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Abstract: Agriculture accounts for a large percentage of nitrous oxide (N2O) emissions, mainly due
to the misapplication of nitrogen-based fertilizers, leading to an increase in the greenhouse gas (GHG)
footprint. These emissions are of a direct nature, released straight into the atmosphere through
nitrification and denitrification, or of an indirect nature, mainly through nitrate leaching, runoff, and
N2O volatilization processes. N2O emissions are largely ascribed to the agricultural sector, which
represents a threat to sustainability and food production, subsequent to the radical contribution to
climate change. In this connection, it is crucial to unveil the relationship between synthetic N fertilizer
global use and N2O emissions. To this end, we worked on a dataset drawn from a recent study, which
estimates direct and indirect N2O emissions according to each country, by the Intergovernmental
Panel on Climate Change (IPCC) guidelines. Machine learning tools are considered great explainable
techniques when dealing with air quality problems. Hence, our work focuses on expectile regression
(ER) based-approaches to predict N2O emissions based on N fertilizer use. In contrast to classical
linear regression (LR), this method allows for heteroscedasticity and omits a parametric specification
of the underlying distribution. ER provides a complete picture of the target variable’s distribution,
especially when the tails are of interest, or in dealing with heavy-tailed distributions. In this work,
we applied expectile regression and the kernel expectile regression estimator (KERE) to predict direct
and indirect N2O emissions. The results outline both the flexibility and competitiveness of ER-based
techniques in regard to the state-of-the-art regression approaches.

Keywords: air quality; bio-meteorology; expectile regression; greenhouse gas emissions; nitrogen-
based fertilizers; nitrous oxide; supervised machine learning

1. Introduction

The food and drink industry is the largest producing sector globally, and due to the
increased consumer demand for processed food products, it has led to consequential im-
pacts on health and the environment [1]. Biotic and abiotic components of the environment
are targeted by air pollution, which is considered one of our era’s greatest scourges. Every
substance, solid, liquid, or gas, if being produced in higher concentrations while reducing
the quality of our environment, is defined as a pollutant [2]. According to the World Health
Organization (WHO), 99% of humans are breathing air that exceeds WHO guideline limits
and contains high levels of pollutants, while low- and middle-income countries are subject
to the highest exposures. Air quality is closely linked to the Earth’s climate and ecosystem,
and is known to be the single largest environmental health risk factor globally. Many of the
drivers of air pollution are also sources of greenhouse gas (GHG) emissions [3].
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Particulate matter (PM) can be formed directly in the atmosphere by physicochemical
reactions between pollutants already present in the atmosphere or can be directly emitted
from anthropogenic activities and natural sources to the atmosphere. The United States
Environmental Protection Agency defined PM as a term for particles, whose penetration
depends on their diminutive size, ranging from particles with diameters of 10 µm (µm)
or smaller, called PM10, and extremely fine particles with diameters that are generally
2.5 µm (µm) and smaller PM2.5 [2]. PM is most likely condensed in cities and industrialized
areas, as it is geographically shown in Figure 1. PM concentrations levels are represented
by color grading, where the intense green represents the highest mean values of these
concentrations (µg/m3) The increase in atmospheric PM2.5 concentration, air movement
patterns, and exposure of populations, result in health and economic effects. Food system
emissions alone account for about 22.4% of global mortality due to degraded air quality and
1.4% of global crop production losses [4]. A recent study [5] in the United States estimated
that 4300 cases annually of premature mortality happen due to maize production. In fact,
higher mortality rates were observed within the top five maize-producing states (Iowa,
Illinois, Nebraska, Minnesota, and Indiana). Moreover, increased concentrations of PM2.5
are driven by emissions of ammonia NH3, which result from nitrogen (N) fertilizer use [5].

Figure 1. Geographic visualization representing the latest global distribution of annual mean levels
of PM2.5 concentrations (µg/m3) in cities (population weighted) according to the WHO Air Quality
Database [3].

Industrial facilities, such as power stations, refineries, petrochemicals, chemical and
fertilizer industries, and metallurgical, and other industrial plants, are major sources of
pollutants emissions. GHG emissions from the agricultural sector increased by 10.1% from
1990 to 2018 and accounted for 9.9% of total US greenhouse gas emissions [6]. In fact,
agricultural N2O emissions are projected to continue to rise [7]. Agricultural crop produc-
tion, including farms and the supply chains that produce the chemical and energy inputs,
contribute majorly to the emissions of GHGs, which include carbon dioxide (CO2), nitrous
oxide (N2O), methane (CH4), and black carbon [4]. Nitrous oxide being one of the most
impacting GHG, was chosen in this study. It is estimated that N2O emissions in the US
account for approximately 75% of total emissions. The truth is that the increased value
brought about by nitrogen-based fertilizer applications is outweighed by the expenses of
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environmental nitrogen pollution, such as the eutrophication of rivers, loss of biodiversity,
global warming, and stratospheric ozone depletion, even though N is a limiting component
for agricultural production [8].

With the growing rate of big data evolution and its complexity, various prediction
methods based on machine learning technologies have been developed for air quality
problems [9,10]. Multiple linear regression (MLR) is one of the most popular tools capable of
incorporating complex non-linear relationships between the concentration of air pollutants
and meteorological variables [11].

This work is based on Greenhouse Gas Emissions from Global Production and the use of
Synthetic Nitrogen Fertilizers in the Agriculture dataset, from the Figshare repository, from the
year 2018. The authors also used this dataset in a recently published work [12], where they
estimated GHG emissions due to synthetic N fertilizer manufacture, transportation, and
field use in agricultural systems. Most studies have tackled the GHG emission problems;
while integrating ML tools basically focus on CO2 or CH4 emissions [13], very few papers
are based on (N2O) emissions. In fact, this gas is 300 times more harmful to the climate
than (CO2) and steadily increases in the atmosphere, with agriculture being the largest
contributor, and nitrogen the most used synthetic fertilizer [14].

In this study, we propose two expectile-based regression approaches, namely, expectile
regression (ER) and the kernel expectile regression estimator (KERE). Due to their flexibility
in application, heavy-tailed distributions and outliers are of interest. In this context, and
based on the fact that only a few countries are considered agricultural-producing countries,
there is a concentration of information in the tail of the distribution. We used expectile-
based regression to take advantage of the parameterized nature, which allows for modeling
different aspects of the distribution rather than the simple mean.

The rest of this manuscript is structured as follows: Section 2 briefly outlines the works
and studies related to our research. Sections 3 and 4 investigate and analyze the dataset.
Thereof, Section 5 assembles the results and the discussion. Finally, Section 6 portrays
concluding remarks and states future works.

2. Background and Related Works

In the last decades, climate changes are becoming more frequent with longer shifts in
temperature and weather patterns [15,16]. According to the United Nations reports, human
activities are the main drivers of climate change, such as the agricultural production system,
which significantly contributes to GHG emissions, such as nitrous oxide N2O [17,18].

2.1. Nitrogen Based-Fertilizers Use and Climate Change

The increasing usage of nitrogen-based fertilizers has a significant influence on the
worldwide agricultural soils’ rapid emissions of N2O [19]. It represents a major contribut-
ing factor to the current rise in the global average temperature and a significant impact
on agricultural productivity [20]. On the other hand, in the agricultural sector, there is
significant N2O discharge, mostly as a result of the usage of nitrogen-based fertilizers as a
crop productivity booster [20], or through their manufacturing processes [21]. According
to the Food and Agriculture Organization(FAO), the usage of synthetic N-based fertilizers
is expected to grow to 50% by 2050 [12]. In 2019, N2O levels in the atmosphere have grown
by more than 20% from 270 parts per billion in 1750 to 332 parts per billion [14]. Global
concerns surround the steadily rising levels of N2O in the atmosphere [21], as a strong
greenhouse gas with a long lifetime (around 121 years) [7]. This gas is responsible for rising
temperatures altering the patterns of the world’s weather, which can cause severe abiotic
phenomena, such as droughts and heavy rains.

2.1.1. Nitrogen-Based Fertilizers

Nitrogen supply and crop demand must be synchronized in order to maintain optimal
plant growth and reduce environmental losses, with regard to other outside factors [22].
The 4R nutrient stewardship community suggests that nitrogen-based fertilizers must
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reduce GHG emissions while minimizing any harm to the air quality. The 4Rs concept
involves applying fertilizers using the right source, at the right rate, at the right time, and at
the right place for each crop [23]. The main sources of nitrogen-based fertilizers are typically
divided into ammonium-based (NH+

4 ) and nitrate-based (NO−3 ) [24]: ammonium nitrate
(AN) (33, 5%N); Urea (46%N); ammonium sulfate (AS) (21%N); calcium ammonium nitrate
(CAN) (27%N) [25]. Other nitrogen–phosphate (NP) and nitrogen–phosphate–potassium (NPK)
fertilizers, which are widely used, such as mono-ammonium phosphate (MAP) with 11%
of N, di-ammonium phosphate (DAP) with 18% of N and ammonium sulfate (21% of N) [22].

2.1.2. Nitrous Oxide: A Side Effect of Nitrogen-Based Fertilizers Use

N is one of the major macro-nutrients other than P and K, which are crucial for plant
growth and development. Under climate-change conditions, enhancing agricultural output
and quality while minimizing environmental losses has become an arduous challenge [26];
hence, leading to the usage of synthetic N fertilizers, in order to improve crop production by
providing the plant with the necessary nutrient. N is particularly a limiting factor for crop
growth, it has an important role within plant cells, which ensures better results in terms of
yield and quality as well [8]. Having multiple synergistic interactions with other nutrients,
and in accordance with Liebig’s law of the minimum, nitrogen is the first probable nutrient
deficiency to occur [27]. The agricultural sector is once again the most impacted by the
temperature rise brought on by N2O emissions. Research has indicated that it is responsible
for 15% of greenhouse gas emissions [20]. According to FAO estimates for the year 2019,
nitrogen-based fertilizer field application contributed to 8.3% of world GHG emissions,
while fertilizer manufacturing accounted for 0.7% [12]. In other words, the fertilizer supply
chain (from the manufacturing to the field application) distributes the whole nitrogen
cycle and, thereby, efforts must be taken to lessen the quantity of N2O emitted into the
atmosphere [28].

2.1.3. Nitrogen Dynamics in Soil and N2O Emissions Pathways

Soils naturally release N2O due to the microbiological processes that are a part of the
nitrogen cycle [29]. As shown in Figure 2, nitrogen-based fertilizers when applied to the
soil, some of it is taken up by the plant, while the rest is converted by soil microorganisms
or lost through volatilization/leaching. The greatest sources of indirect N2O emissions
come from agricultural NO−3 leaching and runoff, which account for around 30% of the
nitrogen lost from agricultural soils [28]. On the other hand, denitrification and nitrification
through microorganisms involve the direct emissions pathway of N2O. Under aerobic
conditions, the conversion of NH+

4 to NO−3 occurs under the name of nitrification, while
the denitrification process takes place involving the conversion of NO−3 to N2, with N2O
acting as an intermediate product [30].

2.2. Machine Learning Tools for Air Quality Predictions: Nitrous Oxide Emissions

When it comes to air quality prediction, tools, such as artificial intelligence (AI) and
machine learning (ML), have gained remarkable attention due to their potential to help in
GHG emission predictions. Table 1 summarizes various recent and convenient works that
integrated ML tools for N2O emissions.
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Figure 2. Direct and indirect pathways of N2O emissions from agricultural soil after nitrogen-based
fertilizer applications.

Table 1. Machine learning models used recently for predicting N2O and GHG emissions.

Ref Title ML Model GHG Emissions

[11] Air-pollution prediction in a smart city,
deep learning approach Hybrid CNN-LSTM

Combining historical and
meteorological data of pollutants to

predict PM2.5 concentrations in
Beijing, China.

[31] Global riverine nitrous oxide emissions:
The role of small streams and large rivers Data-driven random forest ML (RFML)

Integrating a data-driven ML model
with a physically based up-scaling

model to identify N2O global
emissions, from streams and rivers.

[32] Machine learning approach to simulate
soil CO2 Fluxes under cropping systems Regression models: KNN, SVR, and RF.

Including ML models for regression
purposes in order to predict soil GHG
emissions without the biogeochemical

expertise.

[33]
A new approach for predicting nitrification
and its fraction ofN2O emissions in global

terrestrial ecosystems
Stochastic gradient boosting (SGB)

Integrating an ML-SGB model to
estimate and predict the global
nitrification rate (Rnit) and N2O
emissions from the process of

nitrification.

[34]
Untangling soil weather drivers of daily

N2O emissions and fertilizer management
mitigation strategies in no-till corn

Conditional inference tree (CIT)

Using a ML-CIT model to identify the
main soil–weather drivers of daily

N2O hot moments and fertilizer
management options to mitigate them.

[35]

Machine learning improves predictions of
agricultural nitrous oxide (N2O)

emissions from intensively managed
cropping systems

Random forest
Coupling an ML-RF model with a
cropping system model to predict

daily soil N2O emissions.

3. Dataset

The dataset was acquired from the Figshare repository, entitled Greenhouse Gas Emis-
sions from Global Production and Use of Nitrogen-based Fertilizer in Agriculture . This dataset
contains information used to analyze the impact of synthetic N fertilizer production, trans-
portation, and use on global anthropogenic greenhouse gas emissions. The main sources
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are Agrifootprint 6.0 (AFP6), Food and Agriculture Organization Corporate Statistical
Database (FAOSTAT), and International Fertilizer Association (IFASTAT).

3.1. Data Description

The data were derived from a recent study [12], where they estimated GHG emissions
per capita terms for the year 2018, due to multiple synthetic N fertilizer parameters, namely,
manufacture, transportation, and field use in agricultural systems. This field-level dataset
available on N2O soil emissions was estimated based on global N2O direct emission factors
(EFs). From the literature, EFs for indirect N2O soil emissions and N fertilizer manufacturing
and transportation were extracted. The original dataset is organized in a .xlsx format file,
with eight tables. We extracted data from tables 2 and 5 as shown in Figure 3.

Figure 3. Data extraction and retrieving process from the source dataset.

To calculate the amount of global GHG emissions generated through the processes of
synthetic N fertilizer production, transportation, and agricultural use, they followed the
IPCC guidelines for national GHG inventories. They accordingly calculated the emissions
at the country level on the basis of the activity data they collected and the appropriate
EFs. The IPCC guidelines divide the agricultural N2O source into three categories: direct
emissions from agricultural land, emissions from animal waste management systems, and
indirect emissions associated with volatilized/leached N that are removed in biomass or
otherwise exported from agricultural land. Each is estimated to contribute by one-third,
while indirect emissions account for approximately two-thirds.

3.2. Data Pre-Processing

In this section, we present the transformations and aggregations applied to the data,
in order to explore the relationship between N synthetic fertilizer sources, and N2O direct
and indirect emissions. This will allow us to set up the necessary structure to achieve the
objective of this work.

• Scaling and missing values : Features with percentage values are calculated to in-
dicate the amount of each nitrogen source used. This will allow for adequate and
informative exploratory analysis in later stages. In addition, entries with missing
values were removed.

• Standardizing: Standardization is crucial in feature extraction; especially when fea-
tures vary in large units or when reported in different measures. To this end, the
data are standardized using the following formula: (X − µ)/σ, where X is the ex-
planatory variable, µ and σ are the mean and standard deviations, respectively. In
addition, the total amount of nitrogen used per country was removed due to the
direct correlation with the N sources. Moreover, the corresponding features of indirect
emissions generated by leaching/run-off and volatilization were added to indicate
indirect emissions generally.

• Exploratory data analysis: To explore the data, two initial investigations are performed.
First, the linear regression approach is applied to standardized data to extract feature
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importance. Second, we investigate the most important features by a distribution graph.
In Figure 4, it is apparent that most of the features exude initial signs of heavy-tailed
behaviors, which are due to the disparities in agricultural activities (per country).

Figure 4. Density plots of selected nitrogen fertilizer consumption per tonne (t) per country: (a) den-
sity plot of ammonium nitrate (AN), (b) density plot of ammonium sulfate (AS), (c) density plot of
calcium ammonium nitrate (CAN), (d) density plot of other NS, (e) density plot of urea, (f) density
plot of other NP.

4. Data Analysis

Generally, ML techniques can be categorized into supervised, unsupervised, semi-
supervised, and reinforcement learning. Supervised ML approaches deal with a particular
case of problems where each data sample is paired to a label. In particular, regression-type
approaches generate an underlying function that provides a real value for each data sample.
In this work, the goal is to explore the relationship between N2O gas emissions (direct
and indirect), the quantity of applied nitrogen, and synthetic fertilizer sources. To this
end, we present the following workflow, based on expectile regression models as our
learning approach.

4.1. Expectile-Based Regression
4.1.1. Linear Expectile Regression

Linear expectile regression (ER) was first introduced by Newey and Powell in risk
measurement [36]. This approach can be defined as the generalization of conditional ex-
pectation to model the relationship between a dependent variable and the covariates [37].
Multiple studies were conducted to explore ER performance, particularly when dealing
with heavy-tailed distribution [38]. Although the ER provides a complete picture of the
data [39], its statistical properties are under-explored in contrast with other methods, such
as linear regression and quantile regression [40,41].

Given Y a random variable, the expectile of level τ denoted by µτ is defined as follows:

µτ(Y) = min
τ∈R

E(φτ(Y− τ)), (1)
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where

φτ(u) =

{
τu2, u < 0
(1− τ)u2 u ≥ 0.

φτ is the asymmetric least square (ALS) loss function that assigns weights τ and 1− τ to
positive and negative deviations, respectively. Figure 5 provides example curves of φτi and
expectile values µτi with respect to different expectile levels τi, respectively.

Figure 5. The right figure shows the expectile loss function for different expectile levels τ, and the
left figure shows the estimated expectiles for the lognormal distribution.

Let us suppose that we have n samples (yi, xi), where xi = (1, xi,1, . . . , xi,p)
T are the

covariates. The expectiles defined in Equation (1) are used to set up the expectile regression,
which assumes a linear model of the following form:

µτ(yi|xi) = xT
i βτ (2)

The estimated coefficients β̂τ can be obtained by minimizing the empirical loss function:

1
n

n

∑
i=1

φτ(yi − xT
i βτ). (3)

To solve the optimization problem in Equation (3), we suggest the following Algorithm 1
based on using iterative reweighted least squares (IRLS) [42]:

Algorithm 1: ALS for estimating ER coefficients.

Input: Measured dataset {(xi, yi)}m
i=1.

1: Initialize βτ,0.
2: Use the empirical loss function in Equation (3);
3: Update the coefficient using the algorithm of IRLS [42],

Output: The coefficients’ estimates β̂.

The linear expectile regression has shown great performance in contrast with classical
approaches of regression [36]. However, we may encounter more complex datasets for
which ER might be too restrictive in terms of errors. To this end, researchers have developed
more flexible methods namely: expectile regression with boosting (ER-boosting) [43] and
non-parametric estimator of conditional expectiles based on local linear polynomials with
a one-dimensional covariate [44].

4.1.2. Kernel Expectile Regression Estimator (KERE)

In this work, we adopt a recent flexible method introduced in a modern study [45],
based on exploiting the properties of the reproducing kernel Hilbert spaces (RKHS) [46]. Let
HK denote a Hilbert space generated by a predefined kernel K. Given n samples (yi, xi), the
kernel expectile regression estimator is derived from the following optimization problem:
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( f̂n(x), α̂0) = arg min
f∈HK ,α0∈R

n

∑
i=1

φτ(yi − α0 − f (xi)) + λ‖ f ‖2
HK

, (4)

where f spans the Hilbert space, ‖ f ‖2
HK

is the norm of f in HK, α0 is the intercept and λ is
the regularization parameter.

Although Equation (4) lies in an infinite dimensional space, the dimension of this
formulation is reduced by using the representer theorem and the reproducing property [47].
Thus, the optimization parameter f in Equation (4) and its RKHS norm are expressed
as follows:

f (x) =
n

∑
k=1

αkK(xk, x), ‖ f ‖2
HK

=
n

∑
i=1

n

∑
j=1

αiαjK(xi, xj). (5)

where K is the kernel function and αk ∈ R.
To this end, Equation (4) can be reformulated as follows:

{α̂i} = argmin
αi∈R

n

∑
i=1

φτ

(
yi − α0 −

n

∑
j=1

αjK(xi, xj)

)
+ λ

n

∑
i=1

n

∑
j=1

αiαjK(xi, xj). (6)

A compact formulation of Equation (6) using matrix notations is introduced as follows:

α̂ = argmin
α∈Rn+1

n

∑
i=1

φτ(yi − Kiα) + λαTKα, (7)

where

Ki = (1, K(xi, x1), . . . , K(xi, xn)) K0 =

(
0 0n×1

0n×1 K

)
(8)

K =


K(x1, x1) · · · K(x1, xn)
K(x2, x1) · · · K(x2, xn)

...
. . .

...
K(xn, x1) · · · K(xn, xn)

 (9)

The proposed algorithm to solve Equation (7) relies on using maximization–minimization
(MM) approaches [48]. The key idea is to find a surrogate function through the Taylor
expansion that majorizes the objective function. Optimizing this surrogate function will
either improve the value of the objective function or leave it unchanged.

Using the MM approach to solve Equation (7) yields the following formulation for
iteratively updating α = (α0, α1, . . . , αn).

α(t+1) = α(t) + K−1
u

(
−λK0α(t) +

1
2

n

∑
i1

φτ(r
(t)
i )Ki

)
, (10)

where K−1
u is the inverse matrix of Ku defined as follows:

Ku = max(1− τ, τ)

 n 1TK

K1 KK +
λ

max(1− τ, τ)
K

.

Algorithm 2 summarizes the steps to reach the KERE estimates ŷ of the output y.
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Algorithm 2: Kernel expectile regression estimator.

Input: Dataset {(xi, yi)}m
i=1, kernel function K(., .), tolerance ε, maximum

iterations imax.
1: Calculate the kernel matrix K = (K(xi, xj))i,j.

2: Initialize α(0), r(0)i and t←− 0.

3: While r(t)i ≥ ε and t ≤ imax:

• Calculate updated residue r(t)i = yi − Kiα
(t)

• Update α(t) based on Equation (10).
• t←− t + 1

4: Calculate the output estimator ŷi = α
(t)
0 +

n
∑

j=1
α
(t)
j K

(
xj, xi

)
Output: The vector of estimates ŷ.

4.2. Experimental Setup

In this work, we evaluated some of the expectile-based approaches, namely, expectile
regression (ER) [36] and kernel expectile regression estimator (KERE) [45] on the GHG
emission dataset. As detailed in Section 4, both ER and KERE depend on the chosen expec-
tile level w. To depict the performance relative to the expectile level, we construct multiple
models of ER and KERE using multiple expectile levels spanning the following values:

τ ∈ {0.01, 0.05, 0.1, 0.2, 0.25, 0.5, 0.7, 0.75, 0.8, 0.95}.

In addition, KERE models require the kernel function to be selected. Although various
kernels are available for use, we choose the well-known radial basis family (RBF) kernel
defined in Equation (11).

K(x, y) = e
1

σ2 ||x−y||2 , (11)

where σ stands for the bandwidth.
To select the best hyperparameters for KERE models, we perform two dimensional

8-fold cross-validation to select the optimal hyperparameters (λ, σ), where λ and σ stand
for the regularization parameter and the RBF kernel bandwidth, respectively. Moreover,
the maximum number of iterations imax and the tolerance value ε is fixed to 4000 and 10−6,
respectively.

Furthermore, we select the KERE model corresponding to the expectile level of interest
being w = 0.7 to conduct a benchmark comparison with state-of-the-art regression models.
Table 2 summarizes the selected regression methods to be compared with KERE, as well
as their respective characteristics. We also conduct an 8-fold cross-validation to tune each
model’s hyperparameter.

The evaluation process is two-fold. First, we compare ER and KERE models using a
customized error metric, namely, mean absolute deviation (MAD) (w) defined below. This
type of error reflects the model fit with an emphasis on the tails by assigning weights τ
and 1 − τ to positive and negative deviations, respectively. Second, a subset of the KERE
models is selected to be compared with state-of-the-art regression approaches using mean
absolute error (MAE) and root-mean-square error (RMSE).

• Mean absolute deviation MAD (w):

MAD(w) =
1
n

n

∑
i=1

φw(y− ŷ)
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• Mean absolute error (MAE):

MAE =
1
n

n

∑
i=1
|y− ŷ|

• Root-mean-square error (RMSE):

RMSE =
1
n

n

∑
i=1

√
1
n
(y− ŷ)2

4.3. Benchmark Methods

In order to assess the performance of the kernel expectile regression estimator on
the proposed dataset, we compare it to twelve other benchmark regression approaches.
As detailed in Table 2, we use support vector regression, lasso, light gradient boosting
machine, random forest, K-neighbor, extra trees, AdaBoost, gradient boosting, decision tree,
Huber, multilayer perceptron, and ridge regressors. Table 2 summarizes the techniques
considered as well as their hyperparameters to be tuned using K-fold cross-validation.

Table 2. The benchmark regression-based approaches used to predict direct and indirect Nitrogen
emissions.

Technique Hyperparameters

Support vector machine (SVM) Kernel function, its parameters, and regularization C.
Lasso regression Regularization parameter λ.
Light gradient boosting Machine Boosting approach.
Random forest regressor Number of trees and features.
K-neighbor regressor Number of neighbors.
Extra trees regressor Number of trees and features.
AdaBoost regressor Learning rate.
Gradient boosting regressor Learning rate η.
Decision tree regressor Minimum sample leaf, maximum depth, split rule.
MLP regressor Number of layers
Huber regressor Strength parameter α.
Ridge regression Regularization parameter λ.

4.4. Computational Software

The computational software for this study was written using both RStudio and
Python. RStudio was used for comparing kernel expectile regression estimator and lin-
ear expectile regression. Both approaches were implemented using “KERE” and “Ex-
pectreg” libraries [49], respectively. On the other hand, Python was used to compute
the comparison with regression benchmark approaches detailed in Table 2. The bench-
mark comparison was conducted using the PyCaret library (version 3.0.0rc4), specifically
PyCaret.regression module.

All of the aforementioned regression techniques were computed using an 8-fold cross-
validation to tune the corresponding hyperparameters. The advantage of the PyCaret
library in Python is the agility of its classes, particularly Compare_models in setting up the
proper framework for a fair comparison.

5. Results and Discussion

Firstly, we report the results of two expectile-based approaches, namely kernel ex-
pectile regression estimator (KERE) and expectile regression (ER). The two methods were
applied to predict both N2O direct and indirect emissions. First, KERE and ER are com-
pared on both the training and testing phases. We evaluate the models primarily using
mean absolute deviation error (MAD), which varies with respect to the expectile level.
In addition, we report the mean absolute error (MAE), root-mean-square error (RMSE),
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and R². Second, we chose the KERE model corresponding to the expectile level w = 0.7 for
comparison with state-of-the-art regression approaches using R², MAE, and RMSE.

We report the results for both the training and testing of KERE and ER regarding the
direct emissions in Tables 3 and 4, respectively. It is noticeable that KERE outperforms ER
in all reported metrics, namely MAD, RMSE, and MAE. This is because KERE is able to
depict non-linear behavior utilizing the kernel trick. In addition, ER approach reports an
increasing MAD error as the expectile levels increase, whereas KERE stays relatively stable
as the expectile level increases. This is reflected by the mean absolute deviation of ER (0.8)
being 0.308 compared to KERE (0.7) being 0.041. In addition, it is apparent that R² values
drop significantly between training and testing for both KERE and ER which highlights the
failure to explain the direct emissions variance.

Table 3. Direct emissions. The training MAD, RMSE, and MAE metrics for both KERE and ER are
reported with respect to the various expectile levels ranging between 0.01 and 0.99.

w
MAD RMSE MAE R2

KERE ER KERE ER KERE ER KERE ER
0.01 0.008 0.008 0.919 0.924 0.248 0.290 0.54 0.16
0.05 0.026 0.040 0.726 0.880 0.203 0.280 0.92 0.23
0.1 0.088 0.079 0.938 0.850 0.273 0.276 0.10 0.25
0.15 0.040 0.112 0.511 0.830 0.160 0.275 0.94 0.27
0.2 0.054 0.144 0.505 0.814 0.168 0.280 0.84 0.28
0.25 0.046 0.174 0.417 0.800 0.151 0.287 0.93 0.30
0.3 0.043 0.202 0.371 0.788 0.136 0.299 0.94 0.30
0.4 0.053 0.252 0.356 0.769 0.153 0.328 0.92 0.31
0.5 0.044 0.290 0.297 0.762 0.136 0.364 0.94 0.31
0.6 0.068 0.316 0.355 0.772 0.184 0.410 0.88 0.31
0.7 0.056 0.324 0.331 0.810 0.190 0.476 0.90 0.30
0.75 0.043 0.320 0.331 0.848 0.185 0.524 0.91 0.30
0.8 0.041 0.308 0.333 0.906 0.206 0.586 0.90 0.29
0.95 0.067 0.241 0.837 1.483 0.739 1.085 0.69 0.25

Table 4. Direct emissions. The testing MAD, RMSE and MAE metrics for both KERE and ER are
reported with respect to the various expectile levels ranging between 0.01 and 0.99.

w
MAD RMSE MAE R2

KERE ER KERE ER KERE ER KERE ER
0.01 0.015 9.307 1.205 3.395 0.412 0.924 0.033 0.005
0.05 0.074 32.14 1.136 5.996 0.413 1.286 0.197 0.002
0.1 0.144 59.868 1.200 8.280 0.421 1.595 0.064 0.001
0.15 0.206 80.011 1.080 9.796 0.432 1.787 0.197 0.0007
0.2 0.308 97.211 1.133 11.097 0.466 1.962 0.058 0.0006
0.25 0.316 114.24 1.057 12.399 0.448 2.142 0.198 0.0005
0.3 0.367 130.65 1.053 13.706 0.458 2.326 0.194 0.0004
0.4 0.461 157.004 1.048 16.198 0.465 2.696 0.182 0.0003
0.5 0.541 171.65 1.040 18.528 0.487 3.066 0.187 0.0002
0.6 0.663 169.59 1.080 20.565 0.511 3.406 0.112 0.0002
0.7 0.663 147.29 1.032 22.097 0.524 3.707 0.187 0.0001
0.75 0.691 126.833 1.040 22.438 0.529 3.818 0.175 0.0001
0.8 0.708 101.666 1.047 22.427 0.574 3.903 0.168 0
0.95 0.589 25.094 1.266 22.229 1.010 4.393 0.120 0.0001

One KERE model corresponding to expectile level w = 0.7 is selected from Table 4 to
be compared with the benchmark approaches summarized in Table 1. Table 5 summarizes
the performance of the benchmark regressors in contrast with KERE models, where R2,
MAE and RMSE are reported.

It is shown that the KERE R-squared values are slightly low but significantly better
than the rest of the regression approaches (18%). We can argue that the usage of fewer
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fertilizers implies less factors implicated in the agricultural processes. For example, in small
countries where agriculture is not the main activity, the source of N-based fertilizers does
not necessarily explain N2O emissions. However, when N-based fertilizers are applied in
bigger quantities, the source explains more about the direct emissions.

Table 5. The benchmark regression-based approaches used to predict direct nitrogen emissions.

Phase Training Testing

Technique MAE RMSE R MAE RMSE R

Support Vector Regression 1.118 1.199 −13.56 0.494 1.270 0.02
Lasso Regression 0.418 0.736 − 0.505 0.593 1.302 −0.024

Light Gradient Boosting Machine 0.3998 0.715 −0.452 0.575 1.270 0.025
Random Forest Regressor 0.243 0.745 −0.12 0.448 1.3625 −0.1216

K Neighbors Regressor 0.255 0.702 −0.08 0.454 1.268 0.028
Extra Trees Regressor 0.253 0.720 −0.05 0.445 1.320 −0.053

AdaBoost Regressor 0.305 0.776 −0.41 0.489 1.247 0.060
Gradient Boosting Regressor 0.411 0.727 −0.46 0.585 1.288 −0.003

Decision Tree Regressor 0.249 0.748 −0.129 0.448 1.362 −0.121
Huber Regressor 0.311 0.767 −1.60 1.098 5.179 −15.21

MLP Regressor 0.513 1.105 −22.19 1.137 3.587 −6.77
Ridge Regression 0.415 0.732 −0.80 0.643 1.369 −0.13

Kernel expectile regression 1 0.190 0.331 0.90 0.524 1.032 0.187
1 KERE model with respect to expectile level = 0.7.

Secondly, we report the performance analysis of KERE and ER with respect to indirect
emissions. Tables 6 and 7 summarize the performance evaluation of both approaches in the
training and testing phases. The MAD, RMSE, and MAE metrics are reported with respect
to the various expectile levels. Similar to the models reported previously, KERE models
significantly outperform ER models. The MAD evaluation metric of KERE and ER on the
testing set is 0.046 and 2.762 corresponding to expectile level w = 0.7. Whereas KERE and
ER report an MSE metric of 0.391 and 3.010 with respect to the same expectile level.

Table 6. Indirect emissions. The training MAD, RMSE, and MAE metrics for both KERE and ER are
reported with respect to the various expectile levels ranging between 0.01 and 0.99.

w
MAD RMSE MAE R2

KERE ER KERE ER KERE ER KERE ER
0.01 0.012 0.013 1.137 1.162 0.160 0.256 0.93 0.18
0.05 0.044 0.064 0.943 1.089 0.139 0.271 0.98 0.42
0.1 0.093 0.118 0.951 1.017 0.155 0.283 0.82 0.50
0.15 0.213 0.164 1.190 0.958 0.189 0.290 0.08 0.53
0.2 0.068 0.203 0.580 0.910 0.106 0.295 0.99 0.54
0.25 0.066 0.235 0.511 0.872 0.103 0.300 0.99 0.55
0.3 0.064 0.261 0.460 0.841 0.100 0.303 0.99 0.55
0.4 0.107 0.296 0.504 0.802 0.136 0.309 0.92 0.55
0.5 0.056 0.311 0.336 0.789 0.104 0.315 0.99 0.55
0.6 0.052 0.305 0.301 0.802 0.118 0.324 0.98 0.55
0.7 0.099 0.279 0.448 0.842 0.181 0.338 0.88 0.55
0.75 0.049 0.257 0.285 0.875 0.154 0.348 0.98 0.54
0.8 0.048 0.228 0.296 0.920 0.179 0.362 0.97 0.53
0.95 0.073 0.083 0.948 1.194 0.517 0.535 0.6 0.48
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Table 7. Indirect emissions. The testing MAD, RMSE, and MAE metrics for both KERE and ER are
reported with respect to the various expectile levels ranging between 0.01 and 0.99.

w
MAD RMSE MAE R2

KERE ER KERE ER KERE ER KERE ER
0.01 0.0004 0.0005 0.092 0.175 0.132 0.092 0.122 0.004
0.05 0.005 0.053 0.104 0.281 0.182 0.104 0.123 0.887
0.1 0.008 0.313 0.105 0.614 0.258 0.105 0.350 0.933
0.15 0.001 0.678 0.082 0.911 0.317 0.082 0.839 0.943
0.2 0.024 1.054 0.180 1.163 0.366 0.180 0.116 0.945
0.25 0.032 1.410 0.209 1.384 0.408 0.209 0.139 0.945
0.3 0.035 1.754 0.226 1.593 0.448 0.226 0.139 0.944
0.4 0.032 2.344 0.234 1.982 0.528 0.234 0.356 0.941
0.5 0.035 2.739 0.265 2.340 0.608 0.265 0.115 0.937
0.6 0.040 2.891 0.318 2.679 0.695 0.318 0.158 0.929
0.7 0.046 2.762 0.391 3.010 0.792 0.391 0.306 0.917
0.75 0.031 2.581 0.352 3.177 0.846 0.352 0.114 0.908
0.8 0.030 2.316 0.387 3.349 0.905 0.387 0.113 0.897
0.95 0.051 0.843 1.010 3.824 1.230 1.010 0.253 0.821

Similar to the previously mentioned results, the KERE model corresponding to the
expectile level w = 0.7 is selected to be compared with the benchmark regression methods
by reporting MAE, RMSE, and R². As outlined in Table 8, the selected KERE model
performed significantly better, especially with regard to the RMSE metric evaluation.

Table 8. The benchmark regression-based approaches used to predict indirect nitrogen emissions.

Phase Training Testing

Technique MAE RMSE R MAE RMSE R
Huber Regressor 0.0736 0.2891 −0.2846 0.210 1.564 0

Support Vector Regression 0.8994 1.0082 NA 0.308 1.544 0.01
AdaBoost Regressor 0.085 0.312 −0.028 0.446 2.009 −0.65

Lasso Regression 0.1489 0.3416 −8.487 0.279 1.566 0
Decision Tree Regressor 0.0845 0.3213 −0.1150 0.227 1.576 −0.02

Extra Trees Regressor 0.0835 0.3196 −0.0401 0.225 1.575 −0.02
Gradient Boosting Regressor 0.1481 0.3408 −8.4346 0.449 1.990 −0.62

K Neighbors Regressor 0.0903 0.3217 −0.859 0.237 1.573 −0.01
Random Forest Regressor 0.1333 0.5300 0.1415 0.225 1.574 −0.01

Light Gradient Boosting Machine 0.2286 0.7311 −338.59 0.279 1.566 0
Ridge Regression 0.1600 0.4165 −17.72 0.311 1.578 −0.02

MLP Regressor 0.415 0.732 −0.80 0.733 2.557 −1.68
Kernel Expectile Regression 1 0.154 0.285 0.90 0.524 0.98 0.18

1 KERE model with respect to expectile level = 0.7

Reporting the training and testing results for both direct and indirect emissions out-
lined the out-performance of kernel expectile regressions estimator approach to its counter-
part Expectile Regression, especially with regard to MAD evaluation error. Furthermore,
the KERE model corresponding to expectile level w = 0.7 was selected to focus on the
data closer to the tail of the data. The latter corresponds to the range of medium to large
countries, showing that such a model, in addition to being flexible, performs better than all
other considered benchmark regression approaches.

The KERE technique is indeed an explainable approach, allowing us to explore the
relationship between synthetic N fertilizers use and global N2O emissions. Reducing N rates
is not the main factor for reducing GHG emissions, mainly nitrous oxide. The adoption
of lower N rates underestimates N2O emissions [50], as there are many factors at stake,
such as the management of fertilizer applications while enhancing N use efficiency (NUE).
N-based fertilizers vary depending on the N-form they contain, either ammonium NH+

4 or
nitrate NO−3 . In fact, NH+

4 is the starting point by which the soil microorganisms perform
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the nitrification process to form NO−3 , from which other soil microorganisms convert it
to N2 gas through the process of denitrification, while emitting the N2O gas during the
whole process and this is the direct pathway of the N2O emissions. Referring to Figure 2
which highlights N pathways, and based on a modern study [51], it appears that there
is a positive correlation between soil moisture content and cumulative N2O emissions.
When water content is high in the soil, it was suggested that the required conditions for
denitrification are met, leading to higher NO−3 concentrations in the soils, providing N
substrate for the production of N2O. In fact, floods and rain may have an impact on GHG
emissions, increasing precipitation may enhance soil N2O emissions [52].

A first on-farm study [50] was conducted to report N2O response to multiple fertilizer
rates on production-scale fields. They observed linear and nonlinear increases in N2O
depending on the study locations and year. However, the nonlinear exponential response
models best represented the overall N2O response to N fertilizer across all site years. A more
recent study [53] also demonstrated the nonlinear relationship between the application
of nitrogen-based fertilizers and N2O emissions, explaining how it changes depending
on the meteorological circumstances, while the correlation between the N2O emissions
and the N-fertilizer rate used remains unclear. In another study, it has been proven that
monitoring nitrogen application alone is not capable of stimulating N2O emissions as
much as the combination of nitrogen addition and rainfall reduction [54]. Nonetheless,
nitrogen fertilization is an external factor; other management practices generate N2O as
a side effect of their applications, such as irrigation or tillage practices or even the crop
type used. Cropping systems have an impact on soil quality and soil GHG emissions.
In a recent study [55], the importance of combining winter cover crop cultivation for
single cropping systems with reduced N fertilizer application was investigated. This
work supports our results; the cropping system and N rate application impact the GHG
emissions and N2O direct emissions. In comparison with traditional cotton cultivation,
where N2O and other GHG emissions were increased, it appears that both cover cropping
with reduced N helped to mitigate soil GHG emissions. Furthermore, the geographical
disposition may have an impact as well. For example, countries, such as China, the USA,
Canada, India, and Brazil are known for their enormous agricultural production, hence,
diverse soil characteristics, diverse climates, and various crop types are greatly responsible
for the increase of GHG emissions. From another point of view, and in the case of China,
rice represents the most economically important crop, where rice paddies are an excellent
environment for the biological activities of nitrification and denitrification processes which
have been accelerated especially in flooded soils, leading to enormous N2O production as
described by [56]. Other N-fertilization management techniques have an impact on N2O
emissions, with an increase in N fertilizer’s use, adopting the 4R Nutrient Stewardship has
a significant potential to lower N2O emissions [57].

The results also show that the source of N synthetic fertilizers does not contribute
as much to indirect emissions of N20. When it comes to indirect emissions, research has
proven that the leaching and runoff of nitrate from the application of synthetic N fertilizers
is a substantial indirect source of N2O emissions from groundwater. This indicates that
indirect emissions are not related to the source of N fertilizer itself, but depend mainly on
the N content in agricultural soils that could be lost through leaching/Runoff [58].

6. Conclusions and Future Works

The food supply chain is a salient contributor to global emissions of air pollutants.
These major air pollutant compounds, such as N2O, are emitted by different stages of the
food system, from food production, processing, packaging, transport, retail, consumption,
and disposal. This work used an explainable approach in order to explore the relationship
between synthetic N fertilizers and global N2O emissions.

According to our results and the findings within the literature, we conclude, two ma-
jor points:
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• Using the kernel expectile regression estimator approach is highly suitable when
dealing with air quality related data.

• Integrating additional external factors is highly recommended, for more accurate
results and in order to interpret our outputs.

Based upon the results from the KERE method, the source of N-based fertilizers is
not capable of explaining N2O emissions on their own. On the one hand, the disparity in
the degree of N2O emissions between countries, where many national GHG inventories
employ the IPCC’s first-tier method, which uses a set of global default emission factors
(EF) to estimate the N2O emissions depending on varying geography. On the other hand,
N-fertilizer sources and quantities are not the only major contributors in nitrous oxide
emissions, in fact, a significant portion of greenhouse gas emissions is now caused by
farming activities either directly or indirectly, leading to a decay in air quality. Agricultural
practices are of great importance; hence, we propose that reducing the usage of synthetic
N fertilizers is not the most suitable solution to reduce N2O emissions. However, there
is a need to monitor nitrogen-based fertilizer usage, while keeping an eye on the whole
farming management practices, such as conventional tillage, which is a major contributor in
N2O emissions, and no-tillage can decrease the N2O emissions, in the presence of different
fertilizer treatments. Furthermore, our research suggests the necessity for a more specified
and detailed estimation of N2O emissions, based on each country for a longer period of time.
In order to establish a more effective study, we also encourage agribusinesses, organizations,
and farmers to empower data availability. Bridging the gap between research and industry
is a challenging step. Gaining insight from the data is very important; hence, increasing
the usage of explainable machine learning tools is of great significance toward integrating
interpretability for air quality models.
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