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Abstract: Landslides are one of the most prevalent environmental disasters in the Hengduan Moun-
tain Region. Landslides lead to severe economic damage and property loss, as well as fatalities.
Furthermore, they tend to increase in the context of climate change. The purpose of this study is to
comprehensively assess landslide susceptibility across the Hengduan Mountain Region in southwest
China. Specifically, the analysis is focused on the eastern boundary of the Tibetan Plateau within
the context of future climate change scenarios, which are based on the latest Coupled Model In-
tercomparison Project Phase 6 (CMIP6) global climate model ensemble. The Generalized Additive
Model (GAM), Random Forest (RF), and Light Gradient Boosting Machine (LightGBM) were selected
in order to map landslide susceptibility within the context of 1.5–4.0 ◦C warming scenarios. This
was achieved by considering the changes in extreme rainfall that exceeded the landslide triggering
thresholds. The results show that the frequency over extreme rainfall thresholds (FOERT) tend to
increase in conjunction with warming targets, thereby ranging from 2.3/a (at a 1.5 ◦C warming) to
9.0/a (at a 4.0 ◦C warming) on average. Such elevated extreme precipitation events contribute to an
increase in projected future zones of high landslide susceptibility when compared to the historical
baseline period ranging from −1.2% (at a 1.5 ◦C warming) to 4.0% (at a 4.0 ◦C warming) using
different machine learning models. Moreover, the extent of high susceptibility zones increases more
significantly in the context of 4.0 ◦C warming when compared to the historical baseline results. These
results indicate the importance of limiting the global temperature rise to 1.5 as well as 2 ◦C. The high
landslide susceptibility zones estimated by the CMIP6 multi-models ensemble are mainly located in
the central and southeastern regions of the Hengduan Mountain Region. The possible changes in
terms of introducing extreme precipitation in order to assess landslide susceptibility in the context
of climate change that is proposed in this study may be further applied to additional study areas.
These projections under different targets can provide scientific guidelines for the purposes of the
development of climate change adaptation strategies.

Keywords: landslide susceptibility; machine learning; climate change; extreme rainfall; CMIP6;
Hengduan Mountain Region
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1. Introduction

Climate change and global warming are the most dramatic environmental issues of
the 21st century [1]. According to the Intergovernmental Panel on Climate Change (IPCC)
Special Report on Global Warming of 1.5 ◦C, rising temperatures are closely related to
the frequency of extreme weather, while the accompanying natural disasters can greatly
threaten human lives [2]. A growing number of studies in recent years have shown
that landslides are projected to become more frequent in the context of global climate
warming [3–5]. However, assessing future landslide susceptibility is challenging, which
is a result of the complex transition process from climate change to landslide impacts. As
the impact of climate change in respect of landslides varies dramatically across geographic
regions, time periods, and socio-economic development scenarios, such impacts may be
long-term or short-term and can also manifest in a direct or indirect manner [6–8].

There is a close correlation between landslides in mountainous areas and climatic
processes, such as extreme rainfall [9]. Notably, heavy rainfall is understood to be a key
trigger of shallow landslides. Most of the current studies utilize static rainfall indicators,
such as average annual rainfall, but do not consider the variation of extreme rainfall under
future climate change scenarios [10]. Certain scholars use global climate models (GCMs)
in order to derive future climate variables. The process would be to feed the GCMs data
output to statistical or physical process models in order to model possible changes in
future landslides [11–14]. However, the assessment of future landslide hazards while
using GCMs data presents complex characteristics that require further investigation [13].
The results based on the CMIP5 GCMs showed that future landslides are expected to
increase in the Markazi province of Iran due to the influence of climate change and land-use
impacts [11]. In contrast, the opposite result showed a decreasing trend in areas of high
landslide susceptibility in the Peloritani Mountains, Italy, even with the potential impact of
future climate change [14]. Therefore, the frequency of landslides under the influence of
climatic conditions is uncertain and requires corroboration by further relevant studies.

In addition, a review based on 139 studies related to the impact of climate change
on landslides from 1983–2018 indicates that most of the current study areas are in certain
European countries, such as the United Kingdom and Italy [8]. In comparison, the impact of
landslides cannot be ignored in some parts of Asia, due to the continent’s high population
exposure. A few studies have shown that landslides tend to increase in southwestern China,
when taking into account climate change effects [15–17]. However, a study in a large area
cannot be ignored due to the bias caused by spatial and temporal heterogeneity. Therefore,
this study selects the areas of interest within the Hengduan Mountain Region in Southwest
China, where landslides are prone to occur due to their complex and diverse geological
features, as well as due to the presence of frequent extreme rainfall [18]. Indeed, studies
have also shown that the high frequency of landslides in the region—that is, the frequent
occurrence of flow-type landslides, frequent seismic activities, frequent heavy rainfall
events, and intensified human activities have resulted in serious damage [19,20]. The
complex topographic features and climatic conditions render the region highly susceptible
to large-scale geological hazards. Predicting the probability of future landslide hazards
can provide corresponding scientific support to instruct the development of landslide risk
mitigation strategies. It must be noted that most of the current studies have used the output
of CMIP5. With the accessible of the Coupled Model Intercomparison Project Phase 6
(CMIP6) output, several studies have shown that CMIP6 rainfall simulations improved
when compared to the previous iterations [21,22]. The CMIP6 multi-model ensemble can
more reasonably reproduce the mean values of climate variables and the spatial distribution
of precipitation; in addition, it generally exhibits a higher level of skill in simulating extreme
precipitation indices over China [23,24].

In this study, the aim is to use CMIP6 global climate model data combined with the
landslide susceptibility models in order to explore the future landslide conditions in the
Hengduan Mountains on the eastern boundary of the Tibetan Plateau in southwestern
China—specifically in respect of the change in extreme rainfall in the context of different
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warming scenarios. The objectives of this study are to: (a) project future changes in
extreme precipitation in the Hengduan Mountains; (b) use landslide susceptibility models
to determine how landslide susceptibility will change in the future as a result of extreme
rainfall variations; and (c) to compare the differences in the projected results obtained by
different machine learning models.

2. Study Area and Materials
2.1. Research Area and Historical Landslide Database

The Hengduan Mountain Region covers an area of 600,000 square kilometers and is
situated within the Yunnan–Guizhou Plateau, the Qinghai–Xizang Plateau, and the border
between Sichuan and Tibet (Figure 1). The topography of the study area is in an elevated
position in the northwest and in a lowered position in the southeast. The area possesses
high mountains and canyons, as well as a great relative height discrepancy. The altitude
ranges from 90 to 7121 m, with many peaks exceeding 6000 m [25]. With an average
gradient is 23.7◦, and a maximum gradient is 78.4◦, the terrain is steep and undulating.
Due to its unique topographic conditions, landslides are prone to occur.
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Figure 1. Study area and historical landslide data.

The territory spans the subtropical, highland, and boreal areas and is influenced by
the southwest monsoon in the west, thus resulting in moist and mild topographic rainfall;
moreover, the leeward valleys are arid [26]. The rivers possess rapid currents and abrupt
drop-offs. Precipitation varies greatly between wet and dry seasons (i.e., May to September
and October to April), with wet seasons receiving 70% of the total precipitation.

The area is tectonically active; furthermore, the lithology spans the Lower Paleozoic
to the Triassic, with marine sediments, such as clastic and carbonate—as well as gneisses,
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marble, sandstone, and shale—which are all scattered throughout the valley [27]. The
abundant geological, environmental conditions for the development of geological hazards
are provided by intense geotectonic activity, active neotectonic movement, as well as
complex and diverse stratigraphic lithology. The study area combines geomorphological
features and climatic conditions that are prone to geological hazards, which is imperative
to explore the potential impact of rainfall conditions that induce geological hazards.

The creation of a historical landslide database is a key procedure in developing land-
slide susceptibility model [28]. The China Geological Survey has gradually carried out
detailed investigations of six geological hazards, including ground fissures, avalanches,
landslides, ground subsidence, ground collapse, and mudslides, since 2005. Among these,
landslides of the movement type are the most dangerous and destructive. The historical
landslide database used in this work derives from this survey, which maps each landslide
as a point and includes 2223 rainfall-induced landslides of flow type mass-movement that
were recorded in the Hengduan Mountain Region [29]. Furthermore, we use vector points
in GIS software in order to describe the central area where landslides occur.

2.2. Landslide Conditioning Factors

Environmental factors affecting landslides can be classified as: climatic; geological
and soil; topographic; land cover; vegetation cover; hydrological; and human activity
factors [30]. The rise in landslide frequency due to land use change is assumed to be
a key factor in respect of the increase in landslide hazards [31,32]. The soil moisture
index possesses a significant effect in respect of landslides [33]; in addition, soil typology
influences the incidence of erosion, drainage, as well as the impacts that occur in relation
to landslides [34]. DEM information directly represents elevation information within a
region and can be used as a basis for elevation change, especially in areas with large
drop-offs. The slope is the most commonly utilized predictor in data-driven landslide
susceptibility modeling and is often served as the fundamental static independent variable
for landslide occurrence. As a measure of topographic change, the curvature is influenced
by elevation change [35]. Lithology, in addition to topographic properties, is a major factor
in landslide occurrence due to the fact that it straightforwardly influences the intensity
and permeability of the geotechnical soil. It is an important determinant in the context of
landslide susceptibility modeling [36]. Furthermore, the nature of the soil and thus the
area of the watershed may be influenced by the hydrology and runoff in a given area [37].
Meanwhile, the vegetation cover may influence the distribution of landslide occurrence.
The normalized difference vegetation index (NDVI) was chosen in order to represent the
forest cover that affect the happenings of landslides in the mountain area [38].

In current work, we utilized a uniform raster resolution of 1 km. We chose six cate-
gories of landslide conditioning factors (LCFs), which are: topographic factors (i.e., slope,
curvature, slope orientation, elevation); geological and soil factors (lithology, soil type);
climatic and meteorological environmental factors (multi-year average rainfall, over land-
slide rainfall threshold); hydrology (curve numbers, soil moisture, drainage density); land
use (land use type); and vegetation cover (NDVI). These factors were assessed following
the review of the literature for the purposes of analyzing landslides; in addition, such an
assessment was also limited by the availability of relevant data. Among these, the elevation
data were obtained from the SRTM 90 m spatial resolution data, and the slope (Figure 2a)
were derived from the DEM. The hydrological factor curve numbers (CN, Figure 2b) were
obtained from Zhao et al. [39]. It must be noted that CN is a dimensionless parameter used
to represent a hydrologic index in order to describe the approximation of direct runoff from
rainfall events in a specific area. It is related to soil moisture, soil type, slope, and other
influencing factors. It is widely used in the field of landslide susceptibility research [40].
Among the geological and soil factors, the soil type (Figure 2g) were obtained from the Re-
source and Environmental Science and Data Center, Chinese Academy of Sciences (RESDC).
A total of 10 soil types were leached soil (10); semi-leached soil (11); arid soil (13); incipient
soil (15); semi-hydrogenated soil (16); hydrogenated soil (17); anthropogenic soil (19); alpine
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soil (20); ferroaluminous soil (21); and rock (23). The soil moisture (Figure 2d) is from the
Global High-Resolution Soil–Water Balance dataset, which provides hydrological raster
data describing actual evapotranspiration and soil water deficits with a resolution of 30 arc
seconds [41]. The soil moisture data detailed in this study are the annual average soil water
content as a percentage of the maximum soil water content during the evaporation period.
The lithology map (Figure 2e) was acquired from the Global Lithology Map database
with 11 lithological classifications, including Mixed Sedimentary Rocks (SM); Carbonate
Sedimentary Rocks (SC); Siliciclastic Sedimentary Rocks (SS); Metamorphics Rocks (MT);
Acid Plutonic Rocks (PA); Evaporites (EV); Basic Plutonic Rocks (PB); Intermediate Plutonic
Rocks (PI); Intermediate Volcanic Rocks (VI); Unconsolidated Sediments (SU); and Acid
Volcanic Rocks (VA). The climate and meteorological factors were obtained from the CN05.1
grid observation dataset and the original spatial resolution of CN05.1 was 0.25◦ × 0.25◦ [42].
However, due to the fact that the spatial distribution of precipitation is affected by topo-
graphic variations—in order to reduce the influence of topographic spatial heterogeneity
on precipitation simulations—the ANUSPLIN climate data interpolation software was used
to further interpolate the CN05.1 data, as well as the global climate model data to a 1 km
spatial resolution. At the same time, the quantile mapping method was used to process the
bias correction of each climate model data in order to reduce the model simulation error.
The spatial variability of precipitation is represented by nine climatic indicators, includ-
ing mean annual rainfall, annual maximum daily rainfall, yearly mean daily maximum
rainfall, yearly mean rainfall over 10 mm (days), yearly mean rainfall over 25 mm (days),
yearly mean rainfall over 50 mm (days), yearly mean rainfall over a 95% quantile (days),
95% quantile daily precipitation, and frequency over empirical rainfall thresholds. The
research thus far only provides the mean annual rainfall (Figure 2c) and the frequency over
empirical rainfall thresholds (FOERT, Figure 2h)—which are more relevant to the landslide
distribution, due to the approximate spatial pattern of these precipitation variables. The
rainfall thresholds of induced landslides for different geomorphic subdivisions in China
were constructed by Wang et al., (2021) as a power–law relationship between cumulative
event rainfall and rainfall duration based on the historical hydrogeomorphic hazard data
set in China (which contains all hydrogeomorphic processes between the defined ranges of
flash floods and debris flows) for different geomorphic subdivisions [43]. For the purposes
of this study, it is the rainfall threshold curve for the southwest mountainous region that is
utilized. The rainfall event time series for each grid point were compared with the threshold
values for the southwestern mountainous region. Furthermore, the frequency in respect of
exceeding the rainfall threshold curve was counted and finally presented in the form of a
grid. The land use (Figure 2f) map of the year 2005 was obtained from the RESDC in five
groups, which are: Meadowland (Me); Arable land (Ar); Settlements and Artificial land
(SA); Forest land (Fo); and Unutilized land (Un). The annual mean NDVI of vegetation
cover (Figure 2i) was also acquired from the RESDC. The drainage density (Figure 2j) data
were acquired from the HydroSHEDS database [44].
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3. Methodology

Figure 3 depicts the flowchart for the modeling process, which is divided into three
stages: preparation, landslide susceptibility modeling under consideration of climatic
rainfall conditions, and result analysis. During the preparation stage, a total of 2223 his-
torical landslide data for the research region were compiled. This was achieved with the
landslide present value set to 1 and a similar amount in respect of the randomly generated
non-landslide value set to 0. A landslide susceptibility assessment is a binary classification
problem. As such, in order to train the model better, the same number of landslide and
non-landslide samples should be used to constitute the dependent variable together [45].
Subsequently, the dataset was stochastically classified into two groups, whereby 70% of the
samples were utilized for modeling and the rest were used in respect of the dataset for vali-
dation. Data regarding the landslide conditioning factors were preprocessed by checking
for multicollinearity and normalization, then determining the dominant influencing factors
using the relative importance index.

Atmosphere 2023, 14, x FOR PEER REVIEW 7 of 22 
 

 

3. Methodology 
Figure 3 depicts the flowchart for the modeling process, which is divided into three 

stages: preparation, landslide susceptibility modeling under consideration of climatic 
rainfall conditions, and result analysis. During the preparation stage, a total of 2223 his-
torical landslide data for the research region were compiled. This was achieved with the 
landslide present value set to 1 and a similar amount in respect of the randomly generated 
non-landslide value set to 0. A landslide susceptibility assessment is a binary classification 
problem. As such, in order to train the model better, the same number of landslide and 
non-landslide samples should be used to constitute the dependent variable together [45]. 
Subsequently, the dataset was stochastically classified into two groups, whereby 70% of 
the samples were utilized for modeling and the rest were used in respect of the dataset for 
validation. Data regarding the landslide conditioning factors were preprocessed by check-
ing for multicollinearity and normalization, then determining the dominant influencing 
factors using the relative importance index. 

  
Figure 3. Methodological flowchart of the study. 

In the Hengduan Mountain Region, historical rainfall during the period of 1995–2014 
are used as the baseline model. After this, the future-projected climate rainfall data were 
introduced, while landslide susceptibility modeling was performed via using the GAM, 
RF, and LightGBM. The potential impacts of rainfall in respect of the different warming 
scenarios were evaluated by comparing the historical and future modeling results, 
whereby spatial cross-validation was used in order to verify model uncertainty. During 
the analysis of the results, indicators such as AUC, ACC, and the F1-score were used. In 
addition, the proportions of different susceptibility levels in respect of the landslide in-
ventory data were calculated. Finally, the correlation between climatic conditions and 
landslides in the Hengduan Mountain Region was determined. The landslide susceptibil-
ity maps under different warming scenarios were obtained. The following sections will 
present these methods in greater detail. 

 

Figure 3. Methodological flowchart of the study.

In the Hengduan Mountain Region, historical rainfall during the period of 1995–2014
are used as the baseline model. After this, the future-projected climate rainfall data were
introduced, while landslide susceptibility modeling was performed via using the GAM,
RF, and LightGBM. The potential impacts of rainfall in respect of the different warming
scenarios were evaluated by comparing the historical and future modeling results, whereby
spatial cross-validation was used in order to verify model uncertainty. During the analysis
of the results, indicators such as AUC, ACC, and the F1-score were used. In addition,
the proportions of different susceptibility levels in respect of the landslide inventory data
were calculated. Finally, the correlation between climatic conditions and landslides in the
Hengduan Mountain Region was determined. The landslide susceptibility maps under
different warming scenarios were obtained. The following sections will present these
methods in greater detail.
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3.1. Selection of the Dominant Influencing Factors

The choice of independent variables is a crucial procedure in respect of landslide
susceptibility models. Moreover, many of the predictor variables considered are believed
to be interrelated. Therefore, it is critical to assess these possible predictor variables before
deciding which ones to include in the models [46–48]. First, we created kernel density maps
of the fishing nets with a spatial resolution of 1 km based on historical landslide samples.
Next, we calculated the mean kernel density of the fishing nets and the mean of continuous
variables as inputs in respect of the regression analysis, respectively [40]. In this study, all
variables were assessed for multicollinearity by applying the variance inflation factor (VIF)
and stepwise regression [49]. Then, dominant variables were chosen based on their relative
importance. A VIF greater than 5 indicates the possibility of multicollinearity between
variables [50]. As such, the formula for calculating VIF is as follows:

VIF =
1

1 − R2
i

(1)

where Ri represents the negative correlation coefficient of the independent variable and
is used in the regression analysis of the independent variable [51]. Relative importance
indices—via the consideration of the relative contribution of variables to the total pre-
dictable variance—are widely used in the screening of variables [52,53], without making
any assumptions regarding the statistical significance associated with a specific predictor
variable.

Before modeling, the landslide conditioning factors were normalized in order to
remove the scale differences caused by the different units [54]. The normalizing process
was carried out using the following equation:

ZLCF= (
LCFi − LCFmin

LCFmax − LCFmin
) (2)

where ZLCF is the value after normalization of LCF, LCFi is the initial value, and LCFmin
and LCFmax are the minimum and maximum values of LCF, respectively.

In terms of the likelihood of determining landslide susceptibility, different LCFs
contribute differently to various prediction models. As a result, determining the relative
value of each LCF can aid in resolving the favorable conditions for landslide occurrences.
In order to investigate the relations between LCFs and landslide events, the response
of different LCFs in respect of the model is determined by the magnitude of the cross-
validation AUROC change after replacing LCFs. Moreover, the ranking of the magnitude of
the AUROC change determines the final relative importance ranking of different variables.
In other words, the AUROC values of the model, after removing different variables, are
obtained and experimented upon several times in the cross-validation process. The ranking
is used and understood as the importance of the variables that are afterward derived from
the model. This method has been validated several times in respect of assessing the relative
importance of the variables that are derived from the model [55,56].

3.2. Landslide Susceptibility Modeling

We chose the GAM, RF, and LightGBM as the base models in this study. These base
models have been used to assess the impact of climate change on landslides [57]. The gener-
alized additive model (GAM) is broadly utilized in environmental science for the purposes
of modeling landslide susceptibility due to its simplicity and interpretability. More infor-
mation regarding using the GAM and mixed-effect models in order to estimate landslide
susceptibility can be demonstrated in the study of Steger et al., (2021) [58]. Moreover, Pham
et al., (2021) utilized a random forest model to in order assess the potential impact of future
climatic rainfall regarding landslide modeling in the Markazi Province, Iran. The results
showed that random forest model were able to obtain more accurate estimates [11]. The
LightGBM (Light Gradient Boosting Machine) implements the framework of the GBDT
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algorithm by optimizing the histogram-based decision tree algorithm and one-sided gradi-
ent sampling on the traditional eXtreme Gradient Boosting (XGBoost) algorithm—which,
in turn, can support efficient parallel training with faster training reactions, less memory
occupation, and higher accuracy [59]. It is a novel landslide susceptibility framework that
has performed well in various studies [57].

3.3. GCMs for the Projection of Future Extreme Rainfall

Historical simulations and future projections of global climate models were derived
from 24 global climate models in respect of the Coupled Model Intercomparison Project
Phase 6 (CMIP6). The CMIP6 involves a larger number of global climate models with
improved model resolution and physical parameterization schemes than the previous
CMIP5 experiment. The available scientific results in respect of the CMIP6 show that the
CMIP6 improved the ability to simulate climate mean and extreme features of extreme
precipitation in China when compared to CMIP5.

In this study, rainfall data from the CMIP6 multi-model ensemble were calculated
in order to evaluate the simulation performance of the CMIP6 global climate model for
the historical baseline period. Then, the aim was to derive future projections of landslide
susceptibility based on CMIP6-based future projections. If the GCM multi-model ensemble
can better reproduce the observations in the historical period, it is then considered that
the multi-model ensemble is also reasonable for the prediction of future climate change
scenarios. Historical rainfall data from 1995–2014 were selected as the baseline for the
landslide assessment. The period corresponding to the target temperature rise of 1.5 ◦C–
4.0 ◦C, as defined in the IPCC Sixth Assessment Report, represents the future period [60]
(Table 1).

Table 1. The years corresponding to the different target temperature rise scenarios defined by the
IPCC report. The n.c. means that the level was not crossed during the period of 2021–2100.

SSP1-2.6 SSP2-4.5 SSP5-8.5

1.5 ◦C 2023–2042 2021–2040 2018–2037
2 ◦C n.c. 2043–2062 2032–2051
3 ◦C n.c. n.c. 2055–2074
4 ◦C n.c. n.c. 2075–2094

In respect of the different global climate models, the results of rainfall-induced land-
slide susceptibility regarding different future warming scenarios were calculated separately
and compared with the historical baseline period.

3.4. Evaluation Methods

In this study, the predictive ability of various models was assessed utilizing the area
under the receiver operating characteristic curves (AUCs), accuracy, and F1 scores. The
area under the receiver operating characteristic curve (AUC) is more closer to one, thereby
indicating that the model estimation is more accurate [61,62]. The number of predicted and
actual values for landslide points (marked as 1), as well as the non-landslide points (marked
as 0) are included in the confusion matrix. Then, the true-positives (i.e., the number of
landslides correctly predicted), false-positives (the number of non-landslides predicted
as landslides), true-negatives (the number of non-landslides correctly predicted), and
false-negatives (the number of landslides predicted as non-landslides) were all computed
separately from the confusion matrix, and other performance metrics, such as the ACC and
F1 scores, are based on these metrics. Table 2 details the formulas that were utilized in this
work for evaluation.
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Table 2. List of the predicted performance assessment metrics.

Metric Formula

ACC(%) (TN + TP)/(TN + FN + FP + TP)
Precision(%) TP/(FP + TP)

Recall(%) TP/(FN + TP)
F1(%) (2 × Recall × Precision)/(Recall + Precision)

The method of dividing the 70% training set and 30% validation set has been recog-
nized by most scholars; however, despite this, it lacks spatial information. Due to the spatial
autocorrelation phenomena, K-fold cross-validation (CV) with random self-sampling in
order to avoid the model overfitting bias were used in this study. The spatial autocorrela-
tion is not directly captured by cross-validation, and the reason for the poor performance
of cross-validation is that the dependence structure in the data persists as a dependence
structure in the model residuals, which provides ample opportunity for overfitting [63].
Therefore, when modeling with spatially dependent variables is considered, the use of spa-
tial cross-validation (SCV) will provide a better representation of the modeling results [64].
In this regard, we estimated the robustness of diverse machine learning models via using
10-fold cross-validation with 20 repetitions, for a total of 200 CVs and SCVs each. After
considering the spatial relationship of each sample, K-fold spatial cross-validation was
used in order to separate the dataset into K subsets. Then, the standard error (SE) and
quartile deviation were calculated in the same manner as the non-spatial cross-validation to
estimate the robustness of the prediction ability. Due to the differences between models [65],
the produced landslide susceptibility probability maps use the quantile method in order to
ensure that the relative area of each rank is as consistent as possible, thereby allowing for
easier contrast of the final results [66].

The R software, which is an open-source data analysis system, was used for all of the
quantitative analyses that were conducted in this study. The GAM was implemented with
the “mgcv” package, the RF model was conducted with the “ranger” package, and the
LightGBM model was conducted with the R packaging “lightgbm”. The package “mlr3”
was used to perform spatial cross-validation; additionally, please note that the R version
used was 4.1.2.

4. Results
4.1. Landslide Dominant Variables in the Hengduan Mountains Region

Regarding the landslide susceptibility analysis, the LCF with the lowest covariance
and highest importance should be chosen. The final VIF indices and relative importance
ranking of the variables were obtained using different LCFs, and the variables were also
introduced into the multiple stepwise regressions, in order to calculate the mutual VIF as
shown in Table 3.

Table 3. Results of multicollinearity analysis.

Variable Relative Importance VIF Pr(>|t|)

Slope 0.360 1.488 0.000
Soil type 0.151 1.507 0.000
Curve numbers 0.046 1.821 0.000
CMIP6 simulation of extreme rainfall 0.042 1.659 0.000
Lithology 0.038 1.089 0.001
Soil moisture 0.032 3.577 0.000
Land use 0.015 2.258 0.044
Plan curvature 0.002 1.441 0.058
Profile curvature 0.001 1.450 0.139

The covariance of these variables is less than 5. Additionally, the VIF coefficients range
from 1.164 to 3.577, which is considered to be a low covariance. As a result, it is reasonable



Atmosphere 2023, 14, 214 11 of 21

to construct a model with these variables. In terms of relative importance, the slope and
soil moisture were appraised as two of the most vital influencing determinants in respect
of explicating the spatial distribution of landslides in the Hengduan Mountain Region,
whereby the relative importance exceeded 15%. This is due to the fact that landslide risk is
elevated in areas with high and increasing slope gradients. Soil moisture, a fundamental
factor in landslide occurrence, also possesses a strong influence on large-scale landslides.
Meanwhile, due to the fact that the relative importance of plan and profile curvature
was less than 1%, these two variables were removed from the model training. Then, the
remaining seven variables—that is, (a) slope, (b) curve number, (c) frequency over empirical
rainfall threshold, (d) soil moisture, (e) lithology, (f) land use, and (g) soil type—were used
in subsequent modelling.

4.2. The Predictive Performances of Different Machine Learning Models

We tested the simulation ability of landslide susceptibility by using different machine-
learning models during the historical baseline period. The area under the ROC of the model
was 0.894 and 0.908, respectively. Moreover, the best models in the validation set were
found with the LightGBM and RF (Figure 4). The AUC of GAM model, which possessed
the lowest accuracy, was 0.840. All of the models had an AUC greater than 0.8, thereby
indicating that different machine-learning models can provide a good estimate of landslide
susceptibility in the Hengduan Mountains.
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Table 4 shows the ACC and F1 scores for different models in validation. The ACC of
the RF, as well as the LightGBM (RF = 0.811, LightGBM = 0.800) and F1-scores (RF = 0.809,
LightGBM = 0.800) both exceeded 0.8, thereby indicating that based on the performance
in the validation set, the RF and LightGBM models were still the most accurate. This is
followed by the GAM (ACC = 0.793, F1 score = 0.783), all of which show that the above
models can be utilized for the purposes of landslide susceptibility mapping (LSM).

Table 4. Predictive performance of models on the validation set.

Models ACC F1

GAM 0.793 0.783
RF 0.811 0.809
LightGBM 0.800 0.800

Figure 5 indicates that there are similar appearances between the results obtained
using non-spatial cross-validation (CV) and those obtained by dividing a training set,
thus resulting in these tree models (RF = 0.880, LightGBM = 0.878) remaining the most
accurate model. The value in respect of the GAM = 0.840 is the lowest AUC value. The
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standard deviation of the AUCs was less than 0.0004 and the quartile deviation was less
than 0.04, thereby indicating that the spatial appearance of the landslide susceptibility
from the models was in accordance with this. The 20 resampling repetitions, which were
conducted by using 10-fold spatial cross-validation (SCV) revealed large fluctuations. The
RF showed the greatest prediction estimation accuracy with an AUC of 0.836. Table 5 shows
that the AUC decreased by 4.4 percent in contrast to cross-validation. This was obtained
with a standard error of 0.009 and an interquartile variance of 0.077, thereby indicating
good robustness among all of the models used, as well as the best agreement between the
predicted and observed landslides. Meanwhile, the use of spatial cross-validation resulted
in greater standard deviations and quartile difference fluctuations, whereby the standard
errors of the GAM, RF, and LightGBM were all less than 0.01 (GAM = 0.008, RF = 0.009,
and LightGBM = 0.007). Indeed, the RF possessed the smallest change in respect of quartile
difference (0.077), followed by the GAM (0.081), and the LightGBM (0.11), all of which
possessed changes close to 0.1. In comparison to the non-spatial cross-validation, the degree
of uncertainty increased.
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Table 5. Predictive performance of the models on CV and SCV.

Models CV AUC
Mean

CV AUC
SE

CV
Quartile

Deviation

SCV AUC
Mean

SCV AUC
SE

SCV
Quartile

Deviation

GAM 0.840 0.00037 0.025 0.826 0.0088 0.081
RF 0.880 0.00025 0.02 0.836 0.0099 0.077

LightGBM 0.878 0.00024 0.019 0.833 0.0074 0.11

4.3. Importance of the Predictors

Determining the relative importance of LCF in various susceptibility models aids
in distinguishing the key determinants that affect the occurrence of landslides. Figure 6
shows that the results of various models varied greatly, but soil type was deemed the most
important influencing variable. In summary, soil type, soil moisture, slope, and frequency
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over extreme rainfall thresholds are the top four variables in regard to importance. The
other variables, however, vary considerably in terms of importance among the various
models. The results of the assessment regarding the importance of the influencing factors
suggest that introducing the projected extreme rainfall into future landslide susceptibility
modeling would provide a possible propensity indication in respect of the trend of future
landslide susceptibility changes.
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4.4. Frequency over Empirical Rainfall Threshold Based on the CMIP6

We considered the extreme rainfall scenarios for the CMIP6 for historical period
and different future warming scenarios. The observations during historical period were
used in order to measure the simulation performance of the CMIP6. In Table 6, the
simulated historical rainfall data possessed minimum and maximum values of 1.3 and
12.0, respectively, with a mean value of 6.8 and a standard deviation of 2.0. The extreme
values and standard deviations of the related FOERT in respect of the simulated historical
period were very close to the historical observation data, while the mean was slightly
higher. We also calculated the spatial correlation coefficient of 0.58 for both, which was a
moderate correlation. By consulting the relevant literature, the simulated temperature and
precipitation values of the CMIP6 were relatively inferior simulated in areas with complex
topography and variable climate when compared to flat topography areas. In addition, the
simulated FOERT was slightly higher in the study area [67]. However, combined with the
results of the model ROC in testing, an AUC value of more than 0.8 was also obtained via
the introducing of simulated historical contemporaneous data. This was achieved while
the spatial correlation between the two was moderate. In summary, we conclude that the
CMIP6 can well simulate the spatial distribution of extreme rainfall in the region.

With increasing projected warming, the minimum value increased from 2.1 to 2.8, the
maximum value changed from 11.9 to 13.9, and the mean value increased from 2.3 to 9.0
(with a standard deviation of 1.8 to 2.1). As such, we found that the projected extreme rain-
fall demonstrated an increasing trend when compared to the historical baseline. Moreover,
the maximum value, average value, and standard deviation all increased in conjunction
with the increasing warming targets. The rainfall extremes under future scenarios are
higher than the historical baseline results, except for the extreme rainfall of 1.5 ◦C warming,
whereby the maximum values were lower than the historical average. The extreme rainfall
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indicator was used as an important characterization of future climate in order to produce
the LSM under different warming scenarios (Figure 7).

Table 6. Historical FEROT and CMIP6 statistical values regarding simulated rainfall.

Scenarios (time/a) Min Max Mean Standard Deviation

Historical 1.5 12.5 4.8 2.1
Historical simulation 1.3 12.0 6.8 2.0
at 1.5 ◦C 2.1 11.9 2.3 1.8
at 2.0 ◦C 2.2 12.4 7.6 1.9
at 3.0 ◦C 3.1 13.1 8.5 1.7
at 4.0 ◦C 2.8 13.9 9.0 2.1Atmosphere 2023, 14, x FOR PEER REVIEW 15 of 22 
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4.5. Projection of LSM by Considering the Change of Extreme Rainfall
4.5.1. Landslide Susceptibility Map during the Historical Baseline Period

Normalized LCF data were introduced into various machine learning methods in
order to obtain LCPs for the whole research area. By using quantile reclassification in the
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GIS platform in order to follow up with a better comparison, LSMs were divided into five
categories: very low, low, moderate, high, and very high susceptibility levels, as listed
in Figure 8a–c. Relative scores for landslide susceptibility in respect of the GAM = 0.71,
RF = 0.657, and LightGBM = 0.783 were the obtained thresholds for the high susceptibility
regions. Each LSP ranged from 0 to 1; further, the high susceptibility thresholds were
all between 0.65 and 0.8. The results obtained by the various models showed a degree
of consistent characteristics. The central and southeastern regions, in particular, will be
more prone to landslides. Moreover, parts of the northeastern and northwestern regions of
the study area also possess the potential to become areas of high landslide susceptibility.
Therefore, these LSMs reflect the overall landslide susceptibility and entail significant
practical implications in respect of hazard assessments in the Hengduan Mountains.
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4.5.2. Landslide Susceptibility Maps under Different Warming Scenarios

The LSM in respect of the introduction of future extreme rainfall, has been integrated
via utilizing different modeling methods. Each map was compared with that of the histor-
ical baseline in order to explore the potential future climate change impact on landslide
susceptibility in the Hengduan Mountains. The thresholds of the previous quantile quan-
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tification were used in a uniform manner in order to facilitate a better comparison with
the historical benchmark. As such, the modeling results of the different models were
consistent overall. Figure 8 shows the projected LSM that could occur at a global temper-
ature warming of 1.5 ◦C, 2 ◦C, 3 ◦C, and 4 ◦C, respectively. These results clearly show
the trend regarding the influence of rainfall on landslide susceptibility under different
warming conditions. Furthermore, it was also observed that there was a significant trend in
respect of increasing the area of high susceptibility in the southeast with increasing extreme
rainfall. It is expected that the high susceptibility areas will affect an average of 26.1% of
the area under a 4 ◦C warming scenario, which thus means that 26% of the area will be at
risk of natural disasters. This finding, therefore, has a key role in aiding future landslide
hazard mitigation.

In order to further analyze the specific impact of landslide susceptibility variations due
to changes in extreme rainfall, we counted the percentage of the different zones in respect
of the LSM produced from different extreme rainfall conditions under different warming
scenarios. This was achieved by using the historical LSM threshold as a benchmark. In
Figure 9, the LSM high-susceptibility zones that were derived from the GAM and RF
models increased with an increase of warming. Regarding the LSM that was depicted by
the GAM, the percentage of low susceptibility zones decreased to 19%, and the percentage
of high susceptibility zones increased to 22% as the temperature increased. The LSM results
extrapolated from the RF show that the proportion of low susceptibility zones decreased to
12.8%, while the proportion of high susceptibility zones reached 26%. Although there is no
particularly clear trend in the LightGBM model, the high susceptibility area increased by
2.1% on average in the 4 ◦C scenarios, with an actual increase in the impact area of around
11,578 km2. In summary, the landslide susceptibility in the Hengduan Mountain Region
becomes more active with an increase in extreme rainfall. These results are reasonably
consistent with the findings obtained from existing studies. The prevention of natural
hazards will be more challenging in the future.
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5. Discussion

In this study, the impact of climate change on landslides in the Hengduan Mountain
Region was quantitatively assessed. This was achieved by considering the variation
in extreme rainfall under different global warming scenarios and feeding this data to
various machine learning-based landslide susceptibility models. The results show that the
simulation of the CMIP6 overall has a good fit in respect of EFORT for the historical period.
Furthermore, the EFORT also indicates an increasing trend in the future with an increase
of warming, while the potential impact area of the high susceptibility will also become
larger. When the climate temperature increases by 4 ◦C, the high landslide susceptibility
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area increases significantly; as such, corresponding climate change measures were required
in the central and southeastern parts of the study area in order to mitigate the potential risk
of landslide occurrence.

The model-derived variables such as soil type, soil moisture, slope, and extreme
rainfall became the most dominant variables in the study area. The results are mostly
consistent with the results of Zhao et al., (2022) [18], but we additionally focused on
the potential impact of climate change, which is closer to the real LSM that is designed
considering future perspectives in this work. The results of several studies have shown
that rainfall is an important factor for changing regional slope stability [68]. In this study,
it was also revealed that the frequency of extreme rainfall thresholds (FOERT) tends to
increase with warming targets, thereby ranging from 2.3/a (at a 1.5 ◦C warming) to 9.0/a
(at a 4.0 ◦C warming) on average. Therefore, it is particularly important to consider
landslide susceptibility predictions within the context of future rainfall scenarios. Through
conducting this research, it was determined to be exposed that such elevated extreme
precipitation events contribute to an increase in the projected future zones of high landslide
susceptibility, while using different machine learning models, when compared to the
historical baseline period ranging from -1.2% (at a 1.5 ◦C warmings) to 4.0% (at a 4.0 ◦C
warming). This finding is in agreement with the results of existing studies [69]. Indeed,
more studies show that projection results which take climate change into account will be
more conducive in respect of more accurate diagnoses of natural disasters. However, this
also comes with the understanding that future occurrences of extreme weather are likely
to be more frequent. Therefore, considering landslide susceptibility estimates within the
context of global warming scenarios will be more beneficial for the purposes of natural
disaster prevention.

Although the results of this study have fairly high accuracy in model evaluation, these
methods do not account for all factors that contribute to landslide occurrence, thereby
rendering the process more complex. While the soil type discovered in the study aids in
data prediction, the intrinsic nature of soil properties and the occurrence of landslides must
also be investigated [70]. The complexity of landslide occurrence and the geographical
variety of regional variables may impair the accuracy of landslide estimations [71]. Certain
scholars have also considered the dynamic changes in land use, which have proved to be
more beneficial for the purposes of dynamic landslide susceptibility assessment [72]. In any
case, considering the impact of future climate change-induced rainfall values will provide
new ideas for the assessment of natural hazards.

In this study, it is clearly shown that the highly susceptible areas in the Hengduan
Mountains will be more affected by increased rainfall in the future. Therefore, it is helpful
for the purposes of landslide susceptibility prediction when dynamic rainfall factors are
considered [73,74]. The effect of cumulative rainfall thresholds on landslides in a specific
period was not considered in this study; on this note, it would be more beneficial to
introduce specific rainfall events in a specific period and add a temporal dimension to the
LSM [75]. In any case, in this work, the potential impact of EFORT in reflecting climate
change on landslide susceptibility in the Hengduan Mountains under the different scenarios
of 1.5 ◦C, 2 ◦C, 3 ◦C, and 4 ◦C warmings, which will be a key step for future studies in
terms of considering the impact of climate change on natural hazards, is integrated.

Furthermore, a future extreme rainfall-induced landslide that will increase over the
study area is indicated in this work. As climate change-induced global warming intensifies,
human causalities from landslides are expected to increase in the future. Therefore, through
our study we urge strong policy interventions in order to reduce such socioeconomic
damage and deaths from these potential future landslides. Indeed, two main aspects
should be considered, such as climate change mitigation through CO2 emission cuts and
adaptation, as well as prevention of landslide events. The IPCC (2018) documented the fact
that, in order to constrain the global warming level at 1.5 ◦C, global net CO2 emission is
expected to decline around 45% by 2030, and thus, for net-zero levels to be attained by 2045–
2055. In order to lock warming below 2.0 ◦C, human-induced CO2 emissions are predicted
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to reduce by 25% by 2030; in addition, it has been forecasted that a net-zero level will be
achieved by the 2065–2080 period. Therefore, our findings highlight the accomplishment of
the global emissions mitigation goal that was agreed under the Paris Agreement. Further,
in order to avoid landslide impacts over the area, certain precautionary measures could be
taken, such as restriction or even removing of populations from the landslide-prone area,
controlling certain types of land use where slope stability is fragile, and adopting an early
warning system based on ground condition monitoring, such as: slope dislocation; soil
and rock types; and groundwater levels. Indeed, several measures can help to mitigate
and prevent landslides over the study area, such as modifying slope geometry, adopting
reinforced slope material, installing piles, retaining walls, diverting debris pathways, and
re-routing surface and groundwater passways.

6. Conclusions

In this study, the potential impact of climate change on landslide susceptibility in the
Hengduan Mountains of China, while using the latest multi-model climate ensemble of
CMIP6, was quantitatively estimated. We utilized the GAM, RF, and LightGBM in order to
quantitatively assess the predictive power of the CMIP6 for landslide susceptibility. The
AUC of all models exceeded 80%, and the correlation coefficient with historical observations
was 0.58, thereby indicating that the CMIP6 possesses a good ability to fit the rainfall values
in historical periods. Soil type, soil moisture, slope, and the frequency over extreme rainfall
thresholds are the top four variables in terms of importance. The results of the analyses
all provide evidence that the considering future rainfall scenarios to be closer to the real
situation and that the probability of natural hazards will increase significantly as the degree
of global warming continues to increase. When climate warming reaches 4 ◦C above
pre-industrial levels, the maximum value of the EFORT is close to 14, and the projected
LSM indicates that the area of the high susceptibility zone increases substantially. The
central and southeastern parts of the Hengduan Mountains are the regions with the highest
susceptibility to natural hazards. Therefore, these areas must be given priority when
implementing conservation measures, such as those taken in response to climate change.
We need to take appropriate measures in order to adapt to the effects of climate change,
as well as to better mitigate the risk of landslide in order to reduce the potential risk of
global warming.
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