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Abstract: This paper investigates the effect of the architectural design of deep learning models in
combination with a feature engineering approach considering the temporal variation in the features
in the case of tropospheric ozone forecasting. Although deep neural network models have shown
successful results by extracting features automatically from raw data, their performance in the
domain of air quality forecasting is influenced by different feature analysis approaches and model
architectures. This paper proposes a simple but effective analysis of tropospheric ozone time series
data that can reveal temporal phases of the ozone evolution process and assist neural network models
to reflect these temporal variations. We demonstrate that addressing the ozone evolution phases
when developing the model architecture improves the performance of deep neural network models.
As a result, we evaluated our approach on the CNN model and showed that not only does it improve
the performance of the CNN model, but also that the CNN model in combination with our approach
boosts the performance of the other deep neural network models such as LSTM. The development
of the CNN, LSTM-CNN, and CNN-LSTM models using the proposed approach improved the
prediction performance of the models by 3.58%, 1.68%, and 3.37%, respectively.

Keywords: air pollution; feature engineering; ozone forecasting; deep neural network

1. Introduction

Tropospheric ozone is a major air quality issue that constitutes 10% of the total atmo-
spheric ozone. Unlike stratospheric ozone, which protects life from ultraviolet radiation,
tropospheric ozone has damaging impacts on human health, crop growth, and climatic
conditions. An increased risk of cardiovascular and respiratory diseases, premature mor-
tality, and some eye problems due to increased ground-level ozone exposure has been
demonstrated in epidemiological studies [1–4]. The study conducted by Silva et al. (2013)
shows that ozone exposure is associated with 470K annual premature deaths, globally [5]. A
high ozone concentration has a detrimental effect on crop growth by reducing the carboxy-
lation efficiency and carbon dioxide assimilation rate [6]. In a study on the ozone-induced
economic losses of China, the annual loss of the agricultural sector was estimated at billions
of USD [2].

Photochemical production, horizontal transport, and stratosphere-to-troposphere
exchanges (STE) are the main sources of tropospheric ozone [6–8]. However, tropospheric
ozone formation is dominated by in situ photochemical production. As tropospheric
ozone is a secondary pollutant, the presence of precursors is important, alongside favored
meteorological conditions. Nitrogen oxides (NOx = NO2 + NO), VOCs, and CO are the
main precursors of tropospheric ozone production [6,9]. There is a direct linear relationship
between the VOCs and ozone concentration, whereas the relationship between ozone
and NOx is inverse [10]. In addition to the direct role of NOx in the photochemical chain
reaction, it impacts the ozone level by reacting with hydrocarbons [11] and contributing to
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the generation of hydroxyl radicals [12]. Therefore, the dependency of the ozone level on
the fluctuations in NOx concentration is higher than the other precursors.

The tropospheric ozone level is also sensitive to meteorological variables such as
temperature, solar radiation, wind speed and direction, precipitation, and humidity [13–15].
For instance, a rise in temperature or solar radiation contributes to higher levels of ozone,
whereas an increase in humidity causes a decrease in ozone by increasing the destruction
of ozone. Moreover, as precipitation causes the ozone precursors to be washed down, the
ozone concentration decreases [16,17]. Furthermore, wind-induced precursor transport
affects the ozone level in both positive and negative ways.

Analysis of historical ozone data and future projections under climate change show
an increasing trend in ozone concentration, especially in the urban area [6,9,18]. Hence, it
is necessary to make accurate forecasts of ozone concentration to warn vulnerable groups
and conduct reduction scenarios. However, (1) the multiple influential factors, (2) the
complexity of the interactions between the factors, (3) the occurrence of sudden changes
(extreme events), (4) dispersion of pollution, and (5) having sequential properties are
the main challenges in air quality forecasting processes [19,20]. The importance of the
challenges noted above can be varied under the geographical and environmental conditions
and affect the quality of ozone forecasting.

Air quality forecasting models are divided into deterministic, statistical, and hybrid
approaches [21,22]. In order to predict an atmospheric pollutant concentration, the deter-
ministic approach uses physical and chemical mechanisms, whereas the statistical approach
uses historical data as inputs to learn the pattern of changes in ozone concentration by rely-
ing on changes in predictor variables over time. Due to the linearity of the early statistical
models (such as linear-regression-based models), improved machine learning and deep
learning models have been utilized to tackle the non-linearity issue of such data. Statistical
approaches have received much attention in recent years. The multi-layer architecture in
deep learning algorithms provides the possibility of extracting air quality features with
complex characteristics. In addition, sequential deep models, such as RNN and LSTM,
are capable of learning temporal dynamic patterns from a sequence of input parameters.
Some studies have shown that deep learning models can even outperform sophisticated
deterministic models [23–25]. For instance, Feng et al. (2019) [24] compared the accuracy
of a traditional chemical transport model, WRF-CMAQ, with machine learning and deep
learning methods (i.e., random forest (RF), MLP, and the extreme learning machine (ELM))
in the tropospheric ozone forecasts. Their results demonstrate that the machine learning
methods, excluding ELM, have a better prediction than the traditional WRF-CMAQ model.
The worst prediction belonged to ELM, which is a linear model and could not capture the
non-linear and non-smooth characteristics of the ozone formation process.

Several examples of successful applications of less complicated machine learning
models in air quality prediction have been reported in the literature. Among these less
complicated models, the MLP model has been widely used in air quality forecasting studies.
In a study conducted by Mekparyup and Saithanu (2014) [26], the MLP and radial basis
function (RBF) models with feed-forward and principal component feed-forward input
nodes were applied to forecast the tropospheric ozone. Regardless of the simplicity of MLP,
it shows a better performance than the advanced RBF model. The satisfactory performance
of the MLP model has also been reported in other studies [27–33]. Song et al. (2019) [34]
applied the principal component regression (PCR) method in the prediction of the air
quality index (AQI) in Wuhan, China. According to their findings, meteorological variables
significantly affected the AQI, and the model was able to predict the AQI effectively at the
station level. The results of a study conducted by Su et al. (2020) [35] demonstrated the high
performance of support vector regression (SVR) and the kernel extreme learning machine
(KELM) in the prediction of tropospheric ozone. Their results indicate that kernel-based
models are more robust than the ELM, step-wise regression (SR), and back propagation
neural network (BPNN) models. The SVR model has been successfully applied to predict
air quality in several studies [36–40]. Jumin et al. (2020) [41] applied a boosted decision
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tree (BDTR) model for ozone prediction and compared the model’s performance with that
of the neural network (ANN) and linear regression (LR) models. The results indicate that
the BDTR and LR models made the best and worst predictions, respectively. Plocoste and
Laventure (2023) [42] used SVR, kNN, random forest regression (RFR), gradient boosting
regression (GBR), Tweedie regression (TR), and Bayesian ridge regression (BRR) models
to forecast PM10 concentration. They used the preprocessed daily averages of PM10, daily
average of temperature, and the daily sum of rainfall (RR) as input data. The results show
a higher prediction performance of the GBR model; however, all models underestimated
the PM10 concentration.

With the recent advances in deep learning models, the forecasting performance has
even improved. Pak et al. (2018) [43] proposed a deep model for ozone forecasting in
Beijing City using a CNN-LSTM hybrid network. They evaluated the proposed hybrid
approach using four different architectures, including CNN-LSTM, CNN-Pooling-LSTM,
CNN-LSTM-LSTM, and CNN-Pooling-LSTM-LSTM. According to the reported results, the
fourth and third models, respectively, showed the best and worst performances. Overall, the
evaluation metrics, i.e., RMSE, MAE, and MAPE, indicate that their proposed hybrid model,
CNN-Pooling-LSTM-LSTM, outperforms the LSTM and MLP models in the prediction of
the ozone level. In research conducted by Freeman et al. (2018) [44], the LSTM model was
used to predict the 8 h average ozone concentration. They used a decision tree technique to
reduce the number of input features, which improved the precision of the model. Their
results show that the proposed LSTM model significantly outperforms the feed-forward
neural network (FFNN) and ARIMA models. Eslami et al. (2019) [45] used the CNN model
for the real-time prediction of the hourly tropospheric ozone concentration over Seoul,
South Korea, and compared its performance with the benchmark models, including the
ANN, MLP, LSTM, and a stacked autoencoder (SAE). According to their results, the CNN
model shows the highest index of agreement (IOA) and the lowest mean absolute error
(MAE) of the benchmark models. Similarly, the better performance of the CNN model
compared to the other benchmark models was reported by Sayeed et al. (2020) [46]. They
developed a five-layer deep CNN model to predict the future 24 h of ozone concentration.
The performance of the model was compared with ridge regression, lasso regression,
deep neural networks (DNNs), MLP, and GRU. The best index of agreement based on
the hourly concentration and daily maximum concentration belonged to the CNN, with
an IOA > 0.85 at the majority of the stations. All of the models underpredict the daily
maximum ozone concentration.

Since the LSTM model was developed to solve the vanishing gradient problems, it has
a good performance in forecasting time series and unsegmented data, such as atmospheric
pollution data [47]. Liu et al. (2020) [48] developed an attention-based LSTM model to
predict the PM2.5 concentration in the next 24 h. They proposed a wind-sensitive attention
mechanism with the LSTM model (WALSTM) and a wind-sensitive attention LSTM neural
network with the XGBoost ensemble and weather forecast model (WALSTME-W). The
prediction results from the proposed models were compared with the results from the
MLP, SVR, XGBoost, and conventional LSTM models. The comparison results show an
improvement in PM2.5 forecasting using the proposed models. An aggregated LSTM-based
model (ALSTM) was used by Chang et al. (2020) [49] to forecast the PM2.5 concentration.
With this approach, the data from local, external, and industrial air quality monitoring
stations were combined. Moreover, the SVR, GBTR, and conventional LSTM models
were developed as benchmark models. The higher performance of the proposed model
compared to the benchmark models shows that the ALSTM model is capable of learning
the weights of different air quality monitoring stations. The LSTM model was applied
in a study conducted by Navares and Aznarte (2020) [50] to investigate the possibility of
using a comprehensive model instead of multiple single models for station-scale air quality
forecasting. Their objective was to impose the spatial effect of the pollutant concentrations
on each other using a single comprehensive LSTM model. To this end, they proposed
four different architectures using LSTM layers to capture the temporal dependencies as
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well as the spatial relations between pollutant concentrations. Their results show that a
single comprehensive model performs better than multiple single models in air quality
forecasting. Zhang et al. (2021) [51] successfully conducted a semi-supervised bidirectional
LSTM model to forecast the PM2.5 concentration. To improve the model’s prediction
accuracy, an empirical mode decomposition was used in this study. Compared with the
conventional LSTM model, the proposed BiLSTM model had a better performance in terms
of daily and hourly error rates (RMSE, MAE, MAPE, and R2).

Nabavi et al. (2021) [52] proposed a hybrid model to predict the ozone concentration.
The model consists of the multiple linear regression-based eXtreme Gradient Boosting
Machines (MLR-XGBM) and reanalyzed air quality models outputs (CAMS-EU). The model
was trained and tested using 14 atmospheric pollutants’ concentration and meteorological
data as well as surface ozone concentration data from the satellite and the station category.
In the hybrid model, the ozone estimates from the CAMS-EU model were also used as an
input. The results show that the proposed hybrid model had a better performance than the
baseline machine learning algorithms and the deterministic regional dynamic model.

Jia et al. (2021) [25] used a sequence-to-sequence model to make a real-time prediction
system for ozone concentration. The model was trained and tested using atmospheric
pollutant concentration data from 123 monitoring stations’ hourly CO, O3, SO2, NO2,
PM2.5, and PM10 measurements, as well as meteorology station data, including the tem-
perature, relative humidity, wind speed, wind direction, precipitation, daylight hours, and
air pressure. In the proposed approach, the input data encode to the GRU layer using an
encoding-forecasting network. The attention mechanism concurrently applies weights to
the input time-series data. The model uses the past 24 h input data to predict the ozone
concentration of the future 6 h. Moreover, the WRF-Chem model was used to evaluate
the results of the proposed prediction model. The performance analysis results show an
accurate and stable prediction and good performance of the proposed model.

Machine learning methods are also used to analyze the air pollution issues other
than tropospheric ozone pollution. Dai et al. (2022) [53] employed the PCA-MEE-ISPO-
LightGBM algorithm to predict the risk of haze before the major haze events. In this
study, the annual mean concentrations of NO2, SO2, PM10, PM2.5, and VOCs were used as
indicators of the haze component vulnerability. Moreover, some other factors, including
economics, population density, health services, and urban factors, were used as indicators
of haze. After the calculation of each indicator’s weight, five models were developed to
evaluate the health risk of the population, transportation damage risk, crop damage risk,
economic loss risk, and integrated risk. The findings demonstrate that the suggested model
was successful in predicting the haze risk for the aforementioned categories.

Dai et al. (2022) [54] used different combinations of GARCH models with XGBoost and
MLP (XGBoost-GARCH-MLP) to predict PM2.5 volatility. From the GARCH models group,
the authors used the GARCH, TARCH, EGARCH, and PARCH models. The proposed
method focuses on the prediction of the fluctuation in PM2.5 concentration to capture
the change trajectory of the pollutant. To this end, hourly concentrations of PM2.5, PM10,
NO2, SO2, O3, and CO, along with 26 meteorological parameters, were used as the model
input. Sayeed et al. (2022) [55] introduced a new technique for the post-processing of the
deterministic chemical transport models’ output using a deep learning algorithm. They
fed the CNN model with outputs from the WRF-CMAQ modeling system to forecast the
tropospheric ozone concentration. The results show an improvement in the prediction
accuracy and reduction in the bias rate. Kim et al. (2022) [56] proposed a hybrid CNN-
LSTM model to forecast the daily PM2.5 concentration. The observational data and GFS
(Global Forecast System) forecasts were used for training the model. Moreover, the data
from ground stations and CMAQ outputs were used to evaluate the model prediction.
The results show a higher prediction accuracy of the proposed model compared to the
CMAQ model. In a recently published study by Zhao et al. (2023) [57], a genetic algorithm-
optimized backpropagation (GA-BP) model was used to forecast the ozone concentration.
The proposed model was only trained using meteorological parameters, including the



Atmosphere 2023, 14, 239 5 of 20

temperature, relative humidity, wind speed and direction, and visibility. The model results
were compared with the results of a multiple linear regression (MLR) model, a BP neural
network model, a model based on the RF algorithm, and the LSTM model. According
to the results, the average relative error of the GA-BP model was much lower than the
baseline models.

Nevertheless, the majority of approaches proposed in the literature have focused
on the architecture of forecasting models without considering the nature of the data.
For example, the CNN and LSTM models have been widely used in complex neural
network architectures to extract features representing temporal dependencies between
input variables [58]. However, more complex deep models are resource- and time-intensive,
limiting their utility in real-world ozone forecasting applications, especially when real-time
forecasts are required. On the other hand, the huge number of training parameters in
deep models increases the overfitting problem and may reduce the generalizability of the
models. As a result, less complex models with a comparable performance will have a
greater chance of being deployed in real-world applications. In this study, we propose a
simple but effective approach that improves the performance of basic deep learning models
in ozone forecasting. In contrast to previous deep learning models, which do not account
for the ozone evolution cycles across successive time steps, we propose incorporating
these cycles into the model development. This is important because a change in the
evolution of a pollutant may not be well-detected when variables are analyzed in short
(hourly) or long (daily) time steps. In light of this, we propose ozone forecasting models
that adhere to the cycles of ozone evolution. We also propose and make available pre-
processed datasets to address the aforementioned ozone forecasting challenges. As different
types of variables are considered in air quality forecasting models, they are obtained from
various sources and necessitate pre-processing for handling outliers, missing values, and
so on. This makes it challenging to compare models under comparable conditions. As a
result, this paper contributes further by proposing a series of benchmarks for air quality
forecasting. All of the datasets and source codes related to this paper are released at
https://github.com/nbehzad/air-quality2, accessed on 17 January 2023.

We summarize our contribution as follows: (1) incorporating the role of ozone evo-
lution phases into basic deep learning models, which improves the performance of deep
learning models; (2) proposing a publicly available dataset for ozone forecasting.

2. Material and Methods
2.1. Study Area

Five years (2015–2019) of Istanbul air quality data, including hourly NO2, NOx, and
O3 concentrations, were obtained from the Turkish Ministry of Environment and Urban-
ization. Out of the existing 35 monitoring stations, only 8 stations contained five years
of measured ozone values. Hence, the data associated with these stations were used in
this study. From these stations, Alibeyköy, Esenyurt, Kadıköy, Kağıthane, and Sultanbeyli
stations are urban air quality monitoring stations, and Başakşehir, Beşiktaş, and Sultangazi
stations are industrial, traffic, and urban-traffic stations, respectively. Furthermore, the
hourly meteorological records of five ground stations, including pressure, relative humidity,
temperature, precipitation, wind speed and direction, and solar radiation were obtained
from the Turkish State Meteorological Service. The location of the monitoring stations is
presented in Figure 1.

2.2. Data Preprocessing

All datasets were analyzed in regard to invalid data and missing values. Tables 1 and 2
show the statistical summary of air quality and meteorological stations’ data. To deal with
the missing values, the use of mean values, the elimination of data lines containing missing
points, and interpolation are more common methods. Using mean values for data gap filling
assigns a constant value for missing points, while, due to the high temporal resolution of
the input data, a gradual change in the variables’ magnitude is important in the model

https://github.com/nbehzad/air-quality2
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prediction accuracy. Therefore, this method is not a good choice for filling missing points
of the time series data. Moreover, the application of the interpolation method for treating
the missing values at the beginning or end of the dataset is problematic, as it leads to
extrapolation. Furthermore, the elimination of data rows is not reasonable for solving the
missing values when considering the sequential characteristics of meteorological and air
quality data.

Figure 1. Location of meteorological and air quality monitoring stations.

Table 1. Statistical summary of the air quality monitoring stations’ data.

Station NO2 NOx O3 Station NO2 NOx O3

A
lib

ey
kö

y

Mean 45.583 100.627 22.802

Ba
şa

kş
eh

ir

Mean 31.681 56.149 55.013
Std. 30.603 134.910 23.088 Std. 25.632 70.125 28.306
Q1 * 25.900 30.400 4.000 Q1 14.376 19.265 34.245
Q2 39.000 56.400 15.400 Q2 23.740 33.124 57.900
Q3 57.290 109.900 34.200 Q3 40.734 60.993 75.680
Miss. (%) ** 14.13 Miss. (%) 5.85

Be
şi

kt
aş

Mean 73.898 182.003 27.330

Es
en

yu
rt

Mean 25.762 88.345 35.030
Std. 35.057 127.797 17.759 Std. 17.922 116.479 26.203
Q1 48.600 88.900 12.900 Q1 12.850 30.631 13.743
Q2 68.200 145.869 24.000 Q2 21.250 53.107 32.100
Q3 92.588 241.900 39.000 Q3 34.335 93.976 51.130
Miss. (%) 7.67 Miss. (%) 5.45

K
ad

ık
öy

Mean 56.129 153.261 20.158

K
ağ

ıth
an

e

Mean 36.530 101.051 44.949
Std. 31.364 224.346 14.927 Std. 28.642 120.980 30.859
Q1 35.800 49.500 9.600 Q1 16.670 37.239 20.650
Q2 49.434 85.900 16.200 Q2 28.901 62.552 42.500
Q3 68.800 156.100 28.600 Q3 48.630 115.374 65.872
Miss. (%) 7.36 Miss. (%) 4.27

Su
lt

an
be

yl
i Mean 19.497 45.148 58.245

Su
lt

an
ga

zi

Mean 35.068 75.146 35.329
Std. 20.942 75.336 33.931 Std. 22.142 81.717 23.783
Q1 4.802 8.059 30.800 Q1 20.610 33.527 14.390
Q2 10.819 17.473 61.600 Q2 30.925 55.171 34.050
Q3 27.755 47.033 83.700 Q3 44.690 88.654 52.941
Miss. (%) 3.15 Miss. (%) 3.69

* Q1: First quartile. ** Miss. (%): The percentage of missing values in the station data.

Therefore, we adopted a local regression method to reduce the error rates caused
by the missing data filling process and to construct a reliable benchmark dataset, which
is one of the contributions of the study. In order to fill in the missing values of an air
quality variable, we have used either the correlation between air quality variables of the
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same dataset (same station) or the correlation between the same variables of the nearest
neighboring station. The former approach is used where the other air quality variables of
the target dataset exist; otherwise, the latter approach is used. Since a strong relationship
(R2 > 0.9) exists between different variables of a dataset (station), such as O3 and NOx,
this is used to fill in missing values. Moreover, the regression coefficients demonstrate a
good association between the same variables of the neighbor stations (mostly R2 > 0.7). A
similar regression method was also conducted to fill in the missing meteorological values
using data from neighboring stations.

Table 2. Statistical summary of the meteorological stations’ data.

Station Parameter Mean Std. Q1 Q2 Q3 Miss. (%)

Güngören D.

Pressure (hPa) 1008.30 6.55 1003.90 1007.80 1012.50 3.27
R. humidity (%) 72.72 15.68 62.00 74.00 85.00
Temperature (◦C) 15.89 7.78 9.60 15.90 22.40
Precipitation (mm) 0.12 1.06 0.00 0.00 0.00
Wind speed (ms−1) 3.21 1.64 1.90 3.00 4.20
Solar rad. (Wm−2) 9806.21 15,195.13 0.00 0.00 15,600.00

Pressure (hPa) 1014.69 6.67 1010.10 1014.10 1018.90 3.27
R. humidity (%) 73.02 13.59 64.00 74.00 83.00

Kadıköy R. Temperature(◦C) 16.40 7.59 10.20 16.30 22.60
Precipitation(mm) 0.08 0.59 0.00 0.00 0.00
Wind speed (ms−1) 3.27 1.83 1.80 2.90 4.40

Şişli

R. humidity (%) 73.00 17.60 61.00 74.00 87.00 3.71
Temperature(◦C) 16.09 7.67 9.80 16.20 22.50
Precipitation (mm) 0.09 0.61 0.00 0.00 0.00
Wind speed (ms−1) 1.96 0.96 1.30 1.90 2.60

Temperature(◦C) 14.77 8.05 8.20 14.90 21.00 2.92
Sancaktepe Precipitation(mm) 0.10 0.70 0.00 0.00 0.00

Wind speed (ms−1) 2.52 1.72 1.10 2.20 3.60

Samandıra H. Pressure (hPa) 1002.11 6.77 997.50 1001.50 1006.40 4.13
R. humidity (%) 77.45 17.27 65.00 81.00 92.00

It should be noted that the study area has a variety of topographic features in terms of
altitude, land use, etc., and that the monitoring stations are located far away from each other.
Given the size and topographic complexity of the study area, the presence of a correlation
between all stations is implausible. The correlation used in the data preprocessing is limited
to neighboring stations, and we used data from the nearest neighboring station to fill the
data gap of the modeled station. However, the neighboring stations that were used to
impute missing values were not used for forecasting because they lacked 5-year air quality
data. These monitoring stations are also not presented in Figure 1.

Finally, all data sets were normalized using the MinMax scaler (Equation (1)):

n(x) =
x−min(y)

max(y)−min(y)
(1)

where y denotes all values of the given metric, x is the metric value belonging to y, and
n(x) is the normalized value of x.

2.3. Dataset Analysis and Feature Engineering

Tropospheric ozone formation and decomposition are under the control of some chem-
ical mechanisms, meteorological conditions, and spatio-temporal parameters. In most
air quality forecasting studies, the specific characteristics of the study site may not be
considered, and they only focus on the model architecture to improve the performance.
On the contrary, we propose a simple CNN model based on the ozone evolution cycles
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observed in the study area and adopted it in the other deep neural network models. Con-
sidering the spatio-temporal differentiation of the ozone evolution process, understanding
these influential parameters helps to make a better prediction and contributes to a better
discussion on the ozone level.

As tropospheric ozone formation is a light-dependent reaction chain, temperature and
sunlight intensity are the most influential environmental factors in ozone concentration.
Depending on the temperature and light intensity, the daily tropospheric ozone cycle
includes the formation, stationary, and decomposition phases. Figure 2 demonstrates the
temporal characteristics of tropospheric ozone formation. To apply these characteristics
to the forecasting model, we analyzed the diurnal ozone pattern in the input data. The
findings indicate that each daylight evolution phase lasts roughly four hours, and the
evening and overnight minimums last approximately twelve hours (a multiple of four).
Here, our objective was to boost the performance of deep neural network models, such
as CNN, by providing a setting to better learn the cyclic ozone evolution pattern. The
important point here is that we set our dataset entries to the beginning of the cycle, with
no missing entries throughout the dataset. For example, station entries begin at 00:00 a.m.
(1 January 2015). Therefore, a certain filter size can overlap the ozone evolution phases.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
o

n
ce

n
tr

at
io

n

Time

M
in

im
u

m

St
at

io
n

ar
y 

p
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as
e

Fo
rm

at
io

n
 

p
h

as
e

D
ec

o
m

p
o

si
ti

o
n

 
p

h
as

e

M
in

im
u

m

Figure 2. Theoretical daily ozone evolution cycle.

Our hypothesis is that using a filter size that corresponds to ozone evolution phases
improves the model performance by allowing it to capture ozone change patterns over
successive evolution phases. However, the hourly ozone concentration changes gradually
because the ozone formation and decomposition are slow reactions [10,59]. Moreover, feed-
ing the model with hourly strides makes tracking the ozone change tougher by overlapping
ozone phases. To demonstrate the impact of overlapping in evolution phases, we propose
multi-stride models with no overlapping (stride size equals filter size) compared to single-
stride models (stride size equals 1) with maximum overlapping. Using the multi-stride
setting allows the model to separate the ozone evolution phases and prepares more linear
input samples for the model, whereas, in the single-stride setting overlapping, the phases
increase the non-linearity of the input samples.

2.4. Proposed Neural Networks Models

In all proposed models, the ozone concentration at time t + k is predicted based
on parameters observed between t − h and t, where k = 1, 2, 3, . . . , 48 and h is 240 h
(past 10 days). At any time step, the input data are represented by 10 key parameters,
including 7 meteorological parameters and 3 air-quality parameters. Moreover, 2 additional
parameters related to air quality are added to the input parameters: the average and
maximum of NOx for the past 8 h. Overall, the input of all models is a matrix with a shape
of 240× 12, and the output is a vector with the size of 48.



Atmosphere 2023, 14, 239 9 of 20

2.4.1. MLP Model

Multilayer perceptrons (MLPs) have been widely used in ozone forecasting, where the
ozone concentration at time t + k is predicted based on air-quality and meteorological data
at time t. Different techniques are used to train MLPs using time-series data. The simplest
method is to flatten the time series data. As the input is a matrix 240× 12, this approach
generates an input layer with a size of 2880. The input layer is given to the hidden layer
with a size of 100 units. Finally, the output layer with a size of 48 generates the outputs of
the model. This model was used as a baseline in this study to evaluate the performance of
the proposed approach.

2.4.2. CNN Model

To extract features representing the behavior of the ozone concentration over time, we
propose a convolutional neural network based on the ozone evolution phase intervals, with
a m-hour filter size and m-hour striding without pooling operations. Based on our hypothesis,
large filter sizes allow the ozone phases to be mixed together so that changes between
phases may be neutralized. On the other hand, an hourly stride highlights hourly changes
in the ozone concentration that are not more noticeable due to the gradual evolution of the
ozone concentration. Therefore, the stride size is considered to be the same as the filter size.
As a result of this convolution, we put together the effect of all input parameters in each
phase of ozone evolution. Under this condition, the pooling operation may eliminate the
sequence of changes during ozone phases. Figure 3 shows the details of the CNN model
based on the proposed feature engineering approach.

We set m to 2, 4, 8, 16, and 24 in the experiments, and the obtained models are denoted
by CNN2, . . ., CNN24. In order to evaluate the effectiveness of the proposed approach,
following Sayeed et al. (2020) [46], we also adopted a CNN model with a filter size of 2
and stride of 1. We also considered a MaxPooling layer with pool and stride size of 2. This
model is called CNN-base in the experiments.
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Figure 3. CNN model architecture with filter and stride size of 4.

2.4.3. LSTM-CNN Model

Long short-term memory (LSTM) is a variant of the recurrent neural network (RNN)
that can deal with the vanishing gradient problem and can remember the values over
arbitrary intervals. Unlike the RNN, LSTM is well-suited to the processing of time-series
data, where time lags are of unknown duration [58,60]. However, as noted above, the
concentration of ozone follows almost a known pattern depending on the seasonal and
environmental conditions of the study area. Here, our objective was to model 10-day
changes in the ozone concentration at different seasonal times using LSTM, and to use it
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for predicting the next 48 h of ozone concentration. To improve the performance of the
LSTM model, as shown in Figure 4, an additional CNN layer was added to the model that
leverages the applied feature engineering approach. The use of the CNN layer after the
LSTM enables the model to better understand the phase changes in the ozone concentration
over successive days, as well as temporal dependencies between ozone phases.
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Figure 4. LSTM-CNN model architecture with filter and stride size of 4.

In order to observe the effect of the CNN layer in the performance of the proposed
LSTM-CNN model, we adopted a baseline LSTM model, which is shown in Figure 5.
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Figure 5. Baseline LSTM model.

2.4.4. CNN-LSTM Model

In the LSTM-CNN model, the CNN layer learns the ozone phases and cyclic patterns
from the outputs of the LSTM layer (hidden state vectors), reflecting the hourly changes
in the ozone concentration at each time step. In fact, a hidden state vector at each time
step reflects all of the changes until that time step. Therefore, adding our proposed CNN
layer to the LSTM outputs allows the model to better learn ozone concentration phases.
To evaluate the reverse case, the CNN-LSTM model is also proposed. In this model, the
LSTM layer learns the temporal dependencies from the features extracted by the CNN
model. The details of the architecture of this model is shown in Figure 6. The impact of the
applied feature engineering approach on the performance of the CNN-LSTM model was
also assessed in the experiments.



Atmosphere 2023, 14, 239 11 of 20

. . .

. . .

.

.

.

. . .

LSTM

LSTM

LSTM

.

.

.

.

.

.

Fully Connected Layer

Feature Map
(32)

Output
(48)

.

.

.

Input Layer
(240×12)

Conv. Layer
(60×100)

LSTM Layer
(60×32)

x1 x2 x3 . . . x12

t-239

t-238

t-237

t-236

t-235

t-234

t-233

t-232

.

.

.

.

.

.

t-3

t-2

t-1

t

Figure 6. CNN-LSTM model architecture with filter and stride size of 4.

2.5. Model Evaluation Metrics

The mean absolute error (MAE), mean square error (MSE), and root mean square
error (RMSE) are the most commonly used model evaluation metrics for ozone forecasting.
The differences between the metric formulations bring some advantages or disadvantages.
Therefore, to balance the disadvantages of the metrics, it is recommended to use various
distance metrics. For example, while the RMSE is sensitive to extreme values (outliers) [61],
the MAE metric is a good choice when the error distribution is not Gaussian [62]. On the
contrary, the use of absolute values in MAE calculation is considered to be a disadvantage
against RMSE, as, in many mathematical calculations, the absolute value is not favored [62].
In this study, the above-mentioned distance metrics were used to evaluate the performance
of the models.

MAE =
Σn

i=1 | yi − ŷi |
n

(2)

MSE =
Σn

i=1(yi − ŷi)
2

n
(3)

RMSE =

√
Σn

i=1(yi − ŷi)2

n
(4)

where n is the number of samples in the test dataset, and yi and ŷi are the predicted and
observed values, respectively.

2.6. Implementation Details

All of the models were implemented by Keras (https://keras.io/ accessed on 17
January 2023) with TensorFlow as the backend. The MAE metric was used for the loss
function, and the Adam optimization algorithm was adopted to train models through
20 epochs. The default settings were used in the definition of layers. To avoid over-
fitting, a dropout approach [63] with a rate of 0.2 was used in the output of the CNN and
LSTM layers.

3. Experiments

In order to show the effectiveness of involving the ozone evolution phases in the deep
learning models on the prediction performance, we conducted two types of experiments.
Firstly, we evaluated the effectiveness of the feature engineering approach, including filter
and stride sizes based on the ozone evolution phases, on the performance of three groups
of models: CNN, LSTM-CNN, and CNN-LSTM. Then, the best-performing multi-stride
models and their corresponding single-stride models, described in Section 2.3, were chosen
for a more detailed analysis. Finally, a monthly evaluation was conducted on the baseline

https://keras.io/
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and the best-performing models. To assess the significance of feature engineering on
the performance of the proposed models, the paired t-test was conducted on monthly
performance results. Figure 7 shows the conceptual framework of this study.

In all experiments, the following convention was used to denote models and settings:
< model name >< f ilter size > − < stride size >. In cases where the stride size was
missing, it equalled the filter size. For example, while CNN4-1 indicates a CNN model
with a filter size of 4 and a stride size of 1, CNN4 is equivalent to CNN4-4.
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Figure 7. Conceptual framework of the study.

Empirical Results

Figure 8 shows the effect of the filter (kernel) size on the performance of the three
types of ozone forecasting models, namely CNN, CNN-LSTM, and LSTM-CNN, as well as
the impact of the stride size.

The impact of the filter and stride size on the performance of the CNN model can be
observed in Figure 8a. This figure shows the MAE over different filter sizes while the stride
is equal to the filter size (called multi-stride) or equal to 1 (called single-stride). The results
indicate that the MAE values in the single-stride models are higher than those in the multi-
stride models. In addition, it is observed that the CNN4 achieves the best performance
(the lowest MAE) among the other CNN models. As can be seen, the CNN model does not
perform well with both lower and higher filter and stride sizes, and the best performance is
achieved by CNN4, which is in compliance with the ozone evolution process.

The results of the CNN-LSTM models are shown in Figure 8b. It is observed that,
in the single stride models, the growth in the filter size has a negative impact on the
performance of the CNN-LSTM model, so the best MAE is achieved by the CNN4-1-LSTM
model. On the contrary, in the multi-stride models, where the stride size is equal to
the filter size, the CNN-LSTM models with higher filter sizes perform better than lower
ones, so the best model is achieved by CNN24-LSTM among all single and multi-stride
models. This demonstrates that the CNN-LSTM model requires a different setting for better
training. In this model, the LSTM layer is applied to the output of the CNN layer, and
the final features are obtained from the LSTM model. Here, the LSTM model captures the
temporal/sequential dependencies between the feature vectors obtained from the CNN
layer. Therefore, the large filter sizes—for instance, 24 h—provide a better view of the
ozone evolution process for the LSTM model so that the difference between two consecutive
vectors is more tangible and more informative.
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Figure 8. Mean absolute error of single and multi-stride: (a) CNN model, (b) CNN-LSTM model, and
(c) LSTM-CNN model over different kernel sizes

The performance of the LSTM-CNN model is shown in Figure 8c. Unlike CNN-LSTM,
the LSTM-CNN model supports our hypothesis that the best models are achieved by a
filter size of 4 in both single and multi-stride settings, which is in compliance with the
ozone evolution process. Since the final feature vectors are produced from the CNN layer,
the performance of the LSTM-CNN and CNN models almost follows the same patterns as
our hypothesis. According to our hypothesis, the single-stride feature extraction approach
cannot provide better features for ozone forecasting models. In addition, filter sizes that
are more consistent with ozone evolution phases are more effective than the others.

In the second experiment, the yearly and monthly performances of different models,
indicated by MAE, MSE, and RMSE metrics, are compared to each other in order to
determine the best ozone forecasting model. Figure 9 shows the yearly performance of
four groups of models, including baseline models, LSTM-CNN, CNN-LSTM, and CNN,
evaluated by three distance metrics. Each group includes the best-performing model
identified from the first experiment and its equivalent single-stride model. Moreover, a
baseline group, including MLP, LSTM, and CNN models described in Section 2.4, was
considered in our experiments.

From Figure 9, it is observed that involving the ozone evolution phases in the model
has a substantial impact on the performance of the three groups of models, especially on
the CNN group. The performance evaluation metrics show that the CNN24-LSTM model
achieves the best performance among all models.

As the seasonal variables are determinant factors in ozone formation patterns, the
models’ prediction accuracy may differ between seasons. Therefore, this should be con-
sidered in the evaluation of models in order to make a more detailed judgment on their
performance. Hence, the statistical analysis hereafter was conducted on the monthly error
values of the models. Table 3 indicates the monthly performance of the proposed and
baseline models using three evaluation metrics. To show the significance of the difference
between the performance of the proposed multi-stride and single-stride models and be-
tween the multi-stride and baseline models, the paired t-test was adopted. The paired
t-test was performed on the monthly errors, shown in Table 3, to evaluate the statistical
significance of the improvements associated with the proposed approach.
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Figure 9. Yearly performance of the proposed and baseline models.

Table 3. Monthly performance of the proposed and baseline models using three evaluation metrics.

Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
SE

MLP-base 0.0063 0.0085 0.0102 0.0113 0.0111 0.0078 0.0064 0.0058 0.0070 0.0043 0.0050 0.0036
CNN-base 0.0061 0.0089 0.0108 0.0113 0.0110 0.0078 0.0062 0.0063 0.0066 0.0041 0.0045 0.0033
LSTM-base 0.0059 0.0073 0.0095 0.0103 0.0099 0.0069 0.0052 0.0053 0.0074 0.0043 0.0042 0.0031
LSTM-CNN4-1 0.0060 0.0078 0.0100 0.0107 0.0104 0.0071 0.0054 0.0052 0.0064 0.0037 0.0044 0.0032
LSTM-CNN4 0.0060 0.0073 0.0100 0.0106 0.0102 0.0069 0.0052 0.0050 0.0064 0.0036 0.0043 0.0031
CNN24-1-LSTM 0.0061 0.0073 0.0094 0.0108 0.0103 0.0070 0.0056 0.0054 0.0069 0.0041 0.0045 0.0032
CNN24-LSTM 0.0058 0.0070 0.0092 0.0102 0.0098 0.0068 0.0054 0.0052 0.0066 0.0039 0.0040 0.0029
CNN4-1 0.0065 0.0084 0.0097 0.0115 0.0108 0.0069 0.0056 0.0053 0.0071 0.0041 0.0050 0.0035
CNN4 0.0059 0.0077 0.0095 0.0106 0.0104 0.0070 0.0055 0.0052 0.0065 0.0038 0.0044 0.0028

R
M

SE

MLP-base 0.0673 0.0799 0.0882 0.0938 0.0910 0.0773 0.0721 0.0682 0.0705 0.0581 0.0609 0.0530
CNN-base 0.0646 0.0801 0.0890 0.0921 0.0881 0.0750 0.0682 0.0689 0.0666 0.0549 0.0562 0.0482
LSTM-base 0.0635 0.0728 0.0835 0.0879 0.0844 0.0711 0.0629 0.0648 0.0692 0.0556 0.0535 0.0445
LSTM-CNN4-1 0.0634 0.0751 0.0862 0.0895 0.0860 0.0718 0.0638 0.0639 0.0653 0.0522 0.0552 0.0469
LSTM-CNN4 0.0632 0.0730 0.0856 0.0890 0.0845 0.0706 0.0626 0.0627 0.0648 0.0516 0.0543 0.0455
CNN24-1-LSTM 0.0642 0.0729 0.0829 0.0898 0.0856 0.0713 0.0652 0.0650 0.0681 0.0545 0.0551 0.0459
CNN24-LSTM 0.0625 0.0718 0.0822 0.0874 0.0831 0.0703 0.0633 0.0638 0.0659 0.0535 0.0520 0.0438
CNN4-1 0.0650 0.0764 0.0828 0.0924 0.0856 0.0686 0.0639 0.0636 0.0685 0.0551 0.0588 0.0497
CNN4 0.0632 0.0747 0.0835 0.0892 0.0855 0.0712 0.0643 0.0633 0.0657 0.0529 0.0548 0.0441

M
A

E

MLP-base 0.0539 0.0648 0.0713 0.0737 0.0727 0.0596 0.0561 0.0522 0.0561 0.0451 0.0477 0.0414
CNN-base 0.0513 0.0649 0.0731 0.0718 0.0705 0.0585 0.0534 0.0531 0.0531 0.0425 0.0439 0.0371
LSTM-base 0.0494 0.0577 0.0670 0.0686 0.0672 0.0542 0.0485 0.0493 0.0543 0.0431 0.0420 0.0351
LSTM-CNN4-1 0.0502 0.0601 0.0689 0.0695 0.0686 0.0551 0.0489 0.0480 0.0514 0.0397 0.0432 0.0357
LSTM-CNN4 0.0498 0.0585 0.0688 0.0691 0.0677 0.0539 0.0482 0.0470 0.0512 0.0393 0.0424 0.0345
CNN24-1-LSTM 0.0502 0.0577 0.0663 0.0698 0.0678 0.0541 0.0500 0.0491 0.0530 0.0414 0.0429 0.0365
CNN24-LSTM 0.0494 0.0572 0.0649 0.0678 0.0658 0.0533 0.0482 0.0478 0.0515 0.0406 0.0407 0.0340
CNN4-1 0.0519 0.0615 0.0661 0.0716 0.0685 0.0523 0.0485 0.0470 0.0536 0.0419 0.0457 0.0385
CNN4 0.0498 0.0596 0.0667 0.0694 0.0681 0.0539 0.0490 0.0472 0.0518 0.0400 0.0425 0.0337
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The results of the paired t-test are reported in Table 4. The test results indicate
that the multi-stride models, where the stride size equals the filter size, outperform the
corresponding single-stride models significantly with respect to all evaluation metrics
(p < 0.05).

According to the t-test result, the CNN4 model, using our proposed approach, signifi-
cantly outperforms the CNN-base, CNN4-1, and MLP-base models, as well as LSTM-base
and some single-stride hybrid models, such as LSTM-CNN4-1 and CNN24-1-LSTM, al-
though the improvements are not statistically significant in some cases. Overall, the
CNN4, LSTM-CNN4, and CNN24-LSTM models, by relying on the proposed feature
engineering approach, perform much better than the base and single-stride models for
ozone forecasting. From Table 4, we also observe that, while the performance of the
CNN24-LSTM is significantly higher than the LSTM-base model, there is no statistically
significant difference between the performance of the LSTM-base model and that of the the
proposed CNN4 and LSTM-CNN4 models.

Table 4. The results of paired t-test analysis (p-values) performed on the monthly calculated perfor-
mance metrics.

Models MLP-Base CNN-Base LSTM-Base LSTM-CNN4-1 LSTM-CNN4 CNN24-1-LSTM CNN24-LSTM CNN4-1

M
SE

CNN-base 0.7692
LSTM-base 0.0006 0.0078
LSTM-CNN4-1 0.0000 0.0003 0.4847
LSTM-CNN4 0.0000 0.0003 0.6821 0.0030
CNN24-1-LSTM 0.0001 0.0103 0.2080 0.8447 0.0987
CNN24-LSTM 0.0000 0.0003 0.0083 0.0099 0.1265 0.0000
CNN4-1 0.0482 0.2517 0.0141 0.0072 0.0012 0.0118 0.0006
CNN4 0.0000 0.0002 0.9655 0.0703 0.5359 0.1233 0.0284 0.0006

R
M

SE

CNN-base 0.0017
LSTM-base 0.0000 0.0021
LSTM-CNN4-1 0.0000 0.0001 0.4757
LSTM-CNN4 0.0000 0.0000 0.3834 0.0000
CNN24-1-LSTM 0.0000 0.0037 0.1055 0.8204 0.0362
CNN24-LSTM 0.0000 0.0000 0.0008 0.0067 0.1792 0.0000
CNN4-1 0.0001 0.0915 0.0973 0.2032 0.0169 0.2170 0.0055
CNN4 0.0000 0.0000 0.8485 0.1020 0.2233 0.0697 0.0103 0.0454

M
A

E

CNN-base 0.0068
LSTM-base 0.0000 0.0013
LSTM-CNN4-1 0.0000 0.0001 0.6583
LSTM-CNN4 0.0000 0.0000 0.3091 0.0001
CNN24-1-LSTM 0.0000 0.0015 0.5357 0.9095 0.1048
CNN24-LSTM 0.0000 0.0000 0.0002 0.0035 0.0827 0.0000
CNN4-1 0.0000 0.0408 0.2149 0.2961 0.0384 0.2233 0.0036
CNN4 0.0000 0.0000 0.3876 0.0229 0.6471 0.1203 0.0174 0.0349

As a qualitative analysis, a 48 h forecasting instance of the proposed and baseline
models associated with the Esenyurt air quality monitoring station is shown in Figure 10.
Among the baseline models, MLP-base shows the worst prediction. According to this 48 h
example forecast, as shown in Figure 10, CNN4 and LSTM-CNN4, which fully support our
hypothesis, predict the peak ozone concentration better than the CNN24-LSTM, although
CNN24-LSTM achieves the best yearly performance.

Figure 11 illustrates the observed and predicted ozone concentrations over the test set
belonging to 2019 using the proposed models. The graphs indicate a better performance of
the CNN24-LSTM model during the winter and early spring period (days 0 to 100). As seen,
the peak ozone levels are better predicted by the CNN24-LSTM model and a smoother
forecast is produced, although these points are underpredicted by all of the models. On the
other hand, it is observed that the minimum ozone levels are overpredicted by the models.
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Figure 10. A 48 h ozone forecasting by the proposed and baseline models for Esenyurt station
(predicted period: 16 April 2019 8:00 a.m.–18 April 2019 8:00 a.m.).
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Figure 11. Yearly ozone forecasting by the proposed three models over Esenyurt station.

4. Discussion

In order to examine the effect of the proposed approach on the model performance,
firstly, the single-stride models were compared with the multi-stride models. The results,
shown in Figure 8, illustrate that the multi-stride models have a better performance (smaller
MAE value) than the single-stride models. For instance, the performance of the proposed
multi-stride models (CNN4, CNN24-LSTM, and LSTM-CNN4) is higher than the perfor-
mance of the MLP-base and CNN-base models (p < 0.05), as well as single-stride models.
This supports our hypothesis that the models cannot be well-trained using feature maps
extracted on an hourly basis. In addition, we observed that the CNN and LSTM-CNN
models performed well with a 4 h filter size, which is consistent with the ozone evolution
process observed in the study area. However, the performance of the CNN24-LSTM model
showed that the CNN-based 24 h features are more suitable for the LSTM model. This
means that the LSTM model can perform better on the sequence of feature maps obtained
from the CNN model over daily ozone evolution (24 h convolving). The main difference
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between LSTM-CNN and CNN-LSTM is that the output of the LSTM layer in each time
step reflects the effect of all previous time steps, whereas the 4 h convolving process only
considers the changes in 4 h. Therefore, applying the 4 h convolving process to the output
of the LSTM layer, in LSTM-CNN4, can better reflect the overall ozone evolution pattern.
Furthermore, the use of the LSTM model with feature maps obtained from daily convolving
in the CNN24-LSTM model significantly improved the performance of the LSTM-base
model (p < 0.05 in Table 4).

According to the results shown in Table 3, there were 3.58%, 1.68%, and 3.37% im-
provements in the mean performance (average of MAE, MSE, and RMSE) of the proposed
CNN4, LSTM-CNN4, and CNN24-LSTM relative to their corresponding single-stride mod-
els, respectively. Moreover, the averaged performance of the proposed CNN4 model was
6.56% higher than the CNN-base model.

As a result of the monthly analysis, setting the kernel and stride sizes based on daily
ozone evolution phases used in our feature engineering approach has a positive impact on
the monthly prediction performances. The largest decline in the magnitude of the error
was associated with March, February, July, and August, respectively. The forecasting power
of all models is pushed to its limit when the maximum and minimum points are predicted.
In air quality forecasting studies, an underprediction of the peak points is a general issue in
machine learning and deep learning models [40,46,64]. Our findings showed that the peak
points of the ozone concentration, especially in the late spring and summer months, are
underpredicted by all of the models (Figure 11).

5. Conclusions

In this study, we investigated the performance of deep learning models in the predic-
tion of ozone concentration. The temporal variation in ozone concentration was imposed
on the models, considering the evolution phases in the setting of stride and filter sizes. The
idea behind the proposed approach is that, as the daily evolution of ozone can be divided
into separate phases, the time steps of the dataset can also be divided into phases to make
more linear samples. The results indicate that the proposed approach has a significant
impact on the performance of deep learning models, including CNNs.

Our findings show that, whereas the CNN4 and LSTM-CNN4 models perform well
with a 4 h filter and stride size, CNN24-LSTM performs with a 24 h filter and stride size
in Istanbul data. Our results obtained from Istanbul data also indicate that the filter and
stride size used in the CNN model are related to the ozone evolution phases observed in
the study area, although this conclusion requires more empirical evaluation.

In our future work, we will investigate the impact of imposing the ozone evolution
phases on the performance of other deep learning architectures in combination with the
impact of the neighboring stations (spatial forecasting) and boundary conditions.
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Abbreviations
The following abbreviations are used in this manuscript:

CMAQ Community Multiscale Air Quality modeling system
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MLP Multilayer Perceptron
MSE Mean Square Error
RMSE Root Mean Square Error
RNN Recurrent Neural Network
STE Stratosphere-to-Troposphere Exchanges
VOCs Volatile Organic Compounds
WRF Weather Research and Forecasting model
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