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Abstract: Wildfires are relevant sources of PM emissions and can have an important impact on air
pollution and human health. In this study, we examine the impact of wildfire PM emissions on the
Piemonte (Italy) air quality regional monitoring network using a Generalized Additive Mixed Model.
The model is implemented with daily PM10 and PM2.5 concentrations sampled for 8 consecutive
years at each monitoring site as the response variable. Meteorological data retrieved from the ERA5
dataset and the observed burned area data stored in the Carabinieri Forest Service national database
are used in the model as explanatory variables. Spline functions for predictive variables and smooths
for multiple meteorological variables’ interactions improved the model performance and reduced
uncertainty levels. The model estimates are in good agreement with the observed PM data: adjusted
R2 range was 0.63–0.80. GAMMs showed rather satisfactory results in order to capture the wildfires
contribution: some severe PM pollution episodes in the study area due to wildfire air emissions
caused peak daily levels up to 87.3 µg/m3 at the Vercelli PM10 site (IT1533A) and up to 67.7 µg/m3

at the Settimo Torinese PM2.5 site (IT1130A).

Keywords: wildfires; air pollution; particulate matter PM10; PM2.5 Generalized Additive Mixed Model

1. Introduction

According to the first part of the Sixth Assessment Report, Climate Change 2021: The
Physical Science Basis [1], frequency, intensity and severity of wildfires will increase in
many regions of the world due to climatic trends.

Indeed, global increases in average temperature; a rise in heatwave frequency, intensity,
and/or extent; and drought periods lasting longer and extending over greater areas of time
and space have all been related to the harshness of wildfires [2–10].

The Advance Report on Forest Fires in Europe, Middle East and North Africa 2021 [11]
reported that in 2021, Turkey was the country with the most burnt area, followed by Italy,
which was the country with the greatest number of fires.

Emissions from wildfires have a significant influence on atmospheric composition
due to the large amounts of compounds emitted into the atmosphere during combustion,
including carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitrogen oxides
(NOx), ammonia (NH3), particulate matter PM10 and PM2.5, non-methane hydrocarbon
(NMHC), polycyclic aromatic hydrocarbons (PAHs), and other chemical species as well
as volatile organic compounds (VOCs) [12–20]. Moreover, many wildland-fire-related
compounds act as secondary organic aerosol (SOA) precursors, thereby contributing to its
formation [21–23].

Wildland fire emissions can impact air quality locally, regionally [24–26], and over
distances of several thousand kilometers [27–29].

Epidemiological studies aimed to assess the relationships between particle exposure
(mainly PM10 and PM2.5) and health outcomes have been extensively carried out over
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the last two decades. PM exposure has been widely recognized to have an effect on
cardiopulmonary diseases, lung cancer, and premature mortality [30–39].

Several studies were aimed at improving the wildfires air quality impact assessment
as well as deepening our understanding of the relationship between wildfire emissions
and human health effects [40–42]. Notably, a study on short-term effects of particulate
matter PM10 on mortality during forest fires in Southern Europe [43] found that smoke was
associated with increased cardiovascular mortality in urban residents, and PM10 on smoky
days had a larger effect on cardiovascular and respiratory mortality than on other days.

In [44], evidence of an association of the exposure to long-range transported PM2.5
from vegetation fires over hundreds to thousands of kilometers, with the increase in
cardiovascular mortality and, to a lesser extent, with the hospital admissions due to
respiratory causes was provided.

Furthermore, fine particulate emissions from wildfires were associated with increased
mortality rates on fire days with poor air quality [45,46], and with increased risks for
specific groups of people, including the elderly [47], those with pre-existing respiratory
conditions, and children [48,49].

The fires’ related atmospheric emissions have been found to also affect the ecosystems,
particularly plant productivity downwind of fires through enhanced ozone [50] and aerosol
concentrations [51].

Each year, 350 million hectares of vegetation are reported to be affected by fires around
the world, half of them in sub-Saharan Africa [52].

Methods commonly used to quantify wildfire effects on the spatio-temporal variability
of air pollutant concentrations, and therefore on human health and ecosystems, include:
air pollution monitoring networks [45,53,54], land use regression modeling (LUR) [55–60],
remote-sensing- or aerosol optical depth (AOD)-based models [61–64], estimates from
satellite observations [61,65–68], low-cost sensor measurements [69,70], and chemical trans-
port models (CTM) [66,71–74]. As each model has strengths and weaknesses, no single
model should be considered as the most accurate to quantify human exposure to wildfire
smoke [75]. Many regional fire studies with CTM have been undertaken to assess the
impact of fire emissions on air pollution in populated areas of the world, such as in Eu-
rope [66,71,76]. In [77], the MM5/CHIMERE air quality modelling system predicted that
Portugal’s future forest fire emissions will increase PM10 concentrations, especially where
the burned area projections were higher, in detail + 20 µg/m3 along the Northern coastal
region and + 32 µg/m3 over the center of the country.

Based on the available studies, the fires’ size appears as a key variable: small fires
do not seem to affect mortality rate significantly, whereas medium and large fires (with
burned areas > 1000 ha) showed a significant impact on human health, which increased
with the extent of the fire [78,79].

At the local level, air quality can show strong spatio-temporal variation during wild-
fires depending on concurrent meteorology and synoptic circulation [80–84]. To study the
relationship between fires and air pollutant levels at a seasonal timescale, distinguishing
the contribution of local meteorological factors to relative concentrations, empirical models
have also been used. In [85], using a multiple linear regression analysis, the seasonal
variability of PM10 and PM2.5 due to fires was estimated to be 45% ± 7% and 39% ± 8%,
respectively. In [86], the spatiotemporal variations in PM2.5 concentrations, in relation to
the wildfires (Black Summer, Australia) and the corresponding influential meteorological
factors, were evaluated using a generalized additive model (GAM); surface temperature
and relative humidity were found to be consistent and statistically significant predictors of
elevated PM2.5 levels. Both variables have been identified as predictable precursors of se-
vere wildfires in other studies [87,88]. Based on previous studies [89,90], McClure et al. [91]
used GAM residual values to determine anomalous sources of O3 that cannot be pre-
dicted by meteorological or transport variables. Recently, to estimate PM2.5 concentrations,
machine learning (ML) methods including random forests [92–95], feed-forward neural
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network [96–98] and ensemble learning [99–102] have been increasingly used, leading to
improved models’ performances (CV or test R2 generally > 0.8).

Although these existing methods, including LUR, generalized additive models and
mixed models, achieved competent performance, they have limitations in flexibility and
learning capacity, compared with modern deep learning (DL) methods. DL methods
exploit multiple layers of artificial neural networks, obtaining a flexibility that ensures a
strong learning capacity to model non-linear associations and interactions among variables,
compared with many traditional ML algorithms, including GAM, support vector machine
and Gaussian process [103].

Our main goal was to develop a reliable and relatively easy-to-implement method
for the quantitative assessment of the wildfires’ contribution to PM10 and PM2.5 daily
concentrations while controlling meteorology over time in the air quality time series and
apply it to a real-world case study in the Piedmont region. This technique is known in
scientific literature as meteorological normalization [104,105].

This tool, since it is based on data routinely available at local or regional levels, could
be used for the reanalysis of wildfires’ impacts on air quality as well as to monitor the
wildfires atmospheric impacts prevention policies effectiveness.

In this regard, we developed a modeling framework, based on Generalized Additive
Mixed Models (GAMMs), allowing to assess the wildfires’ contribution’s statistical signifi-
cance and to classify the contribution based on the wildfire’s strength, while dealing with
the complexity due to multiple contemporary fires in large areas.

Moreover, we aimed to assess the model predictions comparing them with the finding
obtained from particulate matter samples’ chemical characterizations.

Based on our best knowledge, only one study has dealt with the evaluation of the
wildfires’ contribution to PM10 and PM2.5 levels using GAMMs [106], although applied to
prescribed fires. Therefore, we believe that our study could contribute to further extend the
current knowledge of this topic.

2. Materials and Methods

The study started from a large wildfire, occurring in October 2017 in Val di Susa
(Piedmont, Italy), which offered an appropriate availability of information, such as: air
quality data from regional monitoring networks, fire information from the Carabinieri
Force database, and meteorological data from ERA5.

2.1. Study Area

The study area covers the Piedmont administrative region in Italy, located between
approximately 6◦35′ and 9◦11′ E longitude and between 44◦0′ N and 46◦23′ N latitude with
an area of 25,387 km2.

It is a region particularly rich in woods and the total forest surface is equal to 976.953 ha,
representing 38.5% of the Piedmont area [107]. The forested area has almost doubled since
1950 as a result of the spontaneous colonization of abandoned agricultural lands and of
artificial reforestation. In this context, forest fires have always been a serious problem and
are still today one of the main causes of forest degradation [108].

2.2. Air Quality Data

All validated PM10 and PM2.5 data measured from 2013 to 2020 in the air quality
stations of the regional monitoring network and used in this work (5 and 4 time series
respectively, Table 1 and Figure 1) were collected and elaborated (https://eeadmz1-cws-
wp-air02.azurewebsites.net/index.php/users-corner/download-e1a-from-2013/, accessed
on 23 January 2023).

Daily average values were obtained starting from the series with at least 75% of valid
hourly data (18 hourly data out of 24) according to the aggregation rules laid down in the
Air quality Directive 2008/50/CE (Annexes VII and XI) and IPR Decision 2011/850/CE.
The same data coverage was applied for the calculation of the monthly average values

https://eeadmz1-cws-wp-air02.azurewebsites.net/index.php/users-corner/download-e1a-from-2013/
https://eeadmz1-cws-wp-air02.azurewebsites.net/index.php/users-corner/download-e1a-from-2013/
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to verify that the minimum annual data required, in this work, were at least two valid
months per season; all validate monthly series were considered only for 2020. Over the
2013–2020 observation period, five years was the minimum criteria for checking validity
dataset. Observations with negative or zero values have conventionally been replaced with
a value equal to 0.2 µg/m3. No outlier-filtering procedures were applied to the validated
data series.

Table 1. Piedmont air quality monitoring stations information.

Station Code Province Station Name
Longitude
(Decimal
Degrees)

Latitude
(Decimal
Degrees)

Altitude
(m)

IT1788A Torino Ivrea—Liberazione 7.87804 45.4512 240
IT0470A Torino Torino—Rebaudengo 7.69534 45.10407 23
IT1130A Torino Settimo T.—Vivaldi 7.77818 45.1432 202
IT1878A Vercelli Vercelli—CONI 8.40236 45.31891 131
IT1533A Vercelli Vercelli—Gastaldi 8.41514 45.32842 130
IT1532A Vercelli Borgosesia—Tonella 8.28353 45.71317 344
IT1509A Novara Cerano—Bagno 8.786132 45.40973 124
IT1524A Cuneo Alba—Tanaro 8.03328 44.70371 164
IT1903A Asti Asti—Baussano 8.19756 44.89422 119
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2.3. Meteorological Data

Meteorological variables play very important roles in formation, dispersion, and
transport of atmospheric pollutants and strongly influence wildfire activity.

Time series for Planet Boundary Layer height (PBL) were provided from ERA5 (https://
cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview, ac-
cessed on 23 January 2023), which returns a gridded (0.25 × 0.25 decimal degrees) hourly
atmospheric reanalysis product [109]; all other meteorological surface-level variables were

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
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gathered from ERA5-Land (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-land?tab=overview, accessed on 23 January 2023), which runs at enhanced resolution
(0.1× 0.1 decimal degrees). Meteorological model outputs from Copernicus climate databases
were converted in the geographic coordinate system used in this work (WGS 84/UTM zone
32N), each maintaining its own spatial resolution; time series data of the centroid of the grid,
nearest to each air quality station, were extracted and attributed to the air quality station. To
evaluate long-term trends in terms of climate variables, the hourly data were pooled and daily
mean values were computed for each year from 2013 to 2020.

Further, to capture the possible effect of the meteorological conditions of the previous
day on PM levels, values recorded the previous day (at lag −1) for variables tp, wspeed,
pblmax, and pblmin (ptp, pwspeed, ppblmax and ppblmin) were added.

Meteorological parameters calculated for the GAMM implementation are presented in
Table 2.

Table 2. Meteorological variables used for the GAMM implementation.

Name Temporal Predictors Unit

t2m Mean temperature at 2 m height from
ground level

◦C

tmin2m Minimum temperature at 2 m height from
ground level

◦C

tmax2m Maximum temperature at 2 m height from
ground level

◦C

rh Relative humidity %
tp Total precipitation mm

ptp Total precipitation of the previous day mm

u10m Horizontal component of wind speed at 10
m height (E) m/s

v10m Vertical component of wind speed at 10 m
height (N) m/s

wspeed Wind speed intensity at 10 m height m/s

pwspeed Wind speed intensity at 10 m height of the
previous day m/s

wdir Wind direction Degrees clockwise
from North

sp Ground level pressure hPa
nirradiance Solar radiation intensity W/mq

pbl00 Planetary boundary layer height at 00:00 km
pbl12 Planetary boundary layer height at 12:00 km

pblmin Minimum planetary boundary layer height km

ppblmin Minimum planetary boundary layer height
of the previous day km

pblmax Maximum planetary boundary layer height km

ppblmax Maximum planetary boundary layer height
of the previous day km

2.4. Carabinieri Force Database on Forest and Non-Forest Wildfires

From 2008 onward, the Carabinieri Force has annually collected data related to any fire
events affecting forests, other wooded land, grassland, and cropland land-use categories,
within the framework of forest fires prevention and monitoring. The dataset includes
both georeferenced information (shape files, WGS 84/UTM zone 32N) and an additional
database for 15 administrative Italian regions (the 5 autonomous regions are not included).
In the database, each event (row) is characterized by a set of parameters related to loca-
tion (e.g., administrative region, municipality, and coordinates), site characteristics (e.g.,
elevation, slope, total area), vegetation (e.g., land use, land cover, forest typology), fire’s
information (e.g., scorch height, type (crown, surface or ground fire), etc.), meteorological
data (e.g., wind characteristics), and data on the fire extinguishing process (e.g., number of

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
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firefighters, vehicles and water used). The forest typologies are classified according to the
National Forestry Inventory [110] nomenclature.

The Carabinieri Force database is currently the basis for monitoring of greenhouse gas
(GHG) and air pollutant emissions in Italy [111] under the United Nation Framework Con-
vention on Climate Change (UNFCCC) and the Convention on Long Range Transboundary
Air Pollutant (CLRTAP) [112].

The information on areas affected by fires, as well as the starting and ending time of
the fire event, has been extracted from the above-described database.

3. Methodology

Generalized additive models (GAMs) were implemented to assess how PM concentra-
tions varied in relation to predictor variables.

The GAMs are useful for identifying complex non-linear relationships in the data and
do not require a priori knowledge of the shape of the response curves [113,114]. GAM is a
sum of smoothed functions of the predictor variables commonly defined as polynomials
based on intervals, known as splines [114,115].

In general, the structure of a GAM according to Wood [114] could be estimated by
Equation (1):

g(µi) = Aiθ+ ∑ fj
(
xji
)

(1)

where
yi ∼ EF(µi,ϕ)

yi is a response variable, EF(µi,ϕ) denotes an exponential family distribution with
mean µi and scale parameter, ϕ. Ai is a row of the model matrix for any strictly parametric
model components, θ is the corresponding parameter vector, and the fj are smooth functions
of the covariates, xj.

GAMs showed excellent results to quantitatively differentiate the effects of some
predictor variables as meteorology and air emissions on the concentrations of gaseous
and fine particulate concentrations [105,116,117]. Latest studies [118–121], following the
unexpected events during the pandemic, used GAMs by meteorology adjustment to identify
the impacts of COVID-19 lockdown restrictions on air quality.

In order to evaluate the effect of fires activity on the PM concentration levels monitored
in the air quality stations in the Piedmont region, GAMs were developed.

A logarithmic transformation of the PM daily concentrations was applied to follow a
Gaussian distribution [105] that was effective in producing residual distributions closed to
normal (as shown by a quantile–quantile plot) as assumed by Zuur et al., [122]. The model
equations were described in accordance with Hua et al. [121] and Wood [114].

Smooth covariates functions, including temporal trends, climatic factors, and fire
activity index, were introduced into the model with the aim to optimize the PM estimates
and try to minimize the observation error [114].

Covariates include temporal explanatory terms as inter-annual (Julian day, jd) and
daily variations (Day of the year, doy) with the aim to take into account seasonal cycles.

A thin plate spline was set to reflect the inter-annual variation with a number of nodes
equal to the number of the years of the data series. Similarly, daily terms were described
using a cubic cyclic spline smoothing function with the aim to capture the residual effects
of seasonality, with the number of nodes equal to the number of months of each year. This
setting allows containment of the “wiggliness” of the spline, which does not overly oscillate
in response to local variation.

The non-linear influences of meteorological factors were investigated. A stepwise
(forward and backward) approach to determine the model with the optimal set of covariates
based on the lowest Akaike Information Criterion (AIC) was followed in accordance with
Barmpadimos et al. [116]. Model choice via the AIC avoids overfitting by penalizing the
number of parameters, thus obtaining a more robust final model. To limit the phenomena
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of collinearity, a maximum limit on the Pearson correlation index of 0.7 has been imposed.
The “mgcv” package in R [113] was used to fit GAMs for a model selection process.

Interactions terms, with different smoothers assumed for each covariate, were added
in the model in order to consider the relative effects of the climatic variables that strongly
influence wildfire activity. To characterize the impacts of vertical and horizontal diffusion
on air quality, the models were forced to include the U-wind (u10m) and V-wind (v10m)
interaction variables [123]. Further, an interaction of three potential predictors was selected
to assess the combined related effect within meteorological terms with the aim to get a
better fit of the model.

The forest fire contribution was represented in the model by a daily index (cat_inc)
calculated as the ratio of the burned area to the square of the distance between the air
quality monitoring station and the centroid of the polygon surrounding the area covered
by the fire. Only fires with a maximum distance of 75 km were considered [124]. In the
case of multiple fires involving the same monitoring station, the total index was calculated
by adding the daily indices of concurrent events. For fires that lasted more than one day,
the index of the single fire was considered constant for all the days of the event. For
each model, the index was divided into three classes on the basis of the percentiles of its
statistical distribution. The first class, called small (S), contains observations with index
values less than or equal to the 75th percentile. The second, named medium (M), contains
those greater than the 75th percentile and less than or equal to the 95th percentile. Finally,
the last class (index value > 95th percentile) was classified as large (L).

The significance of the spline terms was assessed, and the analysis of the residuals
was tested. In order to verify the independence of the residuals that was a key assumption
of the model [122], an auto-regressive temporal term was added. The model equation
becomes equivalent to a generalized additive mixed model (GAMM) with a lag-1 temporal
autoregressive component for the residuals [114].

The final equation used for the GAMMs was:

Log (PMi) = S(jdi) + S(doyi) + S(u10mi, v10mi) + S
(
vm1j, vm2j, vm3j

)
+

n

∑
j

S
(
vmij

)
+ ∑ S(cat_incih)+β+ ei (2)

where

i = ith daily observation
j = jth variable
h = hth class (S, M, L)
PMi = PM concentration [µg/m3]
S( ) = smooth functions of continuous covariates
jd = julian day
doy = day of year (from 1 to 365)
u10mi, v10mi = E-W and N-S component of wind speed at 10 m height
vmij = meteorological variable
cat_inc ij = wildfire index ( broken down into three classes S, M, L)
β = intercept
ei = ϕei−1+ ∈i

∈i= N
(
0,σ2 )

random error

The wildfires’ contribution to the PM levels, as difference in concentrations relative to
the baseline level, was calculated in accordance with Hua et al. [121]:

∆C =
(
eterm − 1

)
∗ eβ (3)

where

∆C = contribution to total PM level [µg/m3]
term = values of the predictor at the supplied covariate values.
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Model performance was tested. A cross-validation method [125] was used for accuracy
assessment; a training dataset was randomly sampled using 80% of the data (regularly
seasonally distributed) and predictions were compared with observations of the remaining
20% (test dataset). We derived the coefficient of determination (R2) and Root Mean Squared
Error (RMSE) to quantify the goodness of fit of the models. Other evaluation statistics, such
as Factor of 2, Fractional bias, and Normalized Mean Square Error, were calculated for each
model to assess the agreement with fitted values [126]. For uncertainty analysis, the cross
validation was repeated 100 times.

As a further verification of modelling performance, a comparison between the wildfire
contribution to PM levels estimated by model “IT0470A” and that derived from PM chemi-
cal speciation analysis on samples collected at Torino—Rebaudengo monitoring station,
was performed. The focus was the Val di Susa wildfire in the October 2017 in the days from
24 through 26 for which PM chemical speciation data were available [127].

4. Results and Discussion
4.1. Models Performance

All the models have shown (Table 3) satisfactory goodness of fit statistics with respect to
performance indicators employed. Adjusted R2 range (0.63–0.80), if not better, was comparable
with similar GAMMs [106] and other statistical models [128]. Low FAC2 values showed a
small willingness to under/overpredict even though all the models exhibited a certain inability
to reproduce high hotspot PM levels near the upper bound of the last quartile (Figure 2 and
Figures S1b–S8b). This phenomenon, mostly related to the unpredictability of local air emission
sources, caused a modest amount of heteroskedasticity. Systematic distortion was almost
absent (low FB value) and a quite moderate overdispersion was showcased with the NMSE,
ranging from 0.08 to 0.19. The PM10 model, related to the IT1509A air quality monitoring
station, was overall the worst of the lot, while the IT1532A was the poorest of all PM2.5 models.
Both RMSE and adjusted R2 indices for the training dataset (RMSEtrain, R2

train) were close to
those related to the testing dataset (RMSEtest, R2

test).

Table 3. (a) PM10 model performance statistics. (b) PM2.5 model performance statistics.

(a)

Station
Code

RMSEtrain (RMSEtest)
(µg/m3) R2

train (R2
test) FAC2 FB NMSE

IT0470A 11.43 (11.82) 0.80 (0.75) 0.96 0.002 0.08
IT1509A 12.68 (12.11) 0.63 (0.59) 0.90 0.010 0.14
IT1524A 10.62 (11.27) 0.63 (0.60) 0.92 0.001 0.13
IT1533A 11.74 (11.28) 0.66 (0.61) 0.97 0.006 0.01
IT1903A 11.80 (11.98) 0.70 (0.69) 0.96 0.001 0.09

-
Acceptability

Threshold:
>0.5

Accept.
Thresh.:

>0.8

Accept.
Thresh.:

<0.5

Accept.
Thresh.:

<0.5

(b)

Station
Code

RMSEtrain (RMSEtest)
(µg/m3) R2

train (R2
test) FAC2 FB NMSE

IT1130A 9.17 (8.59) 0.83 (0.85) 0.95 0.028 0.07
IT1532A 6.65 (7.68) 0.67 (0.55) 0.88 0.015 0.19
IT1788A 9.47 (9.63) 0.71 (0.68) 0.88 0.003 0.16
IT1878A 9.33 (9.32) 0.70 (0.69) 0.91 0.004 0.15

-
Acceptability

Threshold:
>0.5

Accept.
Thresh.:

>0.8

Accept.
Thresh.:

<0.5

Accept.
Thresh.:

<0.5
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Figure 2. Check of the basic assumptions: residual analysis of the PM10 model developed for the air
quality monitoring station.

Basic assumptions of the statistical model for each station (errors uncorrelated, nor-
mally distributed, zero mean, constant variance) were tested and verified (Figure 2). Resid-
ual analysis for IT0470A Torino—Rebaudengo station was reported in Figure 2 (results for
the other stations were presented in Figures S1b–S8b). We have placed special emphasis on
this station because it was significantly affected by the PM emissions of the Val di Susa wild-
fire during October 2017. Moreover, the PM chemical speciation data available for this event
(24–26 October 2017) allowed us to compare the PM10 wildfire contribution from model
with that derived from PM chemical speciation analysis. The temporal autocorrelation in
the residuals was removed by means of a first order autoregressive model. In the Figure 3
and Figures S1c–S8c, the trend of the partial autocorrelation function (PACF) seemed to be
suggesting the goodness of the lag-1 (previous day) autocorrelation hypothesis.
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Uncertainty analysis for all models was assessed by means of the 100-fold sampling
process previously outlined. Consequently, the relative uncertainty (95% confidence in-
terval) for each PM model was estimated for the daily observations. The box plot graphs
reported in the Figure 4 pointed out a median relative uncertainty value in the range of
0.6–1.8%, with slightly higher values for PM2.5 models.
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4.2. Widfires Contribution and Covariates Analysis

In Table 4 are reported the statistically significant explanatory variables, entered into
PM10/PM2.5 GAMMs.
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Table 4. Model formula for each station.

Station Code Pollutant Model Formula * Wildfire
Index

IT0470A PM10
log(value) ~ s(x)fix + s(ptp) + s(tp) + s(pblmax) + s(tmax2m) +

s(index, by =(cat_inc = “L”)) + s(nirradiance, rh, sp) L

IT1509A PM10

log(value) ~ s(x)fix + s(ptp) + s(rh) + s(tmax2m) + s(pblmin) +
s(index, by = (cat_inc = “M”)) + s(index, by = (cat_inc = “L”)) +

s(nirradiance, tmax2m, sp)
M—L

IT1524A PM10
log(value) ~ s(x)fix + s(ptp) + s(pblmax) +s(tp) + s(sp) + s(index, by

= (cat_inc = “L”)) + s(nirradiance, rh, tmax2m) L

IT1533A PM10

log(value) ~ s(x)fix + s(ptp) + s(sp) +s(t2m) +s(tmin2m) + s(index,
by = (cat_inc = “M”)) + s(index, by = (cat_inc = “L”)) +

s(nirradiance, rh, sp)
M—L

IT1903A PM10
log(value) ~ s(x)fix + s(ptp) + s(pblmax) + s(rh) + s(t2m) + s(index,

by = (cat_inc = “L”)) + s(sp, tmax2m, tp) L

IT1130A PM2.5

log(value) ~ s(x)fix + s(ptp) + s(pblmax) +s(tp) + s(t2m) +
s(nirradiance) + s(pblmin) + s(wspeed_max) + s(index, by =

(cat_inc = “M”)) + s(index, by = (cat_inc = “L”)) + s(rh, sp, tmax2m)
M—L

IT1532A PM2.5
log(value) ~ s(x)fix + s(ptp) +s(t2m) + s(sp) + s(index, by = (cat_inc

= “L”)) + s(nirradiance, rh, tmax2m) L

IT1788A PM2.5
log(value) ~ s(x)fix + s(pblmax) + s(ptp) + s(t2m) +s(sp) + s(tp) +

s(index, by = (cat_inc = “L”)) + s(nirradiance, rh, tmax2m) L

IT1878A PM2.5

log(value) ~ s(x)fix + s(ptp) + s(tmax2m) + s(sp) + s(pblmax) + s(tp)
+ s(u10m) + s(wspeed_max) + s(index, by = (cat_inc = “L”)) +

s(nirradiance, rh, tmax2m)
L

* value = PM daily concentration; s()= spline function; s(x)fix = s(jd) + s(u10m, v10m) + s(doy); cat_inc = wildfire
index class.

The most important meteorological covariate, in terms of frequency and contribution,
was ptp, probably due to the atmospheric washing out phenomenon that can affect the
day-after PM levels (Figure 5 and Figures S1d–S8d and Table 5). The ptp partial effect on
PM concentrations was strongly decreasing in the first part of the x-axis, with a typical
value of rainfall height about 15 mm for PM10 (about 10 mm for PM2.5); after that, the curve
generally fattened out. Additionally, pblmax has shown a remarkable effect on reducing
PM levels up to a depth of approximately 1000 m. On the contrary, tmax2m exhibited a
significantly increasing contribution to PM concentrations (Figure 5, Table 5).

Table 5. Summary of qualitative partial effect on PM levels (derived from Figure 5 and Figures S1d–S8d)
and number of occurrences of the explanatory variables.

Explanatory
Variable

PM10
(n.ocurrences/

n.models)

PM2.5
(n.ocurrences/

n.models)

Partial Effect
PM10 *

Partial Effect
PM2.5 *

ptp 5/5 4/4 − − − −
tp 1/5 3/4 − − −

tmax2m 2/5 1/4 + + + +
tmin2m 1/5 0/4 − − 0

t2m 1/5 2/4 + + + −
pblmax 3/5 2/4 − − -
pblmin 1/5 1/4 − − − −

rh 2/5 0/4 + + 0
sp 2/5 3/4 + +

nirradiance 0/5 1/5 0 − −
wspeed_max 0/5 2/4 0 −

* Qualitative partial effect: (++) = strong increase of PM; (+) = increase of PM; (+ −) = effect not clear; (−) =
decrease of PM; (− −) = strong decrease of PM; (0) = null.
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Figure 5. Spline functions for single predictive variables (shadows in the graphs represent 95%
confidence interval) and smooths for multiple meteorological variables interactions selected in the
PM10 model developed for the air quality monitoring station IT0470A—Torino Rebaudengo.

Focusing on IT0470A—Torino Rebaudengo station, a negative (about -1 µg/m3 year)
average interannual trend term (jd) was found for the majority of the PM10 and PM2.5
models. This outcome was consistent with other studies in the same geographical area [129].
The term related to doy took the shape of a typical seasonal effect for Po Valley, with the
highest PM levels in the winter (Figure 5).

The wildfire contribution to PM levels was represented by the index term, which was
split into three quantitative classes (large, medium, and small) as reported in Section 3.
An example for IT0470A—Torino Rebaudengo station was presented in Figure 6 (Figures
S1a–S8a for the other stations). The large class proved to be statistically significant for all
models; the small one, on the contrary, never entered into the GAMMs. The medium class
was significant in three models only.
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monitoring station, classified by categorial index.

Wildfires characterized by high index showed a very strong increasing contribution on
PM levels measured by the air quality monitoring network (Figure 7a and Figures S1g–S8g);
the maximum contribution estimated by modelling, about 87.3 µg/m3, was reached at
Vercelli PM10 site (IT1533A). Overall, our analysis proved that wildfires with high index
affected almost all monitoring sites with PM levels in the range of a few dozen of µg/m3

for several days per year (Figure 7b and Figures S1h–S8h). Instead, the medium level index
affected PM levels only to a lesser degree.
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Figure 7. (a): Spline functions for categorial index variable selected in the PM10 model developed for
the air quality monitoring station (red line represents the contribution to PM10 levels with the respect
to index values, blue dotted lines in the graphs represent 95% confidence interval); (b): Estimated
model contribution of wildfires to daily average concentrations of PM10 concentrations observed in
the air quality monitoring station.

The comparison, during the large Val di Susa event in October 2017, between the
wildfire daily contribution estimated by model “IT0470A” and that derived from PM
chemical speciation analysis on samples collected at Torino—Rebaudengo monitoring
station (our estimation of primary and secondary PM on data reported in ARPA Piemonte
report [127]), showed a good consistency (Table 6), with two of three estimated values
falling well inside the range of uncertainty of the measurements.
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Table 6. Val di Susa wildfire event in IT0470A station: comparison between estimated wildfire PM10 contri-
bution from model and wildfire contribution from speciation, in relation to PM10 measured concentrations.

Date Observed Value
(µg/m3)

Wildfire Contribution
from Speciation

(µg/m3)
min–max

Wildfire Contribution
from Model (µg/m3)

24 October 2017 100 28.0–36.0 35.3
25 October 2017 123 34.4–44.3 37.8
26 October 2017 199 55.7–71.6 37.8

5. Conclusions

Our objective was the evaluation of the contribution of wildfires to PM10 and PM2.5
levels, monitored by the air quality network in the Italian region of Piedmont, using a
GAMM. This model allowed the exclusion of the confounding effect of local meteorological
factors, the introduction the temporal autoregressive component for the residuals, and
finally, the evaluation of the forest fire contribution by a specific daily index, thus contribut-
ing to further extend the current knowledge of this topic. To the best of our knowledge, the
GAMM approach followed in this study is one of the few in scientific literature used for
this aim.

The implemented model showed performance comparable to other similar GAMMs [106],
GAMs [86], and more complex models [126]. The study demonstrated that large to medium
wildfires (that we characterized by an index value) had proven to substantially affect PM
concentrations in accordance with results found by other scientific works regarding the effect
of size of the fires on impact on human health [78,79]. These types of wildfires, in the Piedmont
region, have proven to be capable of causing extreme air pollution episodes characterized by
very high PM levels and, sometimes, by extended duration, up to several days. Some severe
PM pollution episodes in the study area due to wildfire air emissions caused peak daily levels
up to 87.3 µg/m3 at the Vercelli PM10 site (IT1533A) and up to 67.7 µg/m3 at the Settimo
Torinese PM2.5 site (IT1130A) similarly to the outcomes from Lazaridis et al., 2008 [29].

The GAMM developed here, if properly implemented at the national level, could be
an effective tool for evaluating the wildfire impact on air quality. Therefore, it could set up
a solid base to assess the long-term health effects of PM exposure and estimate the benefits
of wildfire prevention policies, especially in this era of climate change where frequency,
intensity, and severity of wildfires will increase due to climate trends [1–10].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14020231/s1, Figure S1a: Italy, Piedmont region: wildfires,
classified by categorial index variable, within a buffer of 75 km from the air quality monitoring
station; Table S1: Italy, Piedmont region: descriptive statistics for wildfires, classified by categorial
index variable, within a buffer of 75 km from the air quality monitoring station; Figure S1b: Check of
the basic assumptions: residual analysis of the PM10 model developed for the air quality monitoring
station; Figure S1c: Partial autocorrelation function (PACF) of the residuals at daily lags of the
PM10 model developed for the air quality monitoring station; Figure S1d: Spline functions for
single predictive variables (shadows in the graphs represent 95% confidence interval) selected in the
PM10 model developed for the air quality monitoring station; Figure S1e: Smooth surface for wind
speed variables interaction (u10m, v10m) selected in the PM10 model developed for the air quality
monitoring station; Figure S1f: Smooths for multiple meteorological variables interactions selected in
the PM10 model developed for the air quality monitoring station; Figure S1g: Spline functions for
categorial index variable selected in the PM10 model developed for the air quality monitoring station
(red line represents the contribution to PM10 levels with the respect to index values, blue dotted
lines in the graphs represent 95% confidence interval); Figure S1h: Estimated model contribution
of wildfires to daily average concentrations of PM10 concentrations observed in the air quality
monitoring station; Figure S2a: Italy, Piedmont region: wildfires, classified by categorial index
variable, within a buffer of 75 km from the air quality monitoring station; Table S2: Italy, Piedmont
region: descriptive statistics for wildfires, classified by categorial index variable, within a buffer of
75 km from the air quality monitoring station; Figure S2b: Check of the basic assumptions: residual
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analysis of the PM10 model developed for the air quality monitoring station; Figure S2c: Partial
autocorrelation function (PACF) of the residuals at daily lags of the PM10 model developed for the
air quality monitoring station; Figure S2d: Spline functions for single predictive variables (shadows
in the graphs represent 95% confidence interval) selected in the PM10 model developed for the air
quality monitoring station; Figure S2e: Smooth surface for wind speed variables interaction (u10m,
v10m) selected in the PM10 model developed for the air quality monitoring station; Figure S2f:
Smooths for multiple meteorological variables interactions selected in the PM10 model developed
for the air quality monitoring station; Figure S2g: Spline functions for categorial index variable
selected in the PM10 model developed for the air quality monitoring station (red line represents the
contribution to PM10 levels with the respect to index values, blue dotted lines in the graphs represent
95% confidence interval); Figure S2h: Estimated model contribution of wildfires to daily average
concentrations of PM10 concentrations observed in the air quality monitoring station; Figure S3a:
Italy, Piedmont region: wildfires, classified by categorial index variable, within a buffer of 75 km from
the air quality monitoring station; Table S3: Italy, Piedmont region: descriptive statistics for wildfires,
classified by categorial index variable, within a buffer of 75 km from the air quality monitoring station;
Figure S3b: Check of the basic assumptions: residual analysis of the PM10 model developed for the
air quality monitoring station; Figure S3c: Partial autocorrelation function (PACF) of the residuals at
daily lags of the PM10 model developed for the air quality monitoring station; Figure S3d: Spline
functions for single predictive variables (shadows in the graphs represent 95% confidence interval)
selected in the PM10 model developed for the air quality monitoring station; Figure S3e: Smooth
surface for wind speed variables interaction (u10m, v10m) selected in the PM10 model developed
for the air quality monitoring station; Figure S3f: Smooths for multiple meteorological variables
interactions selected in the PM10 model developed for the air quality monitoring station; Figure S3g:
Spline functions for categorial index variable selected in the PM10 model developed for the air quality
monitoring station (red line represents the contribution to PM10 levels with the respect to index values,
blue dotted lines in the graphs represent 95% confidence interval); Figure S3h: Estimated model
contribution of wildfires to daily average concentrations of PM10 concentrations observed in the air
quality monitoring station; Figure S4a: Italy, Piedmont region: wildfires, classified by categorial index
variable, within a buffer of 75 km from the air quality monitoring station; Table S4: Italy, Piedmont
region: descriptive statistics for wildfires, classified by categorial index variable, within a buffer of
75 km from the air quality monitoring station; Figure S4b: Check of the basic assumptions: residual
analysis of the PM10 model developed for the air quality monitoring station; Figure S4c: Partial
autocorrelation function (PACF) of the residuals at daily lags of the PM10 model developed for the air
quality monitoring station; Figure S4d: Spline functions for single predictive variables (shadows in the
graphs represent 95% confidence interval) selected in the PM10 model developed for the air quality
monitoring station; Figure S4e: Smooth surface for wind speed variables interaction (u10m, v10m)
selected in the PM10 model developed for the air quality monitoring station; Figure S4f: Smooths
for multiple meteorological variables interactions selected in the PM10 model developed for the air
quality monitoring station; Figure S4g: Spline functions for categorial index variable selected in the
PM10 model developed for the air quality monitoring station (red line represents the contribution to
PM10 levels with the respect to index values, blue dotted lines in the graphs represent 95% confidence
interval); Figure S4h: Estimated model contribution of wildfires to daily average concentrations
of PM10 concentrations observed in the air quality monitoring station; Figure S5a: Italy, Piedmont
region: wildfires, classified by categorial index variable, within a buffer of 75 km from the air quality
monitoring station; Table S5: Italy, Piedmont region: descriptive statistics for wildfires, classified by
categorial index variable, within a buffer of 75 km from the air quality monitoring station; Figure S5b:
Check of the basic assumptions: residual analysis of the PM2.5 model developed for the air quality
monitoring station; Figure S5c: Partial autocorrelation function (PACF) of the residuals at daily lags
of the PM2.5 model developed for the air quality monitoring station; Figure S5d: Spline functions for
single predictive variables (shadows in the graphs represent 95% confidence interval) selected in the
PM2.5 model developed for the air quality monitoring station; Figure S5e: Smooth surface for wind
speed variables interaction (u10m, v10m) selected in the PM2.5 model developed for the air quality
monitoring station; Figure S5f: Smooths for multiple meteorological variables interactions selected in
the PM2.5 model developed for the air quality monitoring station; Figure S5g: Spline functions for
categorial index variable selected in the PM2.5 model developed for the air quality monitoring station;
Figure S5h: Estimated model contribution of wildfires to daily average concentrations of PM2.5
concentrations observed in the air quality monitoring station (red line represents the contribution to
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PM2.5 levels with the respect to index values, blue dotted lines in the graphs represent 95% confidence
interval); Figure S6a: Italy, Piedmont region: wildfires, classified by categorial index variable, within
a buffer of 75 km from the air quality monitoring station; Table S6: Italy, Piedmont region: descriptive
statistics for wildfires, classified by categorial index variable, within a buffer of 75 km from the air
quality monitoring station; Figure S6b: Check of the basic assumptions: residual analysis of the
PM2.5 model developed for the air quality monitoring station; Figure S6c: Partial autocorrelation
function (PACF) of the residuals at daily lags of the PM2.5 model developed for the air quality
monitoring station; Figure S6d: Spline functions for single predictive variables (shadows in the
graphs represent 95% confidence interval) selected in the PM2.5 model developed for the air quality
monitoring station; Figure S6e: Smooth surface for wind speed variables interaction (u10m, v10m)
selected in the PM2.5 model developed for the air quality monitoring station; Figure S6f: Smooths
for multiple meteorological variables interactions selected in the PM2.5 model developed for the air
quality monitoring station; Figure S6g: Spline functions for categorial index variable selected in the
PM2.5 model developed for the air quality monitoring station (red line represents the contribution to
PM2.5 levels with the respect to index values, blue dotted lines in the graphs represent 95% confidence
interval); Figure S6h: Estimated model contribution of wildfires to daily average concentrations of
PM2.5 concentrations observed in the air quality monitoring station; Figure S7a: Italy, Piedmont
region: wildfires, classified by categorial index variable, within a buffer of 75 km from the air quality
monitoring station; Table S7: Italy, Piedmont region: descriptive statistics for wildfires, classified by
categorial index variable, within a buffer of 75 km from the air quality monitoring station; Figure S7b:
Check of the basic assumptions: residual analysis of the PM2.5 model developed for the air quality
monitoring station; Figure S7c: Partial autocorrelation function (PACF) of the residuals at daily lags
of the PM2.5 model developed for the air quality monitoring station; Figure S7d: Spline functions
for single predictive variables (shadows in the graphs represent 95% confidence interval) selected in
the PM2.5 model developed for the air quality monitoring station; Figure S7e: Smooth surface for
wind speed variables interaction (u10m, v10m) selected in the PM2.5 model developed for the air
quality monitoring station; Figure S7f: Smooths for multiple meteorological variables interactions
selected in the PM2.5 model developed for the air quality monitoring station; Figure S7g: Spline
functions for categorial index variable selected in the PM2.5 model developed for the air quality
monitoring station (red line represents the contribution to PM2.5 levels with the respect to index
values, blue dotted lines in the graphs represent 95% confidence interval); Figure S7h: Estimated
model contribution of wildfires to daily average concentrations of PM2.5 concentrations observed
in the air quality monitoring station; Figure S8a: Italy, Piedmont region: wildfires, classified by
categorial index variable, within a buffer of 75 km from the air quality monitoring station; Table
S8: Italy, Piedmont region: descriptive statistics for wildfires, classified by categorial index variable,
within a buffer of 75 km from the air quality monitoring station; Figure S8b: Check of the basic
assumptions: residual analysis of the PM2.5 model developed for the air quality monitoring station;
Figure S8c: Partial autocorrelation function (PACF) of the residuals at daily lags of the PM2.5 model
developed for the air quality monitoring station; Figure S8d: Spline functions for single predictive
variables (shadows in the graphs represent 95% confidence interval) selected in the PM2.5 model
developed for the air quality monitoring station; Figure S8e: Smooth surface for wind speed variables
interaction (u10m, v10m) selected in the PM2.5 model developed for the air quality monitoring
station; Figure S8f: Smooths for multiple meteorological variables interactions selected in the PM2.5
model developed for the air quality monitoring station; Figure S8g: Spline functions for categorial
index variable selected in the PM2.5 model developed for the air quality monitoring station (red line
represents the contribution to PM2.5 levels with the respect to index values, blue dotted lines in the
graphs represent 95% confidence interval); Figure S8h: Estimated model contribution of wildfires to
daily average concentrations of PM2.5 concentrations observed in the air quality monitoring station;
Figure S9: Relative uncertainty for PM10-models, total (right) and wildfire partial contribution (left),
median value is represented by bold line; Figure S10: Relative uncertainty for, PM2.5-models, total
(right) and wildfire partial contribution (left); median value is represented by bold line.
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