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Abstract: We updated the anthropogenic emissions inventory in NOAA’s operational Global En-
semble Forecast for Aerosols (GEFS-Aerosols) to improve the model’s prediction of aerosol optical
depth (AOD). We used a methodology to quickly update the pivotal global anthropogenic sulfur
dioxide (SO2) emissions using a speciated AOD bias-scaling method. The AOD bias-scaling method
is based on the latest model predictions compared to NASA’s Modern-Era Retrospective analysis for
Research and Applications, version 2 (MERRA2). The model bias was subsequently applied to the
CEDS 2019 SO2 emissions for adjustment. The monthly mean GEFS-Aerosols AOD predictions were
evaluated against a suite of satellite observations (e.g., MISR, VIIRS, and MODIS), ground-based
AERONET observations, and the International Cooperative for Aerosol Prediction (ICAP) ensemble
results. The results show that transitioning from CEDS 2014 to CEDS 2019 emissions data led to
a significant improvement in the operational GEFS-Aerosols model performance, and applying
the bias-scaled SO2 emissions could further improve global AOD distributions. The biases of the
simulated AODs against the observed AODs varied with observation type and seasons by a factor
of 3~13 and 2~10, respectively. The global AOD distributions showed that the differences in the
simulations against ICAP, MISR, VIIRS, and MODIS were the largest in March–May (MAM) and the
smallest in December–February (DJF). When evaluating against the ground-truth AERONET data,
the bias-scaling methods improved the global seasonal correlation (r), Index of Agreement (IOA),
and mean biases, except for the MAM season, when the negative regional biases were exacerbated
compared to the positive regional biases. The effect of bias-scaling had the most beneficial impact
on model performance in the regions dominated by anthropogenic emissions, such as East Asia.
However, it showed less improvement in other areas impacted by the greater relative transport of
natural emissions sources, such as India. The accuracies of the reference observation or assimilation
data for the adjusted inputs and the model physics for outputs, and the selection of regions with
less seasonal emissions of natural aerosols determine the success of the bias-scaling methods. A
companion study on emission scaling of anthropogenic absorbing aerosols needs further improved
aerosol prediction.
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1. Introduction

Anthropogenic emissions in the atmosphere result from human activities such as
energy production and consumption, crop and livestock production, and land-use changes.
Key anthropogenic emission sectors include electricity production, industrial activities,
residential cooking and heating, and transportation. There are two main methods of pro-
ducing anthropogenic emissions, bottom-up methods, based on the activity data together
with sector-, fuel-, and species-specific emission factors, and top-down methods, inversely
estimating emissions from the observed air pollutant concentrations [1–4]. Bottom-up
methods can provide detailed estimates by the fuel and the sector, long-term trends, and,
in many cases, emissions from specific facilities [2–4]. Top-down methods, which often are
constructed by combining observational data and chemical transport models, can poten-
tially point to emissions missed or overestimated by bottom-up approaches and provide
more up-to-date information on the evolution of anthropogenic emissions [2–4]. In any
case, building emission inventories require a significant amount of time, effort, and data
collection and processing, which means that the emission data used in global aerosol and
atmospheric composition (AAC) models generally lag a few years behind the present.

There are numerous global anthropogenic emission datasets that are publicly available,
which include the Hemispheric Transport of Air Pollution (HTAP v2) [5] from 2008 to 2010
and HTAP v3, extending from 2000 to 2018 [5]; the Emissions Database for Global Atmo-
spheric Research (EDGAR) [6] from 1970 to 2018; Evaluating the Climate and Air Quality
Impacts of Short-Lived Pollutants (ECLIPSE) [7] from 1990 to 2010; and the Community
Emission Data Systems (CEDS) [8,9], which currently extends from 1750 to 2019 (data are
available in [10]). Such global anthropogenic emissions inventories include sector- and
region-specific emissions data of gases and aerosols collected by a bottom-up method.
Among them, the CEDS has historically been one of the most widely used inventories
in the current suite of global AAC models (e.g., NASA GOCART, Harvard GEOS-Chem,
and CMIP6).

Emissions data are essential inputs in simulating air quality and Earth system pro-
cesses. However, applying existing emission data may not work ad hoc, as human activities
can rapidly change in response to environmental, political, and economic factors. For exam-
ple, during the recent COVID-19 pandemic, there were profound and widespread decreases
in anthropogenic emissions, which led to both increases and decreases in anthropogenic
pollutant concentrations [11–22]. Continuous measurements by satellite instruments can
provide important information to rapidly update outdated bottom-up emissions invento-
ries during such cases as the COVID-19 economic slowdown and be further used in global
AAC models to quantify the impacts on air quality [18]. Furthermore, the use of data assim-
ilation techniques for both chemical concentrations [23] and emissions (in conjunction with
inverse modeling, as shown in [24]) can also improve AAC model predictions when input
emissions datasets lag behind the forecast/simulated period or potentially contain biases.

This study aims to update the anthropogenic emissions data in a global AAC mod-
eling system and evaluate the impact on predicted 3D aerosol concentrations. Using an
aerosol optical depth (AOD) reanalysis dataset, we apply an AOD bias-scaling approach
to update the emissions further and evaluate the impact on ACC-predicted aerosol con-
centrations. Here, we use the NOAA’s Global Ensemble Forecast System with aerosols
(GEFS-Aerosols; [25]) that has adopted the Goddard Chemistry Aerosol Radiation and
Transport (GOCART; [26]) modules to perform the emissions update and evaluate the
forecasted aerosol concentrations and compute the aerosol optical depth (AOD).

The rapid bias-scaling method is based on a global reanalysis dataset to update the
CEDS anthropogenic SO2 emissions data across different regions. We assume that SO2
emissions have a pseudo-linear relationship with sulfate AOD. The global average sulfate
AOD at 500 nm corresponds to almost two thirds of anthropogenic AODs, which are the
sum of sulfate, organic carbon (OC), and black carbon (BC) [26]. About 75~80% of the
sulfate precursor emissions are from anthropogenic sources, which contribute 67% to the
total sulfate burden [27]. We derive the monthly SO2 emission scaling factor from ratios
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of the changes in SO2 emissions to the difference in sulfate AODs between the Modern-
Era Retrospective analysis for Research and Applications, version 2 (MERRA2) [28] and
GEFS-Aerosols. Then, we update the SO2 emission data closer to the GEFS-Aerosols near-
real-time (NRT) forecasting time and predict the distributions of aerosol concentrations
in 2021.

The objective of this study is to investigate the effects of the SO2 bias-scaling meth-
ods on GEFS-Aerosols predictions in terms of the responsiveness to the observed AODs.
Before updating anthropogenic SO2 emissions, we look at the distributions of the existing
emissions, such as CEDS 2014 and CEDS 2019, and the features of SO2 emissions change
from 2014 to 2019 (Section 2). We compare the GEFS-Aerosols-modeled AOD to different
observations and ensemble simulation data and analyze the global and regional effects
of bias-scaled SO2 emissions on GEDS-Aerosol’s AOD. We discuss the regions where the
updated emissions effectively improve model performances, particularly regarding the
changes linked to seasonal SO2 emission scaling (Section 3). We also present the implica-
tions and utility of this study. Finally, we discuss the limitations of the bias-scaling method
and how this may be improved further for NRT aerosol prediction (Sections 4 and 5).

2. Methods
2.1. Emission Data: CEDS 2014 and CEDS 2019

This study uses CEDS 2014 [8] and CEDS 2019 [9] data for SO2, BC, and OC emissions,
and HTAPv2.2 2010 [5] for the unspeciated PM2.5 emissions used in the GOCART model
for an experimental version of NOAA’s GEFS-Aerosol system used in this work.

CEDS 2014 is a collection of historical emission datasets (from 1750 to 2014) of an-
thropogenic reactive gases, greenhouse gases (GHG), and carbonaceous aerosols. CEDS
produces a consistent emission time series based on the energy statistics from the Interna-
tional Energy Agency (IEA) and default emissions from EDGAR and GAINS, while scaling
to match authoritative country-level inventories for recent years. It is arranged in a gridded
form with monthly seasonality on an annual basis at the country and sector levels. CEDS
estimates are generally slightly higher than the Coupled Model Intercomparison Project
Phase 5 (CMIP 5) [29], EDGAR, and ECLIPSE estimates. CEDS 2019 updates CEDS 2014
by extending the emissions estimated from 2014 to 2019 [9]. Global estimates of NOx, CO,
SO2, NH3, non-methane volatile organic compounds (NMVOCs), BC, and OC over time
are created as a function of eleven sectors and four fuel categories. They include monthly
gridded (0.1◦ × 0.1◦) emission fluxes using activity data for combustion- and process-level
emission sources. CEDS 2019 results in lower emissions than CEDS 2014 for all compounds,
except NMVOCs in Africa and BC in India. The uncertainties in the emissions of SO2 are
the smallest, and those of NH3, OC, and BC are larger than the other species. Henceforth,
we use “CEDS 2014” to refer to 2014 emission values from the CEDS 2014 data and “CEDS
2019” to refer to 2019 values from the CEDS 2019 data.

The HTAP v2.2 emission database is a mosaic grid map for SO2, NOx, CO, NMVOC,
NH3, PM10, PM2.5, and BC and OC aerosols for the years 2008 and 2010, after com-
piling regional inventories such as the United States Environmental Protection Agency
(EPA) and Environment Canada for North America, European Monitoring and Evalua-
tion Program–Netherlands Organization for Applied Scientific Research (EMAP-TNO) for
Europe, Model Intercomparison Study (MICS) for Asia, and the EDGAR v 4.3 database
for the rest of the world. This provides comprehensive and consistent monthly, global,
sector-specific grid information on the emission of air pollutants for global and regional
scale modeling [5].

The global distributions of BC, OC, and SO2 are compared in CEDS 2014, as well as
their differences from CEDS 2019 (Figure 1). The global emission amounts of the three
species are different; however, their spatial emission patterns are very similar. East Asia,
India, and Europe are the main areas of high emissions. The differences in BC, OC, and SO2
emissions between CEDS 2014 and CEDS 2019 are 27.09%, 30.60%, and 25.90%, respectively.
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Figure 1. Global distributions of annual average emissions (Gg/m2/yr) of BC, OC and SO2 in CEDS
2014 (a–c) and the differences between CEDS 2014 and CEDS 2019 (d–f) (the global annual total
emissions (Tg/yr) are shown above the figures).

Figure 2 shows the monthly distributions of the differences in the sectoral emissions
of BC, OC, and SO2 between CEDS 2014 and CEDS 2019. There are eight sectors, which
are as follows: agriculture (AGR), energy (ENE), industry (IND), residential–commercial–
others (RCO), international shipping (SHP), solvent-production applications (SLV), road
transportation (TRA), and waste (WST). The RCO, ENE, and WST sectors differ significantly
in terms of BC and OC emissions. The ENE (including fossil production and electricity
generation) and IND (including fuel combustion and process emissions, such as smelting)
sectors are the most significant contributors to SO2 emissions. In terms of changes from
CEDS 2014 to CEDS 2019, the largest sectors for BC, OC, and SO2 are found in the RCO,
RCO/WST, and IND sectors, respectively.

Figure 2. The monthly global means of the differences in total and sectoral emissions (Gg/mon),
such as agriculture (agr, in red), energy (ene, in gray), industry (ind, in yellow), residen-
tial_commercial_others (RCO, in blue), international shipping (shp, in green), solvent-production
applications (slv, in light blue), road transportation (road, in peach), and waste (wst, in light grey) in
CEDS 2014 from CEDS 2019 of (a) BC, (b) OC, and (c) SO2.

The global distributions of sectoral emissions of SO2 for CEDS 2014 (Figure 3) show
that the top three emission sectors, ENE, IND, and RCO, are the strongest in East Asia, and
then the northeast border of India, along with the Himalayan mountains, Saudi Arabia, and
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Western Europe. The SO2 emissions in CEDS 2019 increased in the SHP sector, compared
to CEDS 2014, which are dominant along the coasts of large cities.

Figure 3. The global distributions of annual SO2 sectoral emissions (Gg/m2/yr) in CEDS 2014
(sectoral emission names (a–f) and the global annual sectoral emissions (Tg/yr) are shown above
the figures).

2.2. Model Configuration and Experimental Design

The GEFS-Aerosols model used in this study is one ensemble member of GEFS [25].
GEFS comprises 31 ensemble members, each containing a weather-forecast model at a
horizontal resolution of about 25 km, with 64 vertical layers from the surface to 0.2 hPa.
The GEFS is constructed with the Finite Volume-Cubed Sphere (FV3), non-hydrostatic
dynamical core [30], and physics package based on NOAA’s Global Forecast System (GFS),
version 15 (GFS v15) ([31,32], Table 1).

Table 1. Simulation set-ups with emissions data.

Run Emissions System Anthropogenic Inventory
SO2 BC OC PM2.5

BASE NEXUS CEDS 2014 CEDS 2014 CEDS 2014 HTAP 2010

SENS1 NEXUS CEDS 2019
(unscaled) CEDS 2019 CEDS 2019 HTAP 2010

SENS2 NEXUS CEDS 2019 (scaled) CEDS 2019 CEDS 2019 HTAP 2010

Simulation Periods: January–December 2021

To prepare the model-ready emissions for GEFS-Aerosol, we use the NOAA Emission
and eXchange Unified System (NEXUS, [33,34]). NEXUS is an emission-modeling system
based on the Harvard-NASA Emission Component (HEMCO [35]), a stand-alone software
component for computing emissions in global atmospheric models. The HEMCO core acts
as a compiler between raw emission datasets and targeted atmospheric models and creates
a specific configuration in space and time.

CEDS 2014 and 2019 were used for the simulation design for SO2, BC, and OC in BASE
and SENS1, respectively (Table 1). HTAP v2.2 was used for the remaining un-speciated
PM2.5 emissions in GEFS-Aerosol BASE and SENS1 simulations. SENS2 was simulated
with the application of the AOD bias-scaling method to the SO2 emissions of CEDS 2019
(see Section 2.3 below). The simulation period includes a full calendar year for 2021.



Atmosphere 2023, 14, 234 6 of 20

2.3. Bias-Scaling Methods

The bias-scaling method in this work is based on an approximately linear relationship
between SO2 gas emissions inputs and the GEFS-Aerosol-predicted AOD for sulfate (sulfate
AOD). The AOD is calculated by integrating the product of the aerosol extinction coefficient
and aerosol loading from the top of the atmosphere to the surface.

Text at 550nm=
∫ sfc

TOA
σext at 550nmds=

∫ sfc

TOA
σext at 550nm ∗C_aer dz (1)

where τext at 550nm is the extinction AOD at 550 nm. Σext at 550nm is the aerosol mass
extinction coefficient (m2/g). C_aer is the aerosol mass concentration (kg/m3). Ds is
the aerosol path length (kg/m2), and dz is the atmospheric thickness (m). Thus, the
AOD is proportional to the aerosol concentration, and its relationships with precursor
anthropogenic gas emissions (ε) can be derived for some species.

First, a high-to-low resolution, regional-scale filter (12◦ × 6◦) is applied to the model
outputs and emissions data for the regression analysis. Figure 4 shows the regression of
GEFS-Aerosol-predicted AOD sulfate against its original input SO2 emissions (εSO2_gefs)
for October 2021. Here, we note a good regional correlation (Pearson correlation coefficient:
~0.7) between the input SO2 emissions and GEFS-Aerosol-predicted AOD (Figure 4). Thus,
assuming that the monthly average anthropogenic SO2 emissions are the dominant source
for the monthly average GEFS-Aerosol-predicted sulfate AOD, we use the regression
analysis to determine a simple emissions bias-scaling factor for each month of the 2021
SENS1 simulation.

Figure 4. (a) The regression of SO2 emissions (CEDS 2019) and SENS1 model sulfate AOD in October
2021. (b) Monthly values of the regressions in 2021. A high-to-low resolution, regional-scale filter
(12◦ × 6◦) was applied to both the model and emissions data for the regression. This amounts to a
total of 900 grid points.

The slope, m, is calculated by the differences in the predicted sulfate AOD (∆AODsulf_gefs)
over the differences in the input CEDS 2019 SO2 emissions (∆εSo2_gefs).

m =
∆AODsulf_gefs

∆εSO2_gefs
(2)

Then, the change in GEFS-Aerosol input SO2 emissions (∆εSO2_gefs) is obtained by di-
viding the difference in the sulfate AOD between GEFS-Aerosol and MERRA2
(AODsulfate_gefs − AODsulfate_merra2) by the slope of the regression, m.

∆εSO2_gefs =
AODsulfate_gefs − AODsulfate_merra2

m
(3)
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where the SO2 emissions scaling factor, x, is determined by dividing the sum of the ∆εSO2gefs
and the original CEDS 2019 SO2 emissions (εSO2gefs ) by εSo2gefs .

X =
∆εSO2gefs + εSO2gefs

εSO2gefs

(4)

Finally, the updated CEDS 2019 SO2 emissions used in the model, εSO2_model, are
determined by multiplying the original εSO2gefs by the scaling factor, x.

ESO2_model = x × εSO2gefs (5)

We also applied a threshold criterion to scale only major SO2 emissions sources
(>1 × 10−11 kg m−2 s−1). We noted that in some regions, the AOD sulfate bias (GEFS-
MERRA2) change could be largely negative over certain regions, with relatively low εSO2gefs ,
and thus result in unphysical negative emissions. In this case, we set an arbitrarily low
bottom threshold of ∆εSO2gefs as 1 × 10−25 kg m−2 s−1 to remove such artificial negative
emissions. Furthermore, we also applied a threshold criterion to scale only the largest SO2
emission sources (>1 × 10−11 kg m−2 s−1). To check for overfitting in our linear regression
analysis, we used the mean square errors (MSEs) of SENS1 and SENS2 against MERRA2
AOD and the variances (VARs) of SENS1 and SENS2. MSEs were smaller than VARs in
this study by three orders of magnitude. SO2 bias scaling reduced the MSEs by 24.7~40.0%
in four seasons, while the VARs varied within ±6%. Thus, the linear regressions for SO2
bias scaling were generalized without overfitting.

Figure 5a shows that the sulfate AOD differences between GEFS and MERRA2 in
October 2021 are the largest in Saudi Arabia and Western India. The fractional differences
in SO2 emissions (Figure 5b), x-1, have the opposite sign to the differences in sulfate.

Figure 5. The differences in GEFS sulfate AOD from (a) MERRA2 sulfate AOD and (b) the fractional
differences in SO2 emissions, x-1, in October 2021. A comparison of global SO2 emissions between
(c) CEDS 2019 and (d) after scaling application.
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The AODs in Figure 5a and the most significant values appear in the eastern provinces
of China and along the Himalayan mountains. In Saudi Arabia and Western India, the
scaling factor, x, is smaller than that in East Asia because the magnitude of SO2 emissions
of GEFS-Aerosols is much larger than the magnitude of emission differences (Figure 5c).
Thus, the bias-scaled SO2 emissions, εSO2_model, increase mainly in East Asia and along the
Himalayan mountains (Figure 5d).

The seasonal distributions of the fractional changes in SO2 emissions, x-1, are shown
in Figure 6. The fractional changes in SO2 emissions increase in East Asia, Western Europe,
and the southeast continental United States (CONUS), while they decrease in Saudi Arabia
and Central Asia all year round. Seasonal fractional changes are distinct in India as they
increase from December to February (DJF) and from September to November (SON), while
they decrease from March to May (MAM) and SON. The global mean of x-1 is at its
minimum in MAM when x-1 is negative in South China. New emissions applied by the
bias-scaling factor were used in SENS2.

Figure 6. Global distribution of the fractional differences in SO2 emissions, x -1, in (a) DJF, (b) MAM,
(c) JJA, and (d) SON of 2021.

3. Results
3.1. Global Impacts of Updating Anthropogenic Emissions

We compared the global distribution patterns of simulated AODs (BASE, SENS1,
and SENS2) with the ensemble simulations of the International Cooperative of Aerosol
Predictions (ICAP) and MISR, VIIRS, and MODIS satellite observations (i.e., the “reference”
data). The BASE simulation has smaller global mean biases against the reference data than
SENS1 and SENS2 (Figure 7). Figure 7 shows that the model biases in MAM are the largest
against MODIS and the smallest against MISR. The negative biases are prevalent over the
ocean and cover the Tibetan Plateau and Central Africa, while the positive biases appear in
East Asia. There are strong positive biases in the East Asia region in BASE. These positive
biases are reduced when updating to the CEDS 2019 emissions data in SENS1; however,
the negative biases over the other land regions and the oceans are persistent, especially
against MODIS and VIIRS. SO2 bias scaling reduces the magnitudes of the global mean
biases of SENS2 (Figure 6b).
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Figure 7. Global distribution of the differences in GEFS AOD (BASE (a–d), SENS1 (e–h) and SENS2
(i–l)) from ensemble simulation of ICAP (a,e,i), and satellite observations of MISR (b,f,j), VIIRS (c,g,k),
and MODIS (d,h,l) in MAM 2021 (the numbers above figures indicate the global mean (unitless)).

Figures A1–A3 shows the global distributions of model biases against various refer-
ences in DJF, from June to August (JJA), and SON. In DJF, the positive biases extend to
Siberia, Eastern Europe, and the Northwestern Pacific, resulting in positive or reduced
negative global mean biases (GMBs). The bias patterns of SENS1 and SENS2 against the
reference data are very similar (Figures 7 and A1–A3). However, SENS2 has a smaller
magnitude of biases in MAM and from June to August (JJA) than SENS1, while SENS2 has
a larger magnitude of biases in the DJF and SON seasons. These bias changes are caused
by the bias-scaled SO2 emissions for SENS2 in India, Asia, and Western Europe (Figure 6b).
Increasing the CEDS 2019 SO2 emissions in these regions, especially for India, generally
reduces the global mean underpredictions in DJF and SON. In contrast, reducing the CEDS
2019 SO2 emissions increases the underpredictions in MAM and JJA (Figures 7 and A1–A3).

The GMBs of the modeled AODs in four seasons vary with references (Figure 8). For
VIIRS and MODIS, the magnitudes of GMB of SENS1 and SENS2 are larger than those of
BASE in all four seasons. For MISR, the former is smaller than the latter in DJF and SON.
For ICAP, the magnitudes of GMB of SENS1 and SENS2 are larger than those of BASE in
DJF, while the former is smaller than the latter in SON.

The negative global mean biases are the largest against MODIS in all four seasons
(Figure 8). The negative biases against ICAP appear over the oceans, India, and the
continent in the southern hemisphere in all four seasons, and Africa in MAM (Figure 7)
and SON (Figure A2). The biases against MISR are the least negative among the reference
data (Figure 7), mainly due to the reduced negative biases over the oceans (Figures 7
and A1–A3). They are even positive in DJF for all three modeled AODs (Figure 7), due to
the positive Biases in Europe, Northern Africa, Asia, and the Northwest Pacific regions
(Figure A3). The modeled AOD biases against VIIRS and MODIS have similar spatial
features in terms of the global distributions in MAM, such as the large negative biases over
the oceans and Himalayan mountains and the large positive biases in East Asia (Figure 7).
The biases against VIIRS are increasingly negative over the Tibetan Plateau in the SON and
DJF seasons (Figures A2 and A3). The negative bias over the oceans is the largest against
MODIS, resulting in the most negative GMBs among the reference data (Figure 8).
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Figure 8. Comparisons of global seasonal means of the differences in GEFS AOD (BASE1, SENS1 and
SENS2) from ensemble simulation of ICAP and satellite observations of MISR, VIIRS, and MODIS.

The biases against the satellite observations and the ICAP of ensemble simulation data
turn out the wide ranges of biases between reference types and seasons. Global mean biases
vary with reference types by a factor of 3~13 and season by 2~10. Overall, the magnitudes
of the global mean biases are the largest in MODIS and the smallest in MISR. On the other
hand, the negative biases are the largest in MAM and the smallest in DJF. Due to such
large ranges of biases against those references, model biases need to be examined by the
references using a different observation platform.

As an objective evaluation method against independent ground-truth measurements,
all available global AERONET AOD (version 3 direct sun and inversion algorithm, i.e., Level
1.5) data were collected. The globally averaged Person’s correlation coefficient(r) and Index
of Agreement (IOA) for SENS2 improved (i.e., increased) compared to SENS1 in the four
seasons (Figure 9). The global mean biases of SENS1 and SENS2 were negative compared
to the BASE case; however, the negative biases of SENS2 were reduced compared with
those of SENS1, except in the MAM season. SO2 bias scaling in SENS2 increased the
global mean correlation and IOA by 0.74~5.52% and 0~4.86%, respectively, compared to
AERONET in DJF, JJA, and SON. The greatest improvement appeared in DJF; however,
the degradation of model correlation and IOA occurred in MAM. Global seasonal mean
biases decreased in MAM, JJA, and SON by 13.0~26.9%. The biases decreased most in JJA;
however, they increased by 16.7% in MAM (Figure 9e–g).

SO2 bias scaling exacerbated the negative biases to increase the GMBs (Figures 7 and A1–A3);
however, it reduced the magnitude of most of the regional mean biases (Figure 10c). To
investigate the regional biases, we classified 13 global regions where the biases against
the references were distinct (Figure 10a). The scatter plots of the modeled AODs and
AERONET AODs are shown in Figure 11, and the corresponding numerics are shown in
Figure 10b–d. The number of AERONET sites differs with regions, due to the availability of
AERONET sites. The 1:1 line helps to indicate an underestimation or overestimation of the
modeled AODs against the observed AODs (Figure 11). The underestimations appear in
Southeast Asia, India, and South America, while overestimates appear in East CONUS and
the North Tropical Atlantic. Good correlations appear in East Asia, West CONUS, Europe,
and North Africa. Figure 10b–d shows that bias scaling improves all the numerical statistics
in terms of the model’s performance against AERONET AODs in East Asia, West CONUS,
and Southeast Asia. At the same time, it is worse in Saudi Arabia, South America, and the
South Pacific relative to SENS1.



Atmosphere 2023, 14, 234 11 of 20

Figure 9. The scatter plots of global seasonal means of the GEFS AODs against AERONET AOD
on global scales in (a) DJF, (b) MAM, (c) JJA and (d) SON of 2021 (n indicates the number of
data points). (Black, blue, and red symbols indicate BASE, SENS1, and SENS2, respectively. The
1:1 dotted line is inset). Bar graphs in the right column are the statistics such as (e) correlation,
(f) mean bias, and (g) Index of Agreement. (Gray, blue, and orange bars indicate BASE, SENS1, and
SENS2, respectively).

Figure 10. (a) Thirteen regions for the evaluation of SO2 emissions. (b) The correlation, (c) MB, and
(d) IOA. Gray, blue, and orange bars indicate BASE, SENS1, and SENS2, respectively. Red circles
over the region names indicate that SENS2 improved relative to SENS1. Inverted triangles indicate
SENS2 deteriorated relative to SENS1. Additionally, blue circles indicate that SENS2 improved
relative to SENS1; however, SENS2 deteriorated relative to BASE.
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Figure 11. The scatter plots of the annual mean of GEFS AODs against AERONET AOD in 13 regions,
including (a) East CONUS, (b) West CONUI, (c) South America, (d) Europe, (e) East Asia, (f) India,
(g) Saudi Arabia, (h) Northern Africa, (i) Central Africa, (j) Southern Africa, (k) North Tropical
Atlantic, (l) South Pacific, and (m) Southeast Asia, in 2021. The 1:1 dotted line is inset.

There is evidence of increases in r for SENS2 compared to SENS1 in most of the
13 regions analyzed, except Saudi Arabia and the Southern Pacific. The IOAs also increase
in East Asia, Southeast Asia, Europe, Central and South Africa, and West CONUS. The
regional mean biases are reduced in East Asia, Southeast Asia, North Tropical Atlantic,
and West CONUS. Some numerical results will be discussed later. Overall, all the r, MB,
and IOA values improve in East Asia, Southeast Asia, and West CONUS in SENS2 due to
the bias scaling of SO2; however, they become worse in Saudi Arabia and South Pacific in
SENS2 compared to SENS1.

The annual average correlations increase for SENS2 across most regions by 0.0~18.7%;
however, they decrease in the South Pacific by 2.28%. The annual IOAs increase in West
CONUS, East Asia, Europe, and Africa by 0.22~3.39% for SENS2. However, the annual
IOAs do not change in the North Tropical Atlantic, decreasing by 0.16~2.77% in other
regions. The annual mean biases are reduced in West CONUS, North Tropical Atlantic,
East Asia, and Southeast Asia by 38.3~4.85%, while the bias increases for SENS2 in the
remaining global regions.

Overall, the bias-scaling methods improve in East Asia, Southeast Asia, and West
CONUS, with annual mean correlations for SENS2 that improved by 4.3%, 1.5% and 0.4%,
IOAs that improved by 3.30%, 3.4%, and 0.2%, and mean biases that improved by −38.3%,
−4.9%, and −33.3%, respectively. In the ocean region, bias scaling leads to a decline in the
annual mean correlation by 2.3% and a decrease in the IOA by 1.1% in the South Pacific,
while the mean biases decrease by 12.5% in the North Tropical Atlantic. Furthermore,
in other regions, bias scaling degrades the GEFS-Aerosols model’s performance in East
CONUS, South America, India, Africa, and Saudi Arabia, with increasing mean biases and
decreasing IOA values (except in Africa). Even though the correlation in India drastically
increases, the negative MB also increases, and the IOA decreases (Figure 11f). To investigate
the regional impacts of SO2 bias scaling, we examined East Asia and India, where the
impacts of updating SO2 emissions data are noteworthy.
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3.2. Regional Impacts in East Asia and India

In East Asia, box–whisker analyses of modeled vs. reference AODs show that
AERONET AODs are smaller than VIIRS or MODIS, while they are larger than MERRA2
and MISR (Figure 12a). BASE overestimates against all the references, including MERRA2,
and is larger than SENS1 and SENS2. SENS1 and SENS2 underestimate against MERRA2
and most of the observations, except MISR. The bias-scaling method increases the AOD
in East Asia, resulting in SENS2 being larger than SENS1, and closer to AERONET. The
seasonal scatter plots show that SENS2 has the highest correlation and IOA compared
to AERONET among the three simulations, and it has reduced the negative mean biases
compared to SENS1. SENS2 has the highest correlation and IOA in the JJA seasons and
the least biases in MAM (Figure 12b–e). However, SENS2 has the largest improvement in
correlation by 16.0%, IOA by 14.6% in DJF, and mean bias by 100.0%, which becomes 0 in
MAM (Figure 12c).

Figure 12. (a) The box and whisker plot of the annual AOD mean biases of BASE, SENS1, and SENS2
(first, second, and third column in white, respectively); AERONET (in pink); MERRA2 (5th column in
white); MISR (in light blue); VIIRS (in green); and MODIS (in yellow) in East Asia. (b) The scatter
plot of annual simulated AODs against AERONET AODs (the 1:1 dotted line is inset). (c) Seasonal
mean biases, (d) seasonal correlations, and (e) seasonal IOAs.
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In India, the three modeled AODs are underestimated against AERONET ground truth
and all the additional reference data, while BASE is larger than both SENS1 and SENS2
(Figure 13). All the other reference data, except MODIS, are smaller than AERONET. The
bias-scaling method increases the median AOD; however, both SENS1 and SENS2 have
significantly smaller box–whisker values than AERONET. The annual scatter plot clearly
shows the underpredicted AOD for all three simulations against AERONET (Figure 13b).
In this case, the bias-scaling methods reduce the underpredictions in fall–winter (SON/DJF)
but exacerbate the negative biases in the spring and summer (MAM/JJA) compared to
SENS1 (Figure 13e). The correlations and IOAs are also improved in the bias-scaling
SENS2 simulation for fall–winter. However, they are reduced compared to SENS1 during
the spring and summer (Figure 13d).
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Figure 13. (a) The box and whisker plot of the annual AOD mean biases of BASE, SENS1, and
SENS2 (first, second, and third column in white, respectively); AERONET (in pink), MERRA2 (5th
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scatter plot of the annual simulated AODs against AERONET AODs (the 1:1 dotted line is inset).
(c) Seasonal mean biases, (d) seasonal correlations, and (e) seasonal IOAs.
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We note that the bias-scaling factors in India increase the SO2 emissions in DJF and
SON (associated with improved model performance compared to AERONET) and decrease
the emissions in MAM and JJA (associated with degraded model performance compared
to AERONET). MERRA2 sulfate AODs were used for the SO2 emissions bias scaling, but
the MERRA2 total AODs were smaller than AERONET in India (Figure 13a). Thus, this
result represents a limitation of our bias-scaling methods, which exhibit certain deficiencies
when using assimilated MERRA2 data that do not agree with AERONET AOD observation,
and likely highly uncertain compositional fractions of the total aerosol in certain regions,
such as India. In other words, the exacerbated AOD biases for SENS2 in some seasons in
India (e.g., spring–summer) imply that sulfate may not dominate. There are prolific natural
emissions in India during the spring (MAM), such as biomass-burning aerosols transported
from Southeast Asia. There is also mineral dust from Pakistan and the Arabian sea during
the monsoon season in the summer (JJA). Therefore, it is likely that anthropogenic SO2
emissions (and resulting sulfate aerosols) contribute less than the natural aerosols to the
total AOD and thus limit the effectiveness of the bias-scaling approach used here.

4. Discussion

The SO2 emission bias-scaling method that uses the relationship of the differences
in SO2 emissions relative to the differences in sulfate AODs between GEFS-Aerosols and
MERRA2 can drastically improve GEFS-Aerosols SENS2 simulations, where anthropogenic
SO2 emissions are dominant sources of the total aerosol formation. In such regions, model
performance is insensitive to seasonal aerosol emissions, but is sensitive to seasonal SO2
emission scaling. In addition, the MERRA2 AOD is comparable to AERONET AODs.
However, the bias-scaling method does not work well when the total AODs are sensitive to
seasonal aerosol emissions, and natural emissions and transport dominate the total aerosol
abundance. When the MERRA2 AODs have a more considerable bias against ground-truth
observations (i.e., AERONET), SO2 emissions bias scaling based on MERRA2 sulfate AODs
departs from the ground-truth observations.

The advantage of this method is the ability to rapidly adjust emissions so that the
model output is closer to the observation or assimilation data. One limitation is that we
may miss essential mechanisms or processes that cause these differences, in addition to the
emissions. For instance, SO2 bias scaling is ineffective over the ocean, where GEFS-Aerosols
intrinsically underestimates observations. Emission height also affects near-surface SO2 and
aerosol concentrations. Yang et al. [36] showed that the range in SO2 surface concentrations
caused by changing the emission height in one model was larger than the range in the
diversity across models that simulated aerosol lifecycles [37]. The global distributions
of SO2 sectoral emissions provide hints on how to relate SO2 emission types to emission
height and receptor concentrations. In a future study, it would be useful to compare the
model with the reference datasets for 2019 (or a common year when emissions data are
available) to identify where the potential issues originate—either the emissions, model or
reference data—and to extend the issue of updating to more recent years. On the other
hand, a smaller magnitude of GMB does not always mean good model performance. The
magnitude of GMB is small in regions with large positive and negative biases; however, it
becomes large in locations where strong positive biases are reduced, such as in East Asia.

SO2 emission bias scaling is assumed that MERRA2 assimilation data should be
close to the observations. However, when we compared MERRA2 with the references
and AERONET, we found that MEERA2 has biases. Therefore, this method becomes
more reliable as the reference data adopted for bias scaling are accurate. In addition, the
number of measurement sites (n) can affect the evaluations. For instance, there are fewer
AERONET sites in Saudi Arabia (n = 87) and India (n = 43) than in Asia (n = 669), Europe
(n = 1141), and CONUS (n = 541 for East or n = 791 for West). Bias-scaling results are more
convincing in the latter regions than in the former. On the other hand, the co-existence of
anthropogenic aerosols causes difficulty in the separation or speciation of aerosols through
the current observed total AODs. It is necessary for a companion study on the emission



Atmosphere 2023, 14, 234 16 of 20

scaling of anthropogenic absorbing aerosols, such as organic and black carbon, to be carried
out. Therefore, using multi-platform and multi-species observation data will reduce such
problems and support generalizing bias-scaling method.

5. Summary and Conclusions

Anthropogenic aerosol emissions reflect human activities and play a vital role in global
AAC forecast models. For the GEFS-Aerosol AAC simulations in 2021, we updated the
anthropogenic emission data (from CEDS 2014 to CEDS 2019) and used a simple SO2
bias-scaling method to refine the updated SO2 emissions further. We conducted a BASE
simulation with CEDS 2014 emissions, a SENS1 simulation with CEDS 2019 emissions,
and a SENS2 simulation with bias-scaled CEDS 2019 SO2 emissions for sulfate AODs.
Monthly bias-scaling factors were obtained by the regression analysis of the differences in
the SO2 emissions of CEDS 2019 and the sulfate AODs between GEFS-Aerosol simulations
and MERRA2.

• Evaluations of the model AOD against ICAP, MERRA2 assimilation data, and a suite of
satellite data, such as MISR, VIIRS, MODIS, and ground-truth AERONET, showed that
the SENS1 model’s performance improved compared to BASE, particularly in East
Asia, while SENS2 bias scaling led to a further improvement in model performance.

• The biases against the satellite observations and the ICAP of ensemble simulation data
showed a wide range of biases between the references and seasons. The global mean
biases varied with reference types by a factor of 3~13 and season by 2~10.

• Seasonally, the global AOD distributions showed that the differences in all the simu-
lations against ICAP, MISR, VIIRS, and MODIS (i.e., the references) were the largest
in MAM and the smallest in DJF. The biases against MISR were the least negative
among the references, due to the relatively lower underpredictions against MISR
over the oceans. The modeled AOD biases against both VIIRS and MODIS had very
similar features in their global distributions; however, the modeled AOD had the most
negative global mean biases against MODIS.

• The smaller magnitudes of GMB do not always mean better simulations, particularly
when the upper and lower bounds of biases have different signs in different domains
and are localized in specific regions, such as East Asia.

• AERONET AODs fell between MISR and MODIS AODs. Comparing the simulated
AODs with AERONET data, the bias-scaling methods improved the global seasonal
Pearson’s correlation (r), Index of Agreement (IOA), and mean bias (MB), except for
the global mean biases in MAM, in which the negative regional biases were reduced
more than the positive regional biases.

• Regionally, the SO2 bias scaling showed the largest improvement in r, MB, and IOA
in East Asia. On the other hand, the model performance in India improved for DJF
and SON, but worsened in MAM and JJA. This seasonal contrast effect is due to
the bias-scaled reductions in SO2 emissions in India, along with the relatively more
significant contributions from the other types of aerosols transported to this region.

• The simple bias-scaling methods work best in the regions where anthropogenic emis-
sions are predominant, and the assimilated AOD speciation (e.g., MERRA2) represents
the fractional contribution of aerosol composition well; however, the methodology for
scale emissions works less well in regions that experience a large aerosol burden from
natural phenomena, such as dust events, biomass burning, and sea salt.

Overall, a simple SO2 bias-scaling method allows us to rapidly update anthropogenic
emissions data using the available assimilated data to help improve the AAC model’s
predictions of the global AOD. It is critical to fine-tune the specific regions globally to
apply bias scaling (e.g., East Asia). In addition, bias scaling should also be applied to other
anthropogenic emission sources of black and organic carbon aerosols (but only in regions
outside of large dust or biomass-burning events) to improve AAC predictions further.
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Appendix A

Figure A1. Global distribution of the differences in GEFS AOD (BASE (a–d), SENS1 (e–h) and SENS2
(i–l)) from ensemble simulation of ICAP (a,e,i), and satellite observations of MISR (b,f,j), VIIRS (c,g,k),
and MODIS (d,h,l) in JJA 2021 (the numbers above figures indicate the global mean (unitless)).
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Figure A2. Global distribution of the differences in GEFS AOD (BASE (a–d), SENS1 (e–h) and SENS2
(i–l)) from ensemble simulation of ICAP (a,e,i), and satellite observations of MISR (b,f,j), VIIRS (c,g,k),
and MODIS (d,h,l) in SON 2021 (the numbers above figures indicate global mean (unitless)).

Figure A3. Global distribution of the differences in GEFS AOD (BASE (a–d), SENS1 (e–h) and SENS2
(i–l)) from ensemble simulation of ICAP (a,e,i), and satellite observations of MISR (b,f,j), VIIRS (c,g,k),
and MODIS (d,h,l) in DJF 2021 (the numbers above figures indicate global mean (unitless)).
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