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Abstract: This article examines the use of multisensor data fusion for land classification in three
Moroccan cities. The method employs a Random Forest classification algorithm based on multi-
spectral, synthetic aperture radar (SAR), and derived land surface temperature (LST) data. The
study compares the proposed approach to existing datasets on impervious surfaces (Global Artificial
Impervious Area—GAIA, Global Human Settlement Layer—GHSL, and Global 30 m Impervious
Surfaces Dynamic Dataset—GIS30D) using traditional evaluation metrics and a common training
and validation dataset. The results indicate that the proposed approach has a higher precision (as
measured by the F-score) than the existing datasets. The results of this study could be used to improve
current databases and establish an urban data hub for impervious surfaces in Africa. The dynamic
information of impervious surfaces is useful in urban planning as an indication of the intensity of
human activities and economic development.
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1. Introduction

Applications of remote sensing range from monitoring urban dynamics, such as
traffic patterns, urban sprawl, or land use changes, to assisting decision-making and
planning processes for humanitarian crises and emergency responses [1]. It is a complex
and small-scale environment that is often characterized by a high degree of heterogeneity.
Satellite imagery can express urban structure at various levels of detail depending on the
demanded scale.

Because cities house most of the world’s population, large-scale spatial remote sensing
applications for urban settlement are critical. As a result, it is essential to discuss multimodal
RF strategies and methods in the context of urban remote sensing [2]. However, unifying
information from multimodal sensors in urban applications has long been desired but has
proven difficult to achieve [3,4].

There are many studies that use high and medium resolution remote sensing data
to understand the changes and evolution of urban areas over time and to support the
implementation of sustainable development goals, particularly goal number 11.3 [5]. These
studies have helped to improve our understanding of urban dynamics and have developed
methods and approaches to achieve these goals. In addition, various initiatives have been
undertaken to share Earth observation-based data, models, systems, tools, and services
with the public to support the UN’s Sustainable Development Goals [5–7].

Because urbanization involves the growth and development of urban areas, it fre-
quently results in changes in land use, land cover, and the built environment. However,
accurate information on the size and spatial distribution of urban areas is required to
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make more effective decisions about the extent and consequences of urban transformation.
Existing global datasets, such as optical and radar imagery, are widely used to measure,
analyze, and comprehend the complex processes of urbanization, as well as perform spa-
tiotemporal monitoring. Nighttime light data, when compared to daytime data, are a
valuable data source for determining urban sprawl, despite some limitations in spatial and
spectral resolution [8].

Synthetic aperture radar (SAR) data are also used to determine urban expansion and
urban objects, with several studies having shown that it is effective in detecting impervious
surfaces with high accuracy [9–12]. Multispectral imagery has also proved to be a good
product, where the observation of urban areas over time with satellite imagery can also
be used to predict future growth. Satellite remote sensing sensors typically have multiple
spectral bands for use in analysis; each band can be advantageous due to the properties of
materials that can be identified in different parts of the light spectrum [13,14]. All these
technologies have enabled the creation of databases for spatiotemporal monitoring of
city development.

The use of medium resolution land resources satellites, specifically Landsat 4, 5, 7,
8, and 9, has been common in the mapping of land use land cover (LULC) data due to
their free availability and effective spectral capabilities. These satellites have been utilized
since 1972 to monitor changes in land use at local and regional scales, with consistent
temporal coverage and a spatial resolution of 30 m. Various techniques, including spectral
indices [15–17], multispectral classification [18,19], and hybrid approaches incorporating
multispectral and thermal bands, have been employed to extract constructed surfaces from
these images [20,21].

The ability to monitor changes in land use and land cover over time has greatly increased
with the availability of high-resolution satellite data from Landsat and Sentinel-2 [22–24]. These
satellites provide multiple spectral bands that can be used to identify materials and track changes
in the built environment. The use of cloud-based processing platforms such as Google Earth
Engine has also made it easier and more cost-effective for researchers to access and analyze
large-scale data [25]. While these advancements have greatly expanded the potential for Earth
observation and geospatial research, there are still opportunities to further improve the use of
such technologies, particularly in developing countries [26].

1.1. Motivation of the Study

In an African context, much of what happens in African cities is invisible or only
partially visible, and most of it goes unrecorded [27]. African cities with 30–80% of their
population living in informal settlements have little or no data. In other words, there
is a knowledge gap related to the factors that create or influence cities. This is usually
accompanied by a lack of maps, official street names, and registered addresses. In addition,
there is also an absence of information referring to housing conditions, water supply,
sanitation, drainage, basic services, etc.

In this paper, the focus will be on land use land cover (LULC) spatial data, specifically
multisensor and temporal data, to propose a first workflow prototype that allows the gen-
eration of the first hybrid LULC data that provide visibility into the evolution of the urban
fabric. The adopted methodology will concentrate on the ability to obtain these data with
pinpoint accuracy using spatial remote sensing and the GEE cloud computing platform.

1.2. Correlation between Input Data

The joint use of synthetic aperture radar (SAR) and multispectral sensors can provide
detailed and accurate information about the physical, biological, and human-made features
of urban areas. SAR is particularly useful for capturing information about the surface
roughness and texture of urban areas, while multispectral sensors can provide information
about the spectral reflectance of different materials in the urban landscape [28–31]. The
urban landscape is a component of the environment that includes a complex mix of roads,
buildings, parking lots, gardens, cemeteries, soil, water, and other elements. Furthermore,
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to identify dynamic urban morphology, some globally accepted and widely used math-
ematical indices have been developed. Spectral indices, on the other hand, have made
promising advances in urban LULC studies via mapping, estimation, change detection,
time-series analysis, urban dynamics, monitoring, modeling, etc. [32]. Several studies have
proposed indices that allow the collection of precise data on the complexity of urban space,
including the Normalized Water Difference Index—NDWI, Normalized Difference Built-up
Index—NDBI, and Normalized Difference Vegetation Index—NDVI [33–35].

Land surface temperature (LST) is another important data source that researchers
use to study the impact of urban development on future microclimates by predicting LST
distribution and simulating land use dynamics [36,37]. As a result, LST is used as an
indicator to examine the spatial distribution of urban heat. However, some authors have
used average-scale local building types and climate zones to demonstrate that LST has an
impact on impervious surfaces [38,39]. Subsequent research has demonstrated this positive
relationship between LST and impervious surfaces, as well as the upward trend used to
investigate possible drivers underlying the spatiotemporal pattern of the LST–impervious
surface relationship [40–42].

1.3. Random Forest Classifier in Remote Sensing

Research has shown that the Random Forest (RF) classifier can effectively classify
multisource remote sensing and geographic data due to its speed and ability to optimize the
classification model by including only relevant input datasets. This was demonstrated in
the study by Belgiu and Drăguţ [43]. To improve the accuracy of the results and reduce the
computational burden, it is important to carefully select the most relevant input datasets to
include in the classification process. The accuracy of the Random Forest classifier can be
affected by the characteristics of the training samples and the number of data dimensions.
To ensure reliable results, the training and validation data should be independent, and
the classes should be equally represented in the training sample. It is also important to
have enough training samples, particularly when working with a large number of data
dimensions, to avoid the Hughes phenomenon. The RF classifier requires two parameters
to be set in order to grow the trees: the number of decision trees to be generated (Ntree) and
the number of variables to be selected and tested for the best split when growing the trees
(Mtry). Research has shown that the accuracy of the classification is less sensitive to the
Ntree parameter than to the Mtry parameter. The RF classifier has been used successfully
in mapping land cover classes using remote sensing data, where the classifier also allows
for the determination of relative feature importance, which aids in the selection of the
classifier’s most contributing features.

1.4. Large Scale Data on Impervious Surfaces

Over the last few decades, various techniques to produce regional or global multi-
temporal impervious-surface products have been proposed. These approaches are broadly
classified into two categories: (1) time-series change detection and (2) multitemporal inde-
pendent classification and extraction. Table 1 lists available databases that have extracted
impervious surfaces using moderate resolution satellite remote sensing images with large
scale. Each database is unique and authors have used a variety of techniques to improve
their accuracy. These listed databases were analyzed to comprehend their characteristics,
spatial resolution, and availability on GEE to automate the process of calculating our hybrid
approach and comparisons with the existing dataset in the following sections.

The Global Human Settlement Layer (GHSL) is a database created by the Joint Research
Center of the European Commission that provides information about the built environment
on the surface of the Earth. It is based on data from Landsat satellites collected between
1975 and 2014 at various spatial resolutions. The data were processed using automatic and
reproducible statistical learning methods with a spatial resolution of 30 m. The final product
had a resolution of 30 m and was used to monitor impervious surfaces, but it overestimated
the extent of impervious surfaces and missed smaller, fragmented impervious objects. The
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grid cells are classified based on the presence and intensity of built-up areas, allowing for
the mapping, and understanding of urbanization patterns on a global scale. The data are
useful for policymakers, researchers, and other stakeholders interested in the effects of
urbanization on the environment and human well-being.

Table 1. List of dataset characteristics for urban footprint.

Data Data Citation Data Source Availability in GEE Resolution in Meters Range

Global Human
Settlement Layer,

built-up grid
Pesaresi et al. [44] GHSL [45] Available in GEE 30 1975–2014

GlobeLand30 Jun et al. [46] GLOBELAND30 [47] Not available in GEE 30 2000–2020

GAIA Gong et al. [48] GAIA [49] Available in GEE 30 1985–2018

GISD30: global 30 m
impervious surface

dynamic dataset
from 1985 to 2020 [50]

Zhang et al. [51] Zendo [52] Not available in GEE 30 1985–2020

GlobeLand30 is a global land cover dataset developed by the Chinese Academy of
Sciences. It provides information on land cover types, including urban areas, forests,
grasslands, and agricultural lands. The data are available at a spatial resolution of 30 m and
are based on Landsat satellite imagery from the year 2000. It is a widely used dataset for
mapping and analyzing land cover and land use patterns on a global scale. The Ministry of
Natural Resources released GlobeLand30 Update in 2017 and the most recent version is
GlobeLand30 2020, which includes 10 land cover classes.

The third dataset used in this study is Global Artificial Impervious Area (GAIA). It is a
collection of Landsat satellite images from the GEE archive used to track the annual changes
in artificial impervious areas, or areas covered by human-made structures, from 1985 to
2018 at a spatial resolution of 30 m. This dataset is believed to have the longest available
temporal coverage for artificial impervious areas worldwide. In addition, the authors claim
that their approach, which includes ancillary datasets such as NTL and Sentinel SAR data,
is 15% more accurate in mapping artificial impervious areas in arid regions compared to
previous methods. However, the author also notes that the use of 30 m Landsat pixels,
while providing a relatively high spatial resolution, can still result in uncertainties due to
mixed pixels caused by the complex mixture of spectral signatures in urban environments.

The GISD30 dataset proposed an automatic method for creating a global, 30 m imper-
vious surface dynamic dataset from 1985 to 2020. It was shown that the dataset effectively
captured the spatial distribution and spatiotemporal dynamics of impervious surfaces, but
it had some limitations. One issue was the assumption that the transition from pervious
to impervious surfaces was irreversible, which meant that the method could not capture
transitions from impervious to pervious surfaces, such as those caused by urban greening.
Additionally, many changes occurred in impervious surfaces, such as demolition and
reconstruction, that were not captured by the method or product.

The following lessons can be drawn from previously mentioned databases that gener-
ate impervious surfaces: (1) Combining multiple sources can improve land cover classifica-
tion and extraction accuracy. (2) Noise removal can help to improve data input. (3) Spectral
separability using Principal Component Analysis is one of many techniques used (PCA).
The use of spectral indices for this purpose, on the other hand, allows for noise reduction
at the feature space level.

The purpose of this study is to combine multiple data sources to produce highly
accurate and temporally impervious surfaces. The primary goals of this study were to:
(1) demonstrate that hybrid data can improve urban footprint extraction; (2) demonstrate
the strong correlation between derived data such as LST and multispectral that can en-
hance classification accuracy; and (3) investigate, compare, and validate the accuracy of
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a hybrid classified dataset by making a comparison through cross-validation with other
spatiotemporal datasets.

2. Materials and Methods
2.1. Workflow for Data Processing

The proposed method entails making a classification and then comparing the results
to previous databases to determine the consistency of the hybrid approach used in this
study. The detailed processing chain used to extract and compare the accuracy of the new
hybrid LULC data is depicted in Figure 1. The processing chain is comprised of three major
steps: (1) input preprocessing and training dataset; (2) apply classification of preprocessed
time-series data; and (3) compare the obtained results to those of similar existing databases.
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The processing began with the generation of medium resolution Landsat data and
the calculation of the spectral indices: the vegetation index via NDVI and NDWI and the
building index via NDBI. The Sentinel-1 constellation’s SAR data were used as the second
type of input data, with PAL SAR data used for dates earlier than 2007 [53]. The third
source of data, namely, the LST derived from the archived Landsat images, was also used.
The model developed by [54] was used to automate the calculation of the LST for each
date. Another preprocessing step was to standardize the scale of the data used, followed
by storage of these data in a new database for each date.

Following the classification and generation of thematic maps, the accuracy of the
dataset was compared to previous databases, with the datasets used for comparison being
GAIA, GHSL, and GIS30D, as shown in Table 1.
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2.2. Study Area

The research area consists of the three major most densely populated Moroccan cities
with distinct urban architectures. The final choice was strategic to diversify the structures
and test the classification model in various areas with spatially diverse building styles.
The areas represent three metropolises in the Kingdom of Morocco. The choice of these
areas is due to the spatial variability that characterizes each area or region of the country.
The northern zone of Morocco is characterized by a hilly terrain [55]. Today, Tangier has
more than 848,337 inhabitants and occupies more than 16,000 hectares, without counting
its immediate periphery, which extends to the neighboring rural municipalities. Tangier’s
history has been marked by the presence of several civilizational and cultural currents
brought by the flows of people of various nationalities (Portuguese, Spanish, Italian, French,
English, and American).

The second targeted study area, the city of Marrakech located in the heart of the
Haouz Plain, is one of the oldest imperial capitals. For centuries, Marrakech was an
exemplary model of a Muslim city, in the image of Baghdad and Cordoba. The urban fabric
of Marrakech is defined by a series of specific architectural forms known as the derb. The
derb, a fundamental component of urban morphology, represents the social link between
the house and the neighborhood. Moreover, the urban structure of Marrakech appears to
be a simple juxtaposition of autonomous elements grouped around a souk, which probably
gives it this rural aspect, but it is no less complex in its organization, which is typical of
Muslim cities and is based on the derb, a basic unit of measurement [56,57].

Casablanca, the third study area, already existed in the form of a city, the “Old Medina,”
in 1900, with more than 20,000 inhabitants spread across 47 hectares. The birth of the French
city began in 1907, near the port and the old medina, with the appearance and construction
of the city’s nucleus, which would quickly expand. Following the establishment of the
French Protectorate in 1912, the urban space of Casablanca underwent numerous changes
because of major decisions made by colonial authorities, most notably establishing the city
as the country’s economic capital [58]. Following independence, Casablanca was left to
its own devices, and its urban space was subject to fragmentation caused by spontaneous
development, which peaked in the 1970s, causing it to stretch in all directions, particularly
to the south and south-east, despite a few attempts at planning, which were partial in
nature and lacked grand designs or a forward vision. Figure 2 depicts the geographical
location of the three cities that were examined using satellite images to reveal the change in
their urban fabric between 2000 and 2020, with the urban fabric depicted in magenta colors
in all images, while new dates (e.g., 2020) show a dark magenta color and old dates (e.g.,
2000) show a light magenta color. For OLI and TIRS data, the band combination is SWIR,
NIR, and Green, while for TM data, it is SWIR, NIR, and Blue.

2.3. Input Data and Samples

The complexity of the urban pattern arises from the combination of vegetation, water,
and built-up areas in one location. This complexity refers to the layout and organization of
the built environment in an urban area, including factors such as building size and shape,
development density and distribution, the presence of various land uses and infrastructure,
and street network connectivity [59,60]. In order to differentiate impermeable surfaces,
three spectral ratios were used to determine the pattern of urban impervious surfaces:
NDVI to highlight urban vegetation, NDBI to reduce noise in the spectral bands over
built-up areas, and NDWI to complement the water component in the urban ecosystem.
These ratios are represented in equations (a), (b), and (c), with the wavelengths of the bands
used in each sensor described in Table 2.
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Table 2. List of dataset characteristics for urban footprint.

Band Landsat 8 OLI and TIRS
Wavelengths in Micrometers

Landsat 5 TM Wavelength in
Micrometers

NIR Also called B5, with wavelengths
ranging from 0.85 to 0.88

Also called B4, with wavelengths
ranging from 0.76 to 0.90

Red Also called B4, with wavelengths
ranging from 0.64 to 0.67

Also called B3, with wavelengths
ranging from 0.76 to 0.90

Green Also called B3, with wavelengths
ranging from 0.53 to 0.59

Also called B2, with wavelengths
ranging from 0.63 to 0.69

SWIR Also called B6, with wavelengths
ranging from 1.57 to 1.65

Also called B5, with wavelengths
ranging from 1.55 to 1.75

In this paper, the targeted classes are: (1) impervious surfaces, (2) bare soil, (3) vege-
tation, and (4) water. Table A1 in the Appendix A depicts the distribution of the number
of samples per class, with special emphasis placed on the built-up and bare-soil classes,
which frequently cause spectral confusion in medium resolution images. Residential areas
are often surrounded by trees and lawns, making it difficult to extract them from Landsat
images. Table 3 lists the various data sources that were used in this study to prepare input
data for the supervised classification model. These data cover the range between 2000 and
2020 using Landsat archives for multispectral data, with Sentinel-1 SAR for recent years
and Global SAR/PALSAR data for dates earlier than 2007. No data normalization was
anticipated because the used RF model accepts a wide range of feature space [61]. On the
other hand, a reducer function was used in GEE to unify the size of the pixels in all inputs.
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NDVI =
NIR − Red
NIR + Red

(a), NDBI =
SWIR − NIR
SWIR + NIR

(b), NDWI =
Green − SWIR
Green + SWIR

(c) (1)

The classification was performed using the Random Forest algorithm with NDVI,
NDBI, NDWI, single bands (Blue, Green, Red, NIR, SWIR1), LST, Sentinel-1 data, and
PALSAR data in certain dates as input features.

The training plots were created by manually classifying a randomly distributed point
in each study area between 2000 and 2020, which gave a total of 4208 reference points
processed manually. These samples contain the ground truth points, which are typically
based on reference points generated by interpreting high resolution satellite images using
Google Earth archives. For each study area, the samples covered the years 2000, 2005, 2010,
2015, and 2020. This gave us a total of 15 manually prepared samples for classification
training and validation. Subsequently, the data were split into two categories (train and
test), with the test set then set aside and a random selection of X% of the training data used
as the actual training set, while the remaining (100–X) % were used as the validation set. In
this case, X was set to 70%, and the model was trained and validated with 200 iterations
using these different RF sets. This process, which is known as cross-validation, can be
accomplished using a variety of methods [62].

Table 3. Different input data sources used in this study with ranges and resolution.

Used Data Format Type Range

Landsat 5 TM collection 2 tier 1 calibrated at top-of-atmosphere
(TOA) reflectance, Chander et al. [63] Raster Multispectral 19 April 1984 to 2011

Landsat 8 collection 1 tier 1 composite, Chander et al. [63] Raster Multispectral 7 April 2013 to 2022

Sentinel-1: Dual-polarization, C-band synthetic aperture radar
(SAR), Filipponi [64] Raster Radar October 2014 to 2022

Global SAR/PALSAR and PALSAR 2 mosaic, Shimada et al. [53] Raster Radar 1 January 2007 to 1 January 2021

The Gini impurity index was used in this study to show how pure a set of data is, with
a lower index value indicating a higher level of purity. Table 4 shows the results of the sum
of decreases in the Gini impurity index. This technique is used in decision tree algorithms
to determine the best split point for a given feature. It is calculated by subtracting the Gini
impurity of each child node from the parent node, and then summing the results for all
possible splits of the feature. The split point with the highest sum of decreases in the Gini
impurity index is chosen as the best split point for the decision tree. It is used to maximize
the information gain and thus helps to make the decision tree more accurate.

According to Table 4, “Polarization VV” is the most important variable with an
importance factor of 70.17, followed by “Polarization VH” with 69.89. This means that
these two variables are the most powerful predictors in the dataset, providing the most
information gain when used to split the decision tree.

The variable “NDVI” also has a relatively high importance factor, with a value of
68.54, indicating that it also provides a significant information gain when used to split the
decision tree. On the other hand, “Elevation” and “Slope” have the lowest importance
factors with values of 35.85 and 33.92, respectively, indicating that these variables provide
less information gain and are thus less useful in the decision tree. However, these last two
variables have been removed from the input data.

Table 4. Sum of decreases in Gini impurity index.

Layer Importance Factor

Blue 58.28

Green 48.84

Red 45.65
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Table 4. Cont.

Layer Importance Factor

NIR 46.01

SWIR1 47.90

LST 39.70

Polarization VH 69.89

Polarization VV 70.17

Elevation 35.85

NDBI 62.88

NDVI 68.54

NDWI 63.78

Slope 33.92

3. Results and Discussion

In this study, a hybrid approach was used to depict the evolution of impervious
surfaces over time by combining multiple data sources. The correctness and accuracy of
the resulting map must be assessed and compared to existing databases. The sample-based
validation method calculated four accuracy metrics from multitemporal impervious-surface
validation samples: overall accuracy, kappa coefficient, producer accuracy (measuring
commission error), and user accuracy (measuring omission error). Table 5 displays the
classification result of the three study areas using four classes, with all dates and areas
having an overall accuracy of more than 70%. Figure 3 shows maps of the final classification.

Table 5. Statistical metrics for classification of HLULC data, where 0: Built up, 1: Bare soil,
2: Vegetation, and 3: Water.

City Date Overall Accuracy Kappa Coefficient Producer Accuracy User Accuracy

Casablanca

0: Built up
1: Bare soil
2: Vegetation
3: Water

2000 0.77 0.61 0: 0.8
1: 0.57
2: 0.84
3: 0.6

0: 0.74
1: 0.75
2: 0.77

3: 1

2005 0.8 0.68 0: 0.71
1: 0.84
2: 0.82

3: 1

0: 0.78
1: 0.75
2: 0.82

3: 1

2010 0.81 0.72 0: 0.68
1: 0.86
2: 0.92
3: 0.5

0: 0.90
1: 0.89
2: 0.72

3: 0

2015 0.81 0.72 0: 0.93
1: 0.70
2: 0.78

3: 1

0: 0.85
1: 0.8
2: 0.78

3: 1

2020 0.91 0.86 0: 0.87
1: 0.92
2: 0.95

3: 1

0: 0.96
1: 0.92
2: 0.84

3: 1
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Table 5. Cont.

City Date Overall Accuracy Kappa Coefficient Producer Accuracy User Accuracy

Marrakech 2000 0.73 0.47 0: 0.40
1: 0.56
2: 0.90

3: 1

0: 0.81
1: 0.64
2: 0.74

3: 1

2005 0.74 0.53 0: 0.60
1: 0.68
2: 0.83

3: 0

0: 0.70
1: 0.65
2: 0.78

3: 0

2010 0.84 0.76 0: 0.85
1: 0.80
2: 0.86
3: 0.50

0: 0.82
1: 0.86
2: 0.84

3: 0

2015 0.83 0.75 0: 0.90
1: 0.78
2: 0.85
3: 0.42

0: 0.81
1: 0.78
2: 0.87

3: 1

2020 0.83 0.75 0: 0.83
1: 0.9
2: 0.91
3: 0.14

0: 0.85
1: 0.69
2: 0.89

3: 1

Tangier 2000 0.71 0.48 0: 0.64
1: 0.5
2: 0.85

0: 0.81
1: 0.69
2: 0.70

2005 0.80 0.62 0: 0.66
1: 0.63
2: 0.93

3: 0

0: 0.88
1: 0.79
2: 0.80

3: 0

2010 0.75 0.59 0: 0.66
1: 0.74
2: 0.80

0: 0.7
1: 0.83
2: 0.74

2015 0.76 0.63 0: 0.74
1: 0.66
2: 0.86

3: 0

0: 0.76
1: 0.92
2: 0.72

3: 0

2020 0.79 0.68 0: 0.71
1: 0.82
2: 0.84

0: 0.77
1: 0.88
2: 0.73
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In terms of user accuracy, 2000 and 2005 performed poorly compared to other time-
series data (2010, 2015, and 2020). The difference can be explained by the different sensors
used between the dates 2000, 2005, and 2010 and the periods 2015–2020. However, this
finding will be validated in the second analysis and tested in the following sections.
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3.1. Evaluation Metrics and Comparison

This section includes some sensitivity analyses to demonstrate the adopted design
reasoning. In this section, the obtained results are first compared to those of several previ-
ously mentioned datasets (GAIA, GHSL and GIS30D). To make comparison of the various
databases easier, the multitemporal databases were converted to binary class (2: built up
and 1: not built up). The same samples were then used as in the first classification to
perform a binary reclassification (built up vs. not built up). Of these samples, 70% were
taken randomly from initial samples.

There are numerous ways to assess a classification’s thematic accuracy. The error
matrix allows us to compute several accuracy metrics. In this case, the F-score with
precision and recall metrics for binary classification and assessment were used. Figure 4
shows the F-score test comparison of the three databases in the three study areas. Note that
the GHSL dataset is not available for all dates between 2000 and 2020. According to the
results in Figure 4, the F-score for HLULC exceeds 80% in all periods, while the F-scores of
the other datasets do not exceed 70% within the other scenarios.
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Another comparison was made between HLULC and another database, Global 30 m
Impervious Surfaces Dynamic Dataset (GIS30D). The latter is the most recent database
generated on a global scale. It is a precise dynamic dataset of 30 m impervious surfaces at
the global scale, based on Landsat time-series images for the period 1985 to 2020. The com-
parison in this study was conducted for the year 2020. As shown in Figure 5, the evaluation
metrics revealed that the HLULC F-score is slightly higher than the GIS30D F-score in the
three test areas. This leads to the first conclusion that in a complex feature space such as
urban areas, the classification approach based on a machine learning algorithm is the most
accurate compared to classical spectral indices.
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Figure 5. Statistical metrics using Precision, recall, and F-score between HLULC and GIS30D.

Figure 4 also shows that the F-score of all databases has a pattern in which it is
slightly elevated between 2015 and 2020, and this is true for the HLULC, GAIA, and even
GHSL databases. The only explanation is the quality of the spectral bands used for the
last two dates (2015 and 2020). To begin with, the multispectral images, OLI and TIRS
from the Landsat 8 sensor, outperformed other sensors on the same satellite, such as TM
and ETM+, in terms of quality and accuracy [65]. Mancino et al. [66] demonstrated an
overall good correlation between indices calculated with the two sensors (in this case, OLI
and TM); however, statistically significant differences were found for almost all of the
indices analyzed based on single land use classes. According to the same study, more
attention should be paid to the differences between the two sensors in the evaluation
of infrared (NIR and SWIR)-based indices for estimating both vegetation and soil water
content, both of which are highly climate-sensitive key indicators. Thus, the Sentinel-1
sensor with the C-band demonstrated its performance in terms of distinction of built-up
areas. According to [67], Sentinel-1 IW mode imagery can be used to extract built-up areas,
but crowded built-up areas are easier to detect than detached houses. In this study, dual
polarization has assisted in detecting buildings at different orientation angles and improved
the final classification.

Although the study areas differed in terms of climate and architecture, the classification
performed similarly in semi-arid-to-arid areas such as Marrakech, hilly areas with dense-to-
very-dense buildings such as Tangier, peri-urban areas, scattered green spaces, and, finally,
coastal areas with spatial variability in terms of building typology.

3.2. Visual Interpretation

The conversion of the HLULC classification result into binary data allowed us to
visually compare the impervious surfaces with other databases using a very high spatial
resolution satellite image as reference. Figure 6 shows a visual analysis comparing the
classification results between (A) HLULC, (B) GAIA dataset, and (D) the original classifica-
tion. The scenes captured demonstrate that the GAIA dataset has an overestimation of the
permeable surfaces which can be confused between built and bare soil in several areas, as
mentioned in the Casablanca and Marrakech scene (Figure 6). Another weak point is also
mentioned in the case of Tangier, where the peri-urban areas were not extracted correctly
in the GAIA database. On the other hand, the HLULC model was unable to extract the
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residential areas in the neighborhoods of Casablanca where greenery is frequent, in this
case, the residential areas in the neighborhoods of Anfa and Ain Diab (southeast of the
city). The vegetation class dominated in these areas because the classifier was influenced
by the high spectral value of NDVI combined with a low value of LST. Another source of
confusion is the data’s spatial resolution, which does not allow spectrally distinguishing a
built-up area in a mixed pixel [68].
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Figure 6 shows that the HLULC dataset is accurate in areas with high population
density and in the outskirts of cities, likely due to the inclusion of bare soil and SAR texture
in the input data. The GAIA database, on the other hand, exhibits confusion in areas
with low vegetation in Marrakech and Tangier. This may be due to the sensitivity of SAR
backscatter to surface characteristics [69]. The findings also show the improvement of
data quality caused by the multiple data sources, especially LST data and their role in
enhancing classification where built-up areas are spectrally highlighted with high pixel
values compared to bare soil and vegetation. However, a limitation of the proposed method
is in the data preprocessing, while the image classification strategy builds classifiers for
identifying impervious surfaces using training samples and performed well in complex
impervious-surface mapping. However, collecting training samples, on the other hand, is a
time-consuming and labor-intensive task, particularly for large-area time-series impervious-
surface monitoring [70].

The major multispectral bands (RGB bands, NIR, and SWIR) were used, as well as
three spectral indices (NDVI, NDWI, and NDBI), which are derivatives of the multispectral
and thermal bands (LST data), and radar data from the Sentinel-1 C-band sensor with VH
and VV polarization. This combination resulted in a more complex feature space, allowing
the RF classifier to produce more accurate classes.

4. Conclusions and Perspectives

A machine learning algorithm was used to extract a land cover map with such accuracy
using a hybrid approach based on multisource data. Even with a medium resolution, the
classification approach bore fruit in terms of product quality. In some cases, the SAR
assisted in improving the distinction between bare soil and impervious areas. In this case,
the LST was used as additional data to improve the results and reduce confusion between
the two classes (soil and built). The NDVI, in conjunction with the other indices (NDWI
and DDBI), allowed for the reduction of the spectral feature space. The approach proved to
be effective, but it still suffers from a lack of reference data, which consumes nearly 70% of
the working time.

Future projects may allow us to generalize the workflow on a continental scale and
produce a reasonably accurate land use map.

This data will serve as the foundation for a knowledge base that will be used to map
the urban space, monitor the evolution of the urban fabric, and achieve SDG number 11.

This data can also be used to generate precision data for indicator 11.3.1, which
generates data on the calculation of the land consumption rate to population growth rate.

Future work will generate HLULC data on a continental scale, with the objective of
strengthening the knowledge base of dynamic data in relation to Africa.

The GEE platform will allow the use of other types of data (including elevation,
population density, etc.) to further strengthen the feature space, and to use complicated
deep learning architecture such as the Unet.
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Appendix A

Table A1. Statistics of samples used in the classification.

Location Built Up Vegetation Bare Soil Water Total Samples
Train_Casa_2000 64 74 169 8 315
Train_Casa_2005 75 71 162 7 315
Train_Casa_2010 94 67 146 8 315
Train_Casa_2015 75 71 162 7 315
Train_Casa_2020 112 90 98 6 306
Train_Kech_2000 103 54 106 13 276
Train_Kech_2005 49 55 167 5 276
Train_Kech_2010 87 48 133 8 276
Train_Kech_2015 103 54 106 13 276
Train_Kech_2020 113 54 96 13 276

Train_Tanger_2000 34 74 142 2 252
Train_Tanger_2005 36 63 151 2 252
Train_Tanger_2010 54 54 142 2 252
Train_Tanger_2015 89 62 100 1 252
Train_Tanger_2020 97 84 70 1 252

Total 1185 975 1950 96 4206
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43. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 24–31. [CrossRef]

44. Corbane, C.; Florczyk, A.; Pesaresi, M.; Politis, P.; Syrris, V. GHS Built-Up Grid, Derived from Landsat, Multitemporal (1975, 1990,
2000, 2014); European Commission, Joint Research Centre, JRC Data Catalogue: Brussels, Belgium, 2015.

45. GHSL. Global Human Settlement Layer. 2020. Available online: https://ghsl.jrc.ec.europa.eu/download.php?ds=bu (accessed
on 3 December 2022).

46. Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [CrossRef] [PubMed]
47. GLOBELAND30. Open Access to Earth Land-Cover Map; GLOBELAND30: Beijing, China, 2020. [CrossRef]

http://doi.org/10.3390/rs6087339
http://doi.org/10.1080/10106049.2019.1566406
http://doi.org/10.3390/rs9090902
http://doi.org/10.1109/TGRS.2017.2683444
http://doi.org/10.3390/rs12183062
http://doi.org/10.3390/rs10101509
http://doi.org/10.1016/j.ijdrr.2017.09.026
http://doi.org/10.1109/TGRS.2012.2236560
http://doi.org/10.3390/rs13153000
http://doi.org/10.1109/JSTARS.2016.2531420
http://doi.org/10.1117/1.JRS.9.096054
http://doi.org/10.3390/rs12010094
http://doi.org/10.1016/j.jclepro.2021.129488
http://webcache.googleusercontent.com/search?q=cache:A4cvSQezDNMJ:www.maas.edu.mm/Research/Admin/pdf/16.%2520Myo%2520Myo%2520Khine%2520(297-314).pdf&cd=1&hl=sr-Latn&ct=clnk&gl=rs
http://webcache.googleusercontent.com/search?q=cache:A4cvSQezDNMJ:www.maas.edu.mm/Research/Admin/pdf/16.%2520Myo%2520Myo%2520Khine%2520(297-314).pdf&cd=1&hl=sr-Latn&ct=clnk&gl=rs
http://webcache.googleusercontent.com/search?q=cache:A4cvSQezDNMJ:www.maas.edu.mm/Research/Admin/pdf/16.%2520Myo%2520Myo%2520Khine%2520(297-314).pdf&cd=1&hl=sr-Latn&ct=clnk&gl=rs
http://doi.org/10.1016/j.rse.2005.11.016
http://doi.org/10.1007/s10708-019-10115-0
http://doi.org/10.1007/s10980-013-9950-5
http://doi.org/10.1016/j.envc.2021.100229
http://doi.org/10.1088/1748-9326/abdaed
http://doi.org/10.1016/j.asr.2020.04.009
http://doi.org/10.1016/j.rse.2012.12.020
http://doi.org/10.1016/j.isprsjprs.2016.01.011
https://ghsl.jrc.ec.europa.eu/download.php?ds=bu
http://doi.org/10.1038/514434c
http://www.ncbi.nlm.nih.gov/pubmed/25341776
http://doi.org/10.1038/514434c


Atmosphere 2023, 14, 240 18 of 18

48. Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial
impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [CrossRef]

49. GAIA. Annual Maps of Global Artificial Impervious Area (GAIA); GAIA: Louisville, CO, USA, 2020. [CrossRef]
50. Liangyun, L.; Xiao, Z.; Xidong, C.; Yuan, G.; Jun, M. GLC_FCS30-2020: Global Land Cover with Fine Classification System at 30 m in

2020; Zenodo: Geneva, Switzerland, 2020. [CrossRef]
51. Zhang, X.; Liu, L.; Zhao, T.; Gao, Y.; Chen, X.; Mi, J. GISD30: Global 30 m impervious-surface dynamic dataset from 1985 to 2020

using time-series Landsat imagery on the Google Earth Engine platform. Earth Syst. Sci. Data 2022, 14, 1831–1856. [CrossRef]
52. Zenodo. GISD30: Global 30-m Impervious Surface Dynamic Dataset from 1985 to 2020 Using Time-Series Landsat Imagery on the Google

Earth Engine Platform; Zenodo: Geneva, Switzerland, 2020. [CrossRef]
53. Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from

ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [CrossRef]
54. Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google earth engine open-source code for land surface temperature

estimation from the landsat series. Remote Sens. 2020, 12, 1471. [CrossRef]
55. Azmi, R.; Amar, H.; Kacimi, I. Photovoltaic Site Suitability Analysis using Analytical Hierarchy Process and Sensitivity Analysis

Methods with GIS and Remote Sensing in Southern Morocco: Case of Draa-Tafilatet Region. In Proceedings of the 2017
International Renewable and Sustainable Energy Conference (IRSEC), Tangier, Morocco, 4–7 December 2017; pp. 1–5.

56. Sebti, M. Gens de Marrakech: Géo-Démographie de la Ville Rouge; INED: Paris, France, 2009.
57. Azmi, R.; Amar, H.; Chenal, J.; Diop, E.B.; Koumetio, C.S.T. Decision analysis related to solar farm investments based on analysis

hierarchical process and fuzzy AHP for sustainable energy production. Int. J. Energy Res. 2022, 46, 11730–11755. [CrossRef]
58. Hassani, N. La Sur-Urbanisation de la Ville de Casablanca: Étude de L’évolution Spatio-Temporelle de la Ville de Casablanca

entre 1987 et 2017. Master’s Thesis, University of Lorraine, Metz, France, 2017.
59. Baranwal, E.; Ahmad, S. Retrieving Spatial Pattern of Urban Using Spectral Ratios for Major Features of an Urban Ecosystem with

Satellite Image Processing; IOP Publishing: Bristol, UK, 2021; Volume 795, p. 012034.
60. Azmi, R.; Alami, O.B.; Saadane, A.E.; Kacimi, I.; Chafiq, T. A modified and enhanced normalized built-up index using multispec-

tral and thermal bands. Indian J. Sci. Technol. 2016, 9, 1–11. [CrossRef]
61. Parmar, A.; Katariya, R.; Patel, V. A Review on Random Forest: An Ensemble Classifier; Springer: Berlin/Heidelberg, Germany, 2018;

pp. 758–763.
62. Battineni, G.; Sagaro, G.G.; Nalini, C.; Amenta, F.; Tayebati, S.K. Comparative machine-learning approach: A follow-up study on

type 2 diabetes predictions by cross-validation methods. Machines 2019, 7, 74. [CrossRef]
63. Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+,

and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [CrossRef]
64. Filipponi, F. Sentinel-1 GRD preprocessing workflow. Multidiscip. Digit. Publ. Inst. Proc. 2019, 18, 11.
65. Poursanidis, D.; Chrysoulakis, N.; Mitraka, Z. Landsat 8 vs. Landsat 5: A comparison based on urban and peri-urban land cover

mapping. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 259–269. [CrossRef]
66. Mancino, G.; Ferrara, A.; Padula, A.; Nolè, A. Cross-comparison between Landsat 8 (OLI) and Landsat 7 (ETM+) derived

vegetation indices in a Mediterranean environment. Remote Sens. 2020, 12, 291. [CrossRef]
67. Chini, M.; Pelich, R.; Hostache, R.; Matgen, P. Built-up areas mapping at global scale based on adaptive parametric thresholding

of Sentinel-1 intensity & coherence time series. In Proceedings of the 2017 9th International Workshop on the Analysis of
Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017; pp. 1–4.

68. Hsieh, P.-F.; Lee, L.C.; Chen, N.-Y. Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing.
IEEE Trans. Geosci. Remote Sens. 2001, 39, 2657–2663. [CrossRef]

69. Schönbrodt-Stitt, S.; Ahmadian, N.; Kurtenbach, M.; Conrad, C.; Romano, N.; Bogena, H.R.; Vereecken, H.; Nasta, P. Statistical
exploration of Sentinel-1 data, terrain parameters, and in-situ data for estimating the near-surface soil moisture in a mediterranean
agroecosystem. Front. Water 2021, 3, 655837. [CrossRef]

70. Chen, X.; Cao, X.; Liao, A.; Chen, L.; Peng, S.; Lu, M.; Chen, J.; Zhang, W.; Zhang, H.; Han, G.; et al. Global mapping of artificial
surfaces at 30-m resolution. Sci. China Earth Sci. 2016, 59, 2295–2306. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.rse.2019.111510
http://doi.org/10.1016/j.rse.2019.111510
http://doi.org/10.5281/zenodo.4280923
http://doi.org/10.5194/essd-14-1831-2022
http://doi.org/10.5281/zenodo.5220816
http://doi.org/10.1016/j.rse.2014.04.014
http://doi.org/10.3390/rs12091471
http://doi.org/10.1002/er.7943
http://doi.org/10.17485/ijst/2016/v9i27/87405
http://doi.org/10.3390/machines7040074
http://doi.org/10.1016/j.rse.2009.01.007
http://doi.org/10.1016/j.jag.2014.09.010
http://doi.org/10.3390/rs12020291
http://doi.org/10.1109/36.975000
http://doi.org/10.3389/frwa.2021.655837
http://doi.org/10.1007/s11430-016-5291-y

	Introduction 
	Motivation of the Study 
	Correlation between Input Data 
	Random Forest Classifier in Remote Sensing 
	Large Scale Data on Impervious Surfaces 

	Materials and Methods 
	Workflow for Data Processing 
	Study Area 
	Input Data and Samples 

	Results and Discussion 
	Evaluation Metrics and Comparison 
	Visual Interpretation 

	Conclusions and Perspectives 
	Appendix A
	References

