreased significantly between the third and fourth decades in the central and Greater
Accra regions.
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Figure 5. Average daily maximum (Tmax) (a), minimum (Tmin) (b), and rainfall (c) for the past four 
decades in the central, Greater Accra, and Volta areas of coastal Savannah agroecological zone of 
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Table 7. Results of the Welch’s t test analysis.

Central Greater Accra Volta

T Stat p-Value Sig. T Stat p-Value Sig. T Stat p-Value Sig.

First- and second-decades Tmax −3.128 0.002 * −3.306 0.000 * −2.328 0.002 *
Second- and third-decades Tmax 4.216 2.518 − 6.372 1.972 − 5.055 4.404 −
Third- and fourth-decades Tmax −6.572 5.286 − −7.966 1.890 − −9.244 3.063 −
First- and second-decades Tmin −10.176 3.662 − −10.706 1.497 − −9.572 1.404 −
Second- and third-decades Tmin −8.544 1.554 − −7.436 1.155 − −7.565 4.346 −
Third- and fourth-decades Tmin −2.177 0.029 * −3.130 0.002 * −4.111 3.976 −
First- and second-decades rainfall 2.896 0.004 * 4.189 2.835 − 0.727 0.467 −
Second- and third-decades rainfall 2.896 0.004 * −3.713 0.000 * −3.713 0.000 *
Third- and fourth-decades rainfall 0.471 0.638 − −0.190 0.849 − 4.135 3.594 −

* Shows significance at 95% confidence level, − indicates insignificance at 95% confidence level.

Figure 5c shows that rainfall exhibits decadal variations. Rainfall increased in the first
and third decades across all three regions but decreased in the second and fourth decades,
except for Greater Accra, where it increased in the fourth decade. Based on Welch’s t test in
Table 7, the central region had a significant increase in rainfall between the first and second
decades. Between the second and third decades, the central region experienced a significant
increase, while the Greater Accra and Volta regions observed significant decreases.

Generally, the anomalies in Tmax and Tmin show a stronger seasonal decadal variation
across the zone (Figure 6a–f). Between 1981 and 2020, the highest positive (2.3) and negative
(−1.8) dry season anomalies for Tmax (Figure 6a) both occurred in the central region in the
years of 1998 (the second decade) and 2006 (the third decade), respectively. In Figure 6b,
the greatest positive (2.5) and negative (−1.9) wet season anomalies appeared in the central
region and the Volta regions in 1987/2010 (both the first and third decades) and 2012 (the
fourth decade), respectively. For the minor season (Figure 6c), the highest positive (2.3)
occurred in the central region in 2013 (the fourth decade), while the highest negative (−1.9)
ensued in the same region and the Greater Accra region in 2007 (the third decade).
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From Figure 6d, the greatest positive (2.3) and negative (−1.9) anomalies for the dry
season Tmin occurred in the central and Volta regions in 1998 (the second decade) and
2008 (the third decade), respectively. For the wet season (Figure 6e), the greatest positive
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(2.1) ensued in both the central and Greater Accra regions in 1987/2010 (both the first
and third decades), while the greatest negative (−1.8) appeared in the central and Volta
regions in 2004 (the third decade). In Figure 6f, the highest positive (1.9) and negative
(−1.9) anomalies for Tmin were both recorded in the Volta region in the years 1997 (second
decade) and 2002 (third decade), respectively.

The anomalies in the mean decadal seasonal rainfall (Figure 7a–c) indicate greater
improvements in the wet and minor seasons than in the dry season, despite variations.
Between 1981 and 2020, the Volta and central regions recorded the highest positive (2.4) dry
season rainfall in the years of 1982 and 1986, respectively, both occurring in the first decade,
while the highest negative (−2.4) rainfall appeared in the Greater Accra region in 2001 (the
third decade) (Figure 7a). For the wet season (Figure 7b), both the greatest negative (−2.1)
and positive (2.1) rainfall anomalies ensued in the Greater Accra region in 1987 (the first
decade) and 2009 (the third decade), in that order. According to Figure 7c, the Greater
Accra and the central regions experienced the highest negative (−2.1) and positive (2.1)
minor season rainfall anomalies in the years 1983 and 1987, respectively, both occurring in
the first decade.
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3.2. Results for Future Climate Change Projection
3.2.1. Predictor Variables Selection

The selection of appropriate predictor variables is essential to the success of the SDSM
method. A correlation matrix between the individual predictand and the NCEP variables
was used to screen the appropriate predictors. The 26 large-scale daily predictors from the
NCEP reanalysis were utilized together with the predictors with the highest correlation
coefficient from the individual predictands (Tmax, Tmin, and rainfall) for all three regions
(i.e., central, Greater Accra, and Volta). Figure 8a,b shows a summary of the screened
variables of the NCEP predictors. Figure 8a shows that the pl_z, plzh, and temp, and
p8zh, correlated well to predict Tmax, Tmin, and rainfall for the CanESM2. The p_z, temp,
and p500 also correlated well with Tmax, Tmin, and rainfall in that order for the HadCM3
(Figure 8b). It can be said that the individual predictor variables identified for the CanESM2
and HadCM3 GCMs are controlled by different local variables in each region. Again, it can
be said that surface velocities (pl_z and p_z) and mean temperature at 2 m (temp) served
as potential predictors of temperature (Tmax and Tmin) for all the regions.
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3.2.2. Model Performance Assessment during Calibration and Validation

The study used calibration periods of 30 (1981–2010) and 26 (1981–2006) years and
validation periods of 11 (2011–2021) and 15 (2007–2021) years for CanESM2 and HadCM3,
respectively. The statistical performance regarding the coefficient of determination (R2), the
root mean square error (RMSE), and the percent bias (PBIAS) of the model is also presented
in Table 8. The CanESM2 and HadCM3 models’ performances were good and ranged
from 58–99%, 0.01–1.02 ◦C, and 0.42–11.79 ◦C, respectively, for R2, RMSE, and PBIAS (for
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all three regions and the entire zone) (Table 8). The performance of CanESM2 ranged
from 76–99%, 0.01–1.02 ◦C, and 0.22–10.01 ◦C for R2, RMSE, and PBIAS, respectively. The
performance of the HadCM3 also ranged from 58–99%, 0.02-0.91 ◦C, and 0.42–11.79 ◦C for
R2, RMSE, and PBIAS, in that order.

Table 8. Statistical performance during calibration and validation for Tmax, Tmin, and rainfall.

Predictand Area
CanESM2 HadCM3

R2 RMSE PBIAS R2 RMSE PBIAS

Tmax

Central region Calibration 0.95 0.01 −0.22 0.79 0.10 0.01
Validation 0.82 0.20 0.34 0.68 0.32 −0.42

Greater Accra region Calibration 0.99 0.22 0.11 0.99 0.33 0.23
Validation 0.91 0.41 −0.23 0.98 0.56 −0.32

Volta region Calibration 0.99 0.02 0.02 0.99 0.11 0.01
Validation 0.79 0.31 0.34 0.77 0.21 0.23

Entire zone
Calibration 0.99 0.20 0.11 0.96 0.10 0.11
Validation 0.87 0.31 0.23 0.86 0.32 0.31

Tmin

Central region Calibration 0.99 0.01 0.02 0.98 0.02 0.01
Validation 0.91 0.32 0.11 0.88 0.52 0.40

Greater Accra region Calibration 0.99 0.21 0.23 0.99 0.12 0.21
Validation 0.87 0.44 1.13 0.89 0.91 0.52

Volta region Calibration 0.99 0.03 0.02 0.99 0.13 0.02
Validation 0.94 0.52 0.31 0.79 0.31 0.70

Entire zone
Calibration 0.99 0.21 0.22 0.99 0.05 0.20
Validation 0.91 0.42 0.31 0.89 0.23 0.61

Rainfall

Central region Calibration 0.99 0.54 5.44 0.89 0.61 6.02
Validation 0.76 0.63 6.03 0.77 0.80 7.22

Greater Accra region Calibration 0.95 0.82 4.01 0.89 0.81 4.41
Validation 0.91 1.02 7.11 0.79 0.90 6.32

Volta region Calibration 0.92 0.42 4.12 0.88 0.40 7.01
Validation 0.79 0.55 6.23 0.58 0.61 9.15

Entire zone
Calibration 0.99 0.54 7.34 0.99 0.90 7.89
Validation 0.76 0.63 10.01 0.89 0.81 11.79

Table 8 shows low performance for rainfall as compared to the Tmax and Tmax, espe-
cially during validation under both models. Figure 9a–h show the graphical representation
of the results of the model calibration and validation for the central region (Figure 9a,b),
the Greater Accra region (Figure 9c,d), the Volta region (Figure 9e,f), and the entire zone
(Figure 9g,h). The low performance could be attributed to the conditional modeling be-
havior of rainfall and the difficulty of achieving a perfect multiple regression in the SDSM.
Regarding model comparison, the CanESM2 outperformed the HadCM3 during both
calibration and validation, especially for rainfall in all three regions and the entire zone
(Table 8). Notwithstanding, both models performed better for Tmax and Tmin.
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3.2.3. Change in Projected Future Monthly Maximum Temperature (Tmax)

Figure 10a–t depict the projected future monthly Tmax change for the central region
(Figure 10a–e), Greater Accra region (Figure 10f–j), Volta region (Figure 10k–o), and entire
zone (Figure 10p–t) using the CanESM2 (RCP2.6, 4.5, and 8.5) and HadCM3 (A2 and B2)
models for the 2030s, 2050s, and 2080s. The overall results from the scenarios generated
from the CanESM2 and HadCM3 models reveal that Tmax will increase in most months for
the 2030s, 2050s, and 2080s for all three regions and across the entire zone (Figure 10a–t).
The A2 scenario reveals a higher projection for Tmax than the B2 scenario for the regions
and the entire zone (Figure 10d,e,i,j,n,o,s,t). Under the RCP2.6, 4.5, and 8.5 scenarios, Tmax
is projected to increase largely in all three regions and for the entire zone. In comparison to
the RCP scenarios, Tmax shows a greater projected increase for RCP8.5 than the other two
scenarios (Figure 10a–c,f–h,k–m,p–r).

In both models and scenarios, a clear seasonal variation can be observed in the pro-
jected Tmax. In the future, Tmax will increase greatly in the dry season (November–March)
and decrease substantially in the wet (May–July) and minor (September–October) seasons
(Figure 10a–t). Tmax is expected to increase significantly more in Greater Accra (Figure 10f–j)
and Volta (Figure 10k–o) than in the central region (Figure 10a–e). Moreover, among the
years, Tmax is expected to increase considerably more in the 2050s and 2080s than in the
2030s. Regardless, greater variation in Tmax is observed in all scenarios for the 2080s. Tmax is
expected to be highest (1.6 ◦C) and lowest (−1.6 ◦C) across the three regions (Figure 11a–o),
as well as highest (1.5 ◦C) and lowest (−1.6 ◦C) for the entire zone (Figure 11p–t). In
comparing the two models, the RCPs outperformed the A2 and B2 scenarios.
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(A2 and B2) for the 2030s, 2050s, and 2080s for central (a–e), Greater Accra (f–j), Volta (k–o), and the 
entire zone (p–t). 
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3.2.4. Change in Projected Future Monthly Minimum Temperature (Tmin)

Figure 11a–t depict the projected future monthly change in Tmin for the central region
(Figure 11a–e), Greater Accra region (Figure 11f–j), Volta region (Figure 11k–o), and entire
zone (Figure 11p–t) under the CanESM2 (RCP2.6, 4.5, and 8.5) and HadCM3 (A2 and B2)
models for the 2030s, 2050s, and 2080s. The Tmin follows a similar pattern to that of the
Tmax. In general, Tmin is expected to increase in the 2030s, 2050s, and 2080s under both
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models for most months across the three regions and the entire zone (Figure 11a–t). Tmin is
projected to increase significantly more under the A2 scenario than under the B2 scenario
for the HadCM3 model (Figure 11d,e,i,j,n,o,s,t). Tmin is expected to increase significantly
more under RCP8.5 than under the other two scenarios (Figure 11a–c, f–h, k–m, and p–r)
across the three regions and the entire zone.

The results from Figure 11a–t show variation such as that of the Tmax. Generally, Tmin
reveals a projected increase from the months of November to June, especially for the RCP
scenarios. A similar pattern is observed under the A2 and B2 scenarios; however, the
month of June decreases in that regard. That is, unlike the Tmax, the Tmin in the future
will increase in the wet season, particularly in the month of June, as demonstrated by the
RCP scenarios. While the Tmin is expected to increase and decrease throughout the zone
(Figure 11p–t), the projected rise and fall differ by region. Tmin is expected to be the greatest
(1.4 ◦C) and lowest (−2.1 ◦C) across the three regions, as well as the greatest (1.4 ◦C) and
lowest (−2.3 ◦C) for the entire zone (Figure 11p–t). Tmin is expected to vary the most
(−2.3 and 1.4 ◦C) in Greater Accra and Volta and the least (−2.1 and 1.3 ◦C) in the central
region. In general, the increase and decrease in Tmin are considerably higher in the 2050s and
2080s across the three regions and the entire zone (Figure 11a–t). The overall comparison of
the model results reveals a higher performance in the RCPs than in the A2 and B2 scenarios,
like that of the Tmax.
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3.2.5. Change in Projected Future Monthly Rainfall

Figure 12a–t show the projected future monthly change in rainfall for the central region
(Figure 12a–e), Greater Accra region (Figure 12f–j), Volta region (Figure 12k–o), and the
entire zone (Figure 12p–t) for the 2030s, 2050s, and 2080s using the CanESM2 (RCP2.6, 4.5,
and 8.5) and HadCM3 (A2 and B2 models). The overall results from Figure 12a–t indicate
higher variations in rainfall in the 2030s, 2050s, and 2080s across the three regions and the
entire zone under both models. In the central region, the A2 and B2 scenarios showed
different projections for rainfall (Figure 12d–e). While rainfall is expected to increase
and decrease for the wet season and minor and dry seasons, respectively, under the A2
scenarios (Figure 12d), the B2 scenario showed the opposite (Figure 12e). A dissimilar
trend is observed for the Greater Accra region (Figure 12i,j). Here, rainfall is projected
to increase under both the A2 and B2 scenarios (Figure 12i,j); however, the magnitude of
change is greater for the dry season, especially from December to February. The projection
for the Volta region (Figure 12n,o) follows a similar trend as the Greater Accra region.
Here, rainfall is expected to increase in all months under both the A2 and B2 scenarios.
Nevertheless, increases are expected to occur more in the future in the minor and dry
seasons (September–March) compared to the wet season (April–July) (Figure 12n,o). The
A2 and B2 scenarios for the entire zone tend to follow the zone’s normal double maxima
rainfall season (Figure 12s–t). Here, rainfall is projected to increase in the wet, minor, and
dry seasons except in the months of December (in the 2050s and 2080s) and August (in the
2030s, 2050s, and 2080s) under the A2 scenario. This is the same under the B2 scenario,
just that here the decrease in December is expected to occur in the 2050s and in all the
years in August. In comparing the A2 and B2 scenarios, it was observed that the scenario
performance of the A2 was superior to the B2.

Under the RCP scenarios, rainfall is expected to increase in all months except April
under all the RCP scenarios and in October in the 2080s under the RCP8.5 scenario for
the central region (Figure 12a–c). Under the same scenarios, rainfall reveals projected
increases in all months in the Greater Accra region, with the highest change occurring
in the dry season (Figure 12f–h). In the Volta region, rainfall is projected to increase and
decrease between the months (Figure 12k–m). For instance, under the RCP26, rainfall
shows projected increases in all months except January, April, May, and June (in the 2030s
and 2050s) (Figure 12k). The RCP4.5 and 8.5 follow a similar pattern to that of the RCP2.6.
However, rainfall is expected to decrease in the month of December in the 2080s for both
the RCP4.5 and 8.5 scenarios (Figure 12l–m). The results of rainfall for the entire zone
under the RCP scenarios reveal a clear seasonal pattern (Figure 12p–r), as was observed
under the A2 and B2 scenarios (Figure 12s–t). Here, rainfall shows a projected increase in
the wet (April–July) and minor (September–October) seasons and a decrease in the dry
(November–February), except for March. Nevertheless, the increase in March was weak.

Therefore, rainfall is expected to vary between −98.4 and 247.7% across the three
regions and −29.0 and 148.0% for the entire zone under all scenarios. Among the three
regions, rainfall is projected to decrease greatly in the central region (−98.4%) followed by
the Greater Accra region (−65.8%) and least in the Volta region (−3.2%) whereas the Volta
region is expected to receive more rainfall (247.7%), the central region (101.0%), and the
Greater Accra region (100.6%). That is, in the future, monthly rainfall will increase greatly
in the Volta and Greater Accra regions and decrease immensely in the central region. The
overall model performance of the A2 and B2 scenarios surpasses that of the RCP scenarios
for rainfall. For the A2 and B2 scenarios, rainfall is projected to vary greatly more under
the A2 than in the B2 (Figure 12d,e,i,j,n,o,s,t). Under this scenario, rainfall is projected to
increase by up to 247.7% in the 2030s and 2080s under the A2 and B2 scenarios, while under
the RCP scenarios, rainfall is expected to increase by up to 96.0% in the 2050s and 2080s
under the RCP8.5 (Figure 12a–c,f–h,k–m,p–r).
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HadCM3 (A2 and B2) for the 2030s, 2050s, and 2080s for central (a–e), Greater Accra (f–j), Volta (k–o),
and the entire zone (p–t).

3.2.6. Projected Future Annual Change in Maximum (Tmax) and Minimum (Tmin) and Rainfall

Figure 13a–c show the projected future mean annual change in Tmax (Figure 13a), Tmin
(Figure 13b), and rainfall (Figure 13c) for the 2030s, 2050s, and 2080s for the central, Greater
Accra, and Volta regions and the entire zone under the CanESM2 (RCP2.6, 4.5, and 8.5)
and the HadCM3 (A2 and B2) models. The results from Figure 13a–c reveal a considerable
increase in Tmax, Tmin, and rainfall under both models. As shown in Figure 13a, Tmax is
expected to rise in all scenarios except the central region and the entire zone under RCP2.6.
Tmax is projected to increase greatly under the RCP8.5 scenario compared to the other two,
while the A2 scenario surpasses the B2 (Figure 13a). Among the three regions, Tmax reveals
a greater increase in the Greater Accra region, especially under the RCP8.5 and the A2
scenarios, than the other two regions. The increase is also higher in the 2080s than in the
2030s and 2050s (Figure 13a). Notwithstanding the increase, the projected mean annual
change is small. For example, the highest change in the mean annual Tmax of 1.6 ◦C is
expected to occur in the 2080s under the RCP8.5 scenario (Figure 13a). In general, the RCP
scenarios outperformed the A2 and B2 scenarios.

The Tmin follows a similar pattern to that of the Tmax. Here, Tmin is projected to
increase in all years under all scenarios except in the 2030s under RCP4.5, A2, and B2
(Figure 13b). Under the RCP4.5 and A2, only the central region showed a decrease, while
under the B2, Tmin is expected to decrease in the central and Greater Accra regions and the
entire zone (Figure 13b). The Tmin shows a higher projected increase under all scenarios for
the Greater Accra region than the other two. The Tmin is expected to increase significantly
in the 2050s under the RCP8.5 and A2 scenarios. In comparison to the Tmax, the Tmin shows
greater annual change. Here, the highest mean annual change of Tmin is 3.2 ◦C and is
expected to occur in the 2050s under the RCP8.5 scenario (Figure 13b). Similar to the Tmax,
the overall results of the RCP scenarios surpassed the A2 and B2.
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Figure 13. Mean annual change for 2030s, 2050s, and 2080s for (a) Tmax, (b) Tmin, and (c) rainfall for
the central region, Greater Accra region, Volta region, and the entire zone under CanESM2 (RCP2.6,
4.5, and 8.5) and HadCM3 (A2 and B2) models.

From Figure 13c, rainfall is projected to increase in all three regions and the entire
zone under all scenarios. The minimum and maximum change in mean annual rainfall
are expected to be between 0.8% (in the 2080s) and 79% (in the 2030s and 2080s) under the
RCP8.5 and the A2 and B2 scenarios, respectively (Figure 13c). Among the three regions,
the mean annual change in rainfall is expected to be highest in the Volta region, followed
by the Greater Accra region, and least in the central region. Rainfall for the three regions
and the entire zone show higher projections under the A2 and B2 scenarios than in the RCP
scenarios. That is, for rainfall, the A2 and B2 scenarios in the HadCm3 model outperformed
the RCPs in the CanESM2.

4. Discussion

In this study, we analyzed temperature (Tmax and Tmin) and rainfall extreme events
and their trends over space and time and employed the SDSM tool to downscale future
climate change scenarios based on the CanESM2 (RCP2.6, 4.5, and 8.5) and HadCM3 (A2
and B2) for the coastal Savannah agroecological zone of Ghana. Changes in temperature
and rainfall from extreme events have significant implications for water supply, agriculture,
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livelihoods, and the health of the inhabitants in this region. The study identified more
changepoints in Tmin across the study locations. This finding is consistent with previous
research studies conducted elsewhere on a national and global scale, such as [79,100–104].

The results revealed that the study region has warmed substantially in the past
four decades. This result agrees with the earlier global research, such as [3,8,105,106].
The findings are also consistent with the previous research conducted at regional scales,
such as [5,79,107,108]. According to the study’s findings, the SU25, TXn, and TN90p
significantly increased for all locations, regions, and the entire zone, which is consistent
with the previous findings such as [24,26,35,109–114]. Over the entire African continent,
Iyakaremye et al. [115] state the increased number of warm nights in most parts of Africa,
while Moberg et al. [116] report increased warming for the European territory. In further-
ance to this, the results revealed a significant decrease in TN10p throughout the study
locations and for the entire zone, which agrees with the earlier research studies, such
as [25,26,87,117,118]. The IPCC [1], in its fifth assessment report, underlines a decrease in
cool nights in many land regions, which is consistent with this study.

Spatially varied results were observed for the TXx, TNx, TNn, TX10p, TX90p, and the
CSDI. Positive trends were observed only in the locations of Accra, Denu, and Tema for the
TXx and Cape Coast, Denu, Elmina, Moree, Prampram, and the central and Volta regions
for the TNx (see Table 5 and Figure 3). The TNn also significantly increased in the locations
of Ada Foah, Anloga, Keta, and Saltpond. Again, the TX10p significantly decreases only in
the locations of Accra, Cape Coast, Denu, Elmina, Moree, and Tema. This decrease was
reflected in the three regions (the central, Greater Accra, and Volta), as well as for the entire
zone. This conforms to the IPCC’s [1] assertions that cool days have decreased in many
regions of the world. Moreover, the TX90p significantly increased only in the areas of Accra,
Cape Coast, Denu, Elmina, Moree, Tema, and the Greater Accra region. The CSDI further
showed both positive and negative trends. However, the positive trends, despite being
significant, were weak. The CSDI, thus, decreased significantly in the locations of Denu,
Elmina, and Moree, the three regions, and the entire zone. The variation in warming trends
observed in this study is in line with the previous studies [79,119–122].

From the results, the DTR, an essential indicator of climate change [123,124], signifi-
cantly decreased across the study region (−0.30 ◦C per decade). This finding is consistent
with the earlier studies conducted in different regions, such as [26,125–131]. Barry et al. [26]
state that the annual mean daily Tmin has increased more than the annual mean daily Tmax,
which has led to a decreased DTR in the West African region, of which this study is no
exception. It is worth noting that as far back as 1997, Easterling et al. [132] found a decreas-
ing DTR trend in most parts of the world. The authors found factors such as increased
cloudiness as key contributors to the decrease in DTR [132]. Nevertheless, Vose et al. [133]
assert that after 1980, the increases in minimum and maximum temperatures have become
more comparable, decreasing recent DTR trends. The recent increase in land-use changes
through urbanization, population growth, and economic and industrial activities could be
the cause of the decrease in the DTR in the zone. The coastal cities in Ghana, especially
Accra (the capital), Tema, and Cape Coast, are known for their improved economic and
industrial activities [73]. The incidence of urban heat island effects through urbanization
and population growth has been found to decrease DTR [134,135].

The results revealed a significant decrease in RX1day, RX5day, SDII, and R10 only
in the locations of Cape Coast, Elmina, Moree, and Saltpond, which was reflected in the
general decrease for the central region, while the other locations were insignificant. This
finding is consistent with previous research in other regions, such as [33,136–138]. In
addition, the results of this study did not show any significant increase or decrease for
R20, CWD, and PRCPTOT, which agrees with the earlier studies conducted elsewhere,
such as [139,140]. Moreover, the CDD significantly decreased in the areas of Accra, Ada
Foah, Anloga, Denu, Keta, Prampram, the Greater Accra and Volta regions, and the entire
zone. This finding supports the earlier works conducted in other regions, such as [141,142].
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The R95p and R99p, moreover, decreased significantly in the areas of Cape Coast, Elmina,
Moree, and Saltpond, which reflected a significant decrease for the central region.

The results from the rainfall extreme indices revealed variations in the study region.
For example, the decrease in RX1day, RX5day, SDII, and R10 was significant in most
parts of the central region compared to the other two regions. A similar situation was
observed for the R95p and R99p, while the CDD showed a significant decrease in the
Greater Accra and Volta regions compared to the central region. This thus confirms the
spatially variable nature of rainfall [24,29,143]. Other authors, including Abdullah et al. [79];
Vondou et al. [141]; and Santos et al. [142], reported highly variable extreme rainfall events
in Bangladesh, Cameroon, and mainland Portugal, respectively. The results of the study
revealed strong variations for the last four decades in the study regions, confirming the
earlier work of Sanogo et al. [144] for the West African region and that of Nicholson [145]
for the entire African continent.

The increase in global greenhouse gas emissions is believed to have made rainfall
more variable over the West African region [146–148]. The decrease in rainfall is also
attributed to land-ocean interactions and the related changes in sea surface temperature
(SST) [148]. Notwithstanding, Dong and Sutton [148] believe that the increased levels of
greenhouse gases in the atmosphere have a more substantial influence on the variable
nature of rainfall in the West African region than the SST. Skinner et al. [149] contend that
changes in SST caused by atmospheric radiative forcing are to blame for the decrease and
variable nature of rainfall along most of the West African Guinea’s coast areas. According to
Skinner et al. [149], changes in SST reduce the monsoon westerlies and the tropical easterly
jet (TEJ), as well as low-level interconnection and rising air in the middle levels of the
troposphere, causing decreasing rainfall over the region. Elsewhere, Abdullah et al. [79]
and Shrestha et al. [107] reported decreased annual total rainfall for Bangladesh and India,
respectively, in recent decades.

During the model performance assessment for calibration and validation for future
climate change scenarios for the study region, it was observed that the performance in
rainfall was low compared to the Tmax and Tmin, especially during validation of the model.
This finding is consistent with the earlier studies, such as [44,45,56]. The poor performance
could be attributed to the conditional modeling behavior of rainfall and the difficulty
of achieving a perfect multiple regression in the SDSM. Wilby and Dawson [96] high-
lighted the fact that conditional models, such as the one applied to the case of rainfall,
reveal an intermediate process between local weather and regional forcing. According to
Siabi et al. [44], the dynamics of local weather, such as rainfall, are highly dependent on
the number of wet and dry days, which in turn rely on regional-scale predictors such as
atmospheric pressure and humidity, both of which are difficult for the SDSM to capture.
Therefore, when compared to Tmax and Tmin, the process of downscaling rainfall is more
challenging [150,151]. Gulacha and Mulungu [151] assert that the SDSM is possibly not
the appropriate tool to downscale rainfall. The model performance results for Tmax and
Tmin and rainfall in our study contradict the assertions of Gulacha and Mulungu [151]. In
general, the present study achieved better calibration performance in all three climate vari-
ables analyzed (see Table 8) and is consistent with the earlier studies conducted elsewhere,
such as [44,45,56,65,66].

The result from the performance of the two models showed that the CanESM2
(R2 = 76–99%) outperformed the HadCM3 (R2 = 58–99%) during calibration and validation.
This finding is consistent with the previous future climate change projection studies, such
as [45,59,60,152]. It is worth noting that several research studies, such as [44,153] have
also reported better performance in the HadCM3 model compared to the CanESM2. The
differences in model agreements, thus, reveal the uncertainty related to climate change
assessment [60,154].

Generally, the results of monthly projections for both Tmax and Tmin revealed an
increase for the 2030s, 2050s, and 2080s under both the CanESM2 (RCP2.6, 4.5, and 8.5)
and HadCM3 (A2 and B2) models for three regions and the entire zone, amidst varia-
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tions. The study zone’s three regions are expected to have the highest (1.6 ◦C) and lowest
(−1.6 ◦C) Tmax, while the entire zone is expected to have 1.5 ◦C and −1.6 ◦C. Tmin will be
the greatest (1.4 ◦C) and lowest (−2.1 ◦C) in each region, as well as the greatest (1.4 ◦C) and
lowest (−2.3 ◦C) for the entire zone. Under the CanESM2 model, both Tmax and Tmin are
projected to increase greatly under the RCP8.5 scenario, while that of the HadCM3 reveals
a higher increase under the A2 scenarios. This finding is in line with the earlier studies,
such as [44,45,56,59]. Under RCP8.5, the mean annual change in Tmax and Tmin is projected
to be 1.6 ◦C (occurring in the 2080s) and 3.2 ◦C (occurring in the 2050s), respectively, which
is similar to the change reported in an earlier study, such as [60].

The results from the projected monthly change in rainfall revealed variations among
the three regions and the entire zone for the 2030s, 2050s, and 2080s under both models.
Notwithstanding, the results obtained under both models showed more increases than
decreases in rainfall. The decrease is more visible in the central region, while the Greater
Accra and Volta regions showed an increase, thereby reflecting a general increase in rainfall
in the future for the entire zone. For instance, rainfall is expected to vary between−98.4 and
247.7% across the three regions and−29.0 and 148.0% for the entire zone under all scenarios.
This finding is in conformity with the earlier studies, such as [44,56]. The projected mean
annual change in rainfall reveals an increase across the three regions and the entire zone.
The mean annual rainfall in the zone is expected to vary between −0.8 and 79% under all
scenarios. This finding agrees with studies such as [59,60].

The results of the study, therefore, have important implications for the coastal Savan-
nah agroecological zone and the entire country. Although rainfall is projected to increase in
the zone, it will be accompanied by greater variations. This situation could result in severe
extreme events, including drought and floods in the zone. The incidence of both drought
and flood events in the zone could have significant negative impacts on agricultural activ-
ities. For instance, a drought can lead to crop failures, losses, and the general drying of
crops [155], while floods also have the tendency to damage seeds and seedlings and sweep
away fertile soil [156]. The impacts of climate change on health are widely established
in the scientific literature. For instance, Bosello et al. [157] assert that climate change will
increase the range and abundance of vector-borne diseases, particularly malaria. There is
also the possibility of a high incidence of diarrheal and intestinal diseases and cholera with
the projected increase in rainfall. The projected increase in future rainfall in the zone will
be beneficial for water resources, which will increase the annual river runoff.

5. Conclusions

Under a changing climate, the analysis of climate extreme indices and the projections
for possible future climate change scenarios are relevant. The overall results of the study
suggest that temperatures in the coastal Savannah agroecological zone of Ghana have
increased and rainfall has become more variable over the last four decades, a feature that
clearly supports the literature consensus on the variable nature of rainfall in the West
African region. Both temperatures and rainfall are projected to increase in the future.

We noticed that most indices, such as SU25, TXn, and TN90p, significantly increased
across the study locations, while others, such as TXx, TNx, TNn, TX10p, TX90p, and the
CSDI, exhibited both increased and decreased trends, reflecting variations in the zone. The
DTR, which is considered an essential indicator of climate change, significantly decreased
across the study region. The majority of the extreme rainfall indices revealed a more
significant decrease than an increase across the zone.

The general performance of the CanESM2 and HadCM3 models during calibration
and validation was better, thereby supporting the encouragement for the usage of the
SDSM technique in the literature for evaluating future possible climate change scenarios.
The overall projection for both monthly and annual Tmax and Tmin showed an increase for
the 2030s, 2050s, and 2080s under both the CanESM2 (RCP2.6, 4.5, and 8.5) and HadCM3
(A2 and B2) scenarios, agreeing with the consensus of a warming world and the need
for increased mitigation and adaptation. Generally, both monthly and annual rainfall
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are projected to increase in the zone for the 2030s, 2050s, and 2080s under both models,
amidst variations.

The findings of the study have several implications for agricultural activities, water
resources, health, and the general livelihoods of the inhabitants in the study zone. The
findings of this study could, therefore, be helpful for the development of appropriate
adaptation plans to safeguard the livelihoods of people in the zone.
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temperature extremes in Serbia over the period 1961−2010. Atmos. Res. 2017, 183, 26–41. [CrossRef]

87. Sein, K.K.; Chidthaisong, A.; Oo, K.L. Observed trends and changes in temperature and precipitation extreme indices over
Myanmar. Atmosphere 2018, 9, 477. [CrossRef]

88. Wang, X.L.; Chen, H.; Wu, Y.; Feng, Y.; Pu, Q. New techniques for the detection and adjustment of shifts in daily precipitation
data series. J. Appl. Meteorol. Climatol. 2010, 49, 2416–2436. [CrossRef]

89. Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [CrossRef]
90. Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975.
91. Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [CrossRef]
92. da Silva, R.M.; Santos, C.A.G.; Moreira, M.; Corte-Real, J.; Silva, V.C.L.; Medeiros, I.C. Rainfall and river flow trends using

Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 2015, 77, 1205–1221. [CrossRef]
93. Derrick, B.; Toher, D.; White, P. Why Welch’s test is Type I error robust. Quant. Methods Psychol. 2016, 12, 30–38. [CrossRef]
94. Wilby, R.L.; Dawson, C.W.; Barrow, E.M. SDSM—a decision support tool for the assessment of regional climate change impacts.

Environ. Model. Softw. 2002, 17, 145–157. [CrossRef]
95. Wilby, R.L.; Charles, S.; Mearns, L.O.; Whetton, P.; Zorito, E.; Timbal, B. Guidelines for use of climate scenarios developed from

statistical downscaling methods. IPCC Task Group on Scenarios for Climate Impact Assessment (TGCIA). 2004. Available online:
http://www.ipccdata.org/guidelines/dgmno2v1092004.pd (accessed on 27 August 2022).

96. Wilby, R.L.; Dawson, C.W. SDSM 4.2-A Decision Support Tool for the Assessment of Regional Climate Change Impacts; User Manual;
Lancaster University: Lancaster, UK; Environment Agency England: Wales, UK, 2007; Volume 94, pp. 1–94.

97. Wilby, R.L.; Dawson, C.W. The statistical downscaling model: Insights from one decade of application. Int. J. Climatol. 2013, 33,
1707–1719. [CrossRef]

http://doi.org/10.1016/j.jhydrol.2005.06.035
http://doi.org/10.1002/hyp.6084
http://doi.org/10.1007/s10668-020-01171-5
http://doi.org/10.1007/s40808-018-0479-0
http://doi.org/10.2166/nh.2021.096
http://doi.org/10.1155/2021/8899645
https://statsghana.gov.gh/gssmain/fileUpload/pressrelease/2010_PHC_National_Analytical_Report.pdf
https://statsghana.gov.gh/gssmain/fileUpload/pressrelease/2010_PHC_National_Analytical_Report.pdf
http://doi.org/10.3354/cr01254
http://doi.org/10.1146/annurev.psych.58.110405.085530
http://doi.org/10.1037/1082-989X.7.2.147
http://doi.org/10.3978/j.issn.2305-5839.2015.12.63
http://www.ncbi.nlm.nih.gov/pubmed/26889483
http://doi.org/10.1002/joc.6911
http://doi.org/10.1002/mpr.329
http://www.ncbi.nlm.nih.gov/pubmed/21499542
http://www.acmad.net/rcc/procedure/RClimDexUserManual.pdf
http://cccma.seos.uvic.ca/ETCCDMI/RHTest/RHTestUserManual.doc
http://cccma.seos.uvic.ca/ETCCDMI/RHTest/RHTestUserManual.doc
http://doi.org/10.1175/2008JAMC1741.1
http://doi.org/10.1175/2007JTECHA982.1
http://etccdi.pacificclimate.org/software.shtml.
http://etccdi.pacificclimate.org/software.shtml.
http://doi.org/10.1016/j.atmosres.2016.08.013
http://doi.org/10.3390/atmos9120477
http://doi.org/10.1175/2010JAMC2376.1
http://doi.org/10.2307/1907187
http://doi.org/10.1080/01621459.1968.10480934
http://doi.org/10.1007/s11069-015-1644-7
http://doi.org/10.20982/tqmp.12.1.p030
http://doi.org/10.1016/S1364-8152(01)00060-3
http://www.ipccdata.org/guidelines/dgmno2v1092004.pd
http://doi.org/10.1002/joc.3544


Atmosphere 2023, 14, 386 42 of 44

98. Mahmood, R.; Babel, M.S. Future changes in extreme temperature events using the statistical downscaling model (SDSM) in the
trans-boundary region of the Jhelum river basin. Weather. Clim. Extrem. 2014, 5, 56–66. [CrossRef]

99. Fan, X.; Jiang, L.; Gou, J. Statistical downscaling and projection of future temperatures across the Loess Plateau, China. Weather
Clim. Extrem. 2021, 32, 100328. [CrossRef]

100. Cao, L.; Zhu, Y.; Tang, G.; Yuan, F.; Yan, Z. Climatic warming in China according to a homogenized data set from 2419 stations.
Int. J. Climatol. 2016, 36, 4384–4392. [CrossRef]

101. Li, Q.; Dong, W. Detection and adjustment of undocumented discontinuities in Chinese temperature series using a composite
approach. Adv. Atmos. Sci. 2009, 26, 143–153. [CrossRef]

102. Jaiswal, R.K.; Lohani, A.K.; Tiwari, H.L. Statistical analysis for change detection and trend assessment in climatological parameters.
Environ. Process. 2015, 2, 729–749. [CrossRef]

103. Sarangi, C.; Qian, Y.; Li, J.; Leung, L.R.; Chakraborty, T.C.; Liu, Y. Urbanization amplifies nighttime heat stress on warmer days
over the US. Geophys. Res. Lett. 2021, 48, 1–12. [CrossRef]

104. Yu, M.; Ruggieri, E. Change point analysis of global temperature records. Int. J. Climatol. 2019, 39, 3679–3688. [CrossRef]
105. Ajjur, S.B.; Al-Ghamdi, S.G. Global hotspots for future absolute temperature extremes from CMIP6 Models. Earth Space Sci. 2021,

8, e2021EA001817. [CrossRef]
106. Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al.

Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2
Dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [CrossRef]

107. Shrestha, A.B.; Bajracharya, S.R.; Sharma, A.R.; Duo, C.; Kulkarni, A. Observed trends and changes in daily temperature and
precipitation extremes over the Koshi River basin 1975–2010. Int. J. Climatol. 2017, 37, 1066–1083. [CrossRef]

108. Zhou, B.; Xu, Y.; Wu, J.; Dong, S.; Shi, Y. Changes in temperature and precipitation extreme indices over China: Analysis of a
high-resolution grid dataset. Int. J. Climatol. 2016, 36, 1051–1066. [CrossRef]

109. Dashkhuu, D.; Kim, J.P.; Chun, J.A.; Lee, W.S. Long-term trends in daily temperature extremes over Mongolia. Weather Clim.
Extrem. 2015, 8, 26–33. [CrossRef]

110. Ullah, S.; You, Q.; Ullah, W.; Ali, A.; Xie, W.; Xie, X. Observed changes in temperature extremes over China–Pakistan economic
corridor during 1980–2016. Int. J. Climatol. 2019, 39, 1457–1475. [CrossRef]

111. Saddique, N.; Khaliq, A.; Bernhofer, C. Trends in temperature and precipitation extremes in historical (1961–1990) and projected
(2061–2090) periods in a data scarce mountain basin, Northern Pakistan. Stoch. Environ. Res. Risk Assess. 2020, 34, 1441–1455.
[CrossRef]

112. Viceto, C.; Cardoso Pereira, S.; Rocha, A. Climate change projections of extreme temperatures for the Iberian Peninsula. Atmosphere
2019, 10, 229. [CrossRef]

113. Teshome, A.; Zhang, J. Increase of extreme drought over Ethiopia under climate warming. Adv. Meteorol. 2019, 2019, 5235429.
[CrossRef]

114. van der Walt, A.J.; Fitchett, J.M. Exploring extreme warm temperature trends in South Africa: 1960–2016. Theor. Appl. Climatol.
2021, 143, 1341–1360. [CrossRef]

115. Iyakaremye, V.; Zeng, G.; Ullah, I.; Gahigi, A.; Mumo, R.; Ayugi, B. Recent observed changes in extreme high-temperature events
and associated meteorological conditions over Africa. Int. J. Climatol. 2022, 42, 4522–4537. [CrossRef]

116. Moberg, A.; Jones, P.D.; Lister, D.; Walther, A.; Brunet, M.; Jacobeit, J.; Alexander, L.V.; Della-Marta, P.M.; Luterbacher, J.; Yiou,
P.; et al. Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J. Geophys. Res.
Atmos. 2006, 111, D22106. [CrossRef]

117. Quenum, G.M.L.D.; Nkrumah, F.; Klutse, N.A.B.; Sylla, M.B. Spatiotemporal changes in temperature and precipitation in West
Africa. Part i: Analysis with the CMIP6 historical dataset. Water 2021, 13, 3506. [CrossRef]

118. Wazneh, H.; Arain, M.A.; Coulibaly, P. Climate indices to characterize climatic changes across Southern Canada. Meteorol. Appl.
2020, 27, 1–19. [CrossRef]

119. Ji, F.; Wu, Z.; Huang, J.; Chassignet, E.P. Evolution of land surface air temperature trend. Nat. Clim. Chang. 2014, 4, 462–466.
[CrossRef]

120. Tong, S.; Li, X.; Zhang, J.; Bao, Y.; Bao, Y.; Na, L.; Si, A. Spatial and temporal variability in extreme temperature and precipitation
events in Inner Mongolia (China) during 1960–2017. Sci. Total Environ. 2019, 649, 75–89. [CrossRef]

121. Stephenson, T.S.; Vincent, L.A.; Allen, T.; Van Meerbeeck, C.J.; Mclean, N.; Peterson, T.C.; Taylor, M.A.; Aaron-Morrison, A.P.;
Auguste, T.; Bernard, D.; et al. Changes in extreme temperature and precipitation in the Caribbean Region, 1961–2010. Int. J.
Climatol. 2014, 34, 2957–2971. [CrossRef]

122. Rahimzadeh, F.; Asgari, A.; Fattahi, E. Variability of extreme temperature and precipitation in Iran during recent decades. Int. J.
Climatol. 2009, 29, 329–343. [CrossRef]

123. Braganza, K.; Karoly, D.J.; Arblaster, J.M. Diurnal temperature range as an index of global climate change during the twentieth
century. Geophys. Res. Lett. 2004, 31, 2–5. [CrossRef]

124. Mall, R.K.; Chaturvedi, M.; Singh, N.; Bhatla, R.; Singh, R.S.; Gupta, A.; Niyogi, D. Evidence of asymmetric change in diurnal
temperature range in recent decades over different agro-climatic zones of India. Int. J. Climatol. 2021, 41, 2597–2610. [CrossRef]

125. Bartolini, G.; Morabito, M.; Crisci, A.; Grifoni, D.; Torrigiani, T.; Petralli, M.; Maracchi, G.; Orlandini, S. Recent trends in Tuscany
(Italy) summer temperature and indices of extremes. Int. J. Climatol. 2008, 28, 1751–1760. [CrossRef]

http://doi.org/10.1016/j.wace.2014.09.001
http://doi.org/10.1016/j.wace.2021.100328
http://doi.org/10.1002/joc.4639
http://doi.org/10.1007/s00376-009-0143-8
http://doi.org/10.1007/s40710-015-0105-3
http://doi.org/10.1029/2021GL095678
http://doi.org/10.1002/joc.6042
http://doi.org/10.1029/2021EA001817
http://doi.org/10.1002/jgrd.50150
http://doi.org/10.1002/joc.4761
http://doi.org/10.1002/joc.4400
http://doi.org/10.1016/j.wace.2014.11.003
http://doi.org/10.1002/joc.5894
http://doi.org/10.1007/s00477-020-01829-6
http://doi.org/10.3390/atmos10050229
http://doi.org/10.1155/2019/5235429
http://doi.org/10.1007/s00704-020-03479-8
http://doi.org/10.1002/joc.7485
http://doi.org/10.1029/2006JD007103
http://doi.org/10.3390/w13243506
http://doi.org/10.1002/met.1861
http://doi.org/10.1038/nclimate2223
http://doi.org/10.1016/j.scitotenv.2018.08.262
http://doi.org/10.1002/joc.3889
http://doi.org/10.1002/joc.1739
http://doi.org/10.1029/2004GL019998
http://doi.org/10.1002/joc.6978
http://doi.org/10.1002/joc.1673


Atmosphere 2023, 14, 386 43 of 44

126. Caloiero, T.; Coscarelli, R.; Ferrari, E.; Sirangelo, B. Trend analysis of monthly mean values and extreme indices of daily
temperature in a region of southern Italy. Int. J. Climatol. 2017, 37, 284–297. [CrossRef]

127. Rahman, M.A.; Kang, S.C.; Nagabhatla, N.; Macnee, R. Impacts of temperature and rainfall variation on rice productivity in major
ecosystems of Bangladesh. Agric. Food Secur. 2017, 6, 1–11. [CrossRef]

128. dos Santos, C.A.C.; Neale, C.M.U.; Rao, T.V.R.; da Silva, B.B. Trends in indices for extremes in daily temperature and precipitation
over Utah, USA. Int. J. Climatol. 2011, 31, 1813–1822. [CrossRef]

129. You, Q.; Kang, S.; Aguilar, E.; Pepin, N.; Flügel, W.-A.; Yan, Y.; Xu, Y.; Zhang, Y.; Huang, J. Changes in daily climate extremes
in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417.
[CrossRef]

130. Felix, M.L.; Kim, Y.K.; Choi, M.; Kim, J.C.; Do, X.K.; Nguyen, T.H.; Jung, K. Detailed trend analysis of extreme climate indices in
the upper Geum River basin. Water 2021, 13, 3171. [CrossRef]

131. Randriamarolaza, L.Y.A.; Aguilar, E.; Skrynyk, O.; Vicente-Serrano, S.M.; Domínguez-Castro, F. Indices for daily temperature and
precipitation in Madagascar, based on quality-controlled and homogenized data, 1950–2018. Int. J. Climatol. 2022, 42, 265–288.
[CrossRef]

132. Easterling, D.R.; Horton, B.; Jones, P.D.; Peterson, T.C.; Karl, T.R.; Parker, D.E.; Salinger, M.J.; Razuvayev, V.; Plummer, N.;
Jamason, P.; et al. Maximum and minimum temperature trends for the globe. Science 1997, 277, 364–367. [CrossRef]

133. Vose, R.S.; Easterling, D.R.; Gleason, B. Maximum and minimum temperature trends for the globe: An update through 2004.
Geophys. Res. Lett. 2005, 32, 1–5. [CrossRef]

134. Kalnay, E.; Cai, M. Impact of urbanization and land-use. Nature 2003, 425, 528–531. [CrossRef]
135. Mohan, M.; Kandya, A. Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of

tropical urban airshed of India using remote sensing data. Sci. Total Environ. 2015, 506–507, 453–465. [CrossRef]
136. Wei, W.; Shi, Z.; Yang, X.; Wei, Z.; Liu, Y.; Zhang, Z.; Ge, G.; Zhang, X.; Guo, H.; Zhang, K.; et al. Recent trends of extreme

precipitation and their teleconnection with atmospheric circulation in the Beijing-Tianjin sand source region, China, 1960–2014.
Atmosphere 2017, 8, 83. [CrossRef]

137. Ortiz-Gómez, R.; Muro-Hernández, L.J.; Flowers-Cano, R.S. Assessment of extreme precipitation through climate change indices
in Zacatecas, Mexico. Theor. Appl. Climatol. 2020, 141, 1541–1557. [CrossRef]

138. Liang, K. Spatio-Temporal Variations in precipitation extremes in the endorheic Hongjian lake basin in the Ordos Plateau, China.
Water 2019, 11, 1981. [CrossRef]

139. Alavinia, S.H.; Zarei, M. Analysis of spatial changes of extreme precipitation and temperature in Iran over a 50-Year Period. Int. J.
Climatol. 2021, 41, E2269–E2289. [CrossRef]

140. Subba, S.; Ma, Y.; Ma, W. Spatial and temporal analysis of precipitation extremities of eastern Nepal in the last two decades
(1997–2016). J. Geophys. Res. Atmos. 2019, 124, 7523–7539. [CrossRef]

141. Vondou, D.A.; Guenang, G.M.; Djiotang, T.L.A.; Kamsu-Tamo, P.H. Article trends and interannual variability of extreme rainfall
indices over Cameroon. Sustainability. 2021, 13, 6803. [CrossRef]

142. Santos, M.; Fonseca, A.; Fragoso, M.; Santos, J.A. Recent and future changes of precipitation extremes in mainland Portugal. Theor.
Appl. Climatol. 2019, 137, 1305–1319. [CrossRef]

143. Diatta, S.; Diedhiou, C.W.; Dione, D.M.; Sambou, S. Spatial variation and trend of extreme precipitation in West Africa and
teleconnections with remote indices. Atmosphere 2020, 11, 999. [CrossRef]

144. Sanogo, S.; Fink, A.H.; Omotosho, J.A.; Ba, A.; Redl, R.; Ermert, V. Spatio-temporal characteristics of the recent rainfall recovery in
West Africa. Int. J. Climatol. 2015, 35, 4589–4605. [CrossRef]

145. Nicholson, S.E. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Chang. 2000, 26,
137–158. [CrossRef]

146. Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The impact of future climate change on West African crop yields: What does the recent
literature say? Glob. Environ. Chang. 2011, 21, 1073–1083. [CrossRef]

147. Biasutti, M. Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos. 2013, 118, 1613–1623. [CrossRef]
148. Dong, B.; Sutton, R. Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nat. Clim. Chang. 2015, 5, 757–760.

[CrossRef]
149. Skinner, C.B.; Ashfaq, M.; Diffenbaugh, N.S. Influence of twenty-first-century atmospheric and sea surface temperature forcing

on West African climate. J. Clim. 2012, 25, 527–542. [CrossRef]
150. Meenu, R.; Rehana, S.; Mujumdar, P.P. Assessment of hydrologic impacts of climate change in Tunga-Bhadra River basin, India

with HEC-HMS and SDSM. Hydrol. Process. 2013, 27, 1572–1589. [CrossRef]
151. Gulacha, M.M.; Mulungu, D.M.M. Generation of climate change scenarios for precipitation and temperature at local scales using

SDSM in Wami-Ruvu River basin Tanzania. Phys. Chem. Earth 2017, 100, 62–72. [CrossRef]
152. Shahriar, S.A.; Siddique, M.A.M.; Rahman, S.M.A. Climate change projection using statistical downscaling model over Chittagong

Division, Bangladesh. Meteorol. Atmos. Phys. 2021, 133, 1409–1427. [CrossRef]
153. Hassan, W.H.; Nile, B.K. Climate change and predicting future temperature in Iraq using CanESM2 and HadCM3 modeling.

Model. Earth Syst. Environ. 2021, 7, 737–748. [CrossRef]
154. Koukidis, E.N.; Berg, A.A. Sensitivity of the statistical downscaling model (SDSM) to reanalysis products. Atmos. -Ocean. 2009, 47,

1–18. [CrossRef]

http://doi.org/10.1002/joc.5003
http://doi.org/10.1186/s40066-017-0089-5
http://doi.org/10.1002/joc.2205
http://doi.org/10.1007/s00382-009-0735-0
http://doi.org/10.3390/w13223171
http://doi.org/10.1002/joc.7243
http://doi.org/10.1126/science.277.5324.364
http://doi.org/10.1029/2005GL024379
http://doi.org/10.1038/nature01675
http://doi.org/10.1016/j.scitotenv.2014.11.006
http://doi.org/10.3390/atmos8050083
http://doi.org/10.1007/s00704-020-03293-2
http://doi.org/10.3390/w11101981
http://doi.org/10.1002/joc.6845
http://doi.org/10.1029/2019JD030639
http://doi.org/10.3390/su13126803
http://doi.org/10.1007/s00704-018-2667-2
http://doi.org/10.3390/atmos11090999
http://doi.org/10.1002/joc.4309
http://doi.org/10.1016/S0921-8181(00)00040-0
http://doi.org/10.1016/j.gloenvcha.2011.04.007
http://doi.org/10.1002/jgrd.50206
http://doi.org/10.1038/nclimate2664
http://doi.org/10.1175/2011JCLI4183.1
http://doi.org/10.1002/hyp.9220
http://doi.org/10.1016/j.pce.2016.10.003
http://doi.org/10.1007/s00703-021-00817-x
http://doi.org/10.1007/s40808-020-01034-y
http://doi.org/10.3137/AO924.2009


Atmosphere 2023, 14, 386 44 of 44

155. Ding, Y.; Hayes, M.J.; Widhalm, M. Measuring economic impacts of drought: A review and discussion. Disaster Prev. Manag.
2011, 20, 434–446. [CrossRef]

156. Armah, F.A.; Yawson, D.O.; Yengoh, G.T.; Odoi, J.O.; Afrifa, E.K.A. Impact of floods on livelihoods and vulnerability of natural
resource dependent communities in Northern Ghana. Water 2010, 2, 120. [CrossRef]

157. Bosello, F.; Roson, R.; Tol, R.S.J. Economy-wide estimates of the implications of climate change: Human health. Ecol. Econ. 2006,
58, 579–591. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1108/09653561111161752
http://doi.org/10.3390/w2020120
http://doi.org/10.1016/j.ecolecon.2005.07.032

	Introduction 
	Materials and Methods 
	Study Area 
	Data Sources and Methods of Analysis 
	Observed Data 
	Homogeneity Test and Homogenization 
	Calculation of Extreme Climate Indices 
	Trend Analysis 

	General Circulation Models (GCMs) Data 
	Statistical Downscaling Model (SDSM) 
	Model Performance Assessment 


	Results 
	Results from Extreme Temperature and Rainfall Indices 
	Changepoints and Homogenization of Temperature and Rainfall 
	Extreme Temperature Indices 
	Extreme Rainfall Indices 
	Decadal Variations in Temperature and Rainfall 

	Results for Future Climate Change Projection 
	Predictor Variables Selection 
	Model Performance Assessment during Calibration and Validation 
	Change in Projected Future Monthly Maximum Temperature (Tmax) 
	Change in Projected Future Monthly Minimum Temperature (Tmin) 
	Change in Projected Future Monthly Rainfall 
	Projected Future Annual Change in Maximum (Tmax) and Minimum (Tmin) and Rainfall 


	Discussion 
	Conclusions 
	References

