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Abstract: Accurate accounting of the partition between anthropogenic and biogenic carbon dioxide
mixing ratios (CO2Anth and CO2Bio) in urban-based CO2 measurements is key to developing effective
emission reduction strategies since such measurements can provide an independent catalogue of local
and regional CO2 emission inventories. In an attempt to delineate the contribution of CO2Bio to the
overall urban CO2 mixing ratio enhancements, carbon monoxide (CO) was utilized as a tracer, following
CO2 and CO mixing ratio measurements using a wavelength-scanned cavity ring-down spectrometer
(CRDS). These measurements were performed in Cookeville, TN, (36.1628◦ N, 85.5016◦ W), a medium-
sized city within the Eastern Highland Rim region of the United States. Between the years 2017 and
2019, the average seasonal wintertime CO2Bio mixing ratios varied between −0.65 ± 3.44 ppm and
0.96 ± 2.66 ppm. During the springtime, the observed CO2Bio signals were largely negative while the
CO2Anth values were generally lower than the wintertime values. The contribution of CO from the
isoprene oxidation reaction with the hydroxyl radical (OH) (COisoprene) to the overall CO enhancement
during the growing season was estimated to be ~17–27 ppb, underscoring the importance of considering
the contribution of COisoprene to untangling different CO2Anth and CO2Bio sources and sinks in high
isoprene-emitting urban environments.

Keywords: biogenic carbon dioxide; cavity ring-down spectroscopy; wintertime biogenic CO2;
isoprene oxidation; Eastern Highland Rim; urban-based CO2 measurements

1. Introduction

Although the Earth’s terrestrial biosphere acts as a major sink and thereby plays a
major role in reducing the accumulation of global fossil fuel carbon dioxide (CO2) [1,2],
the role played by atmospheric biospheric CO2 in the Earth’s overall carbon cycle remains
poorly understood [3]. This is largely due to limitations associated with the accurate moni-
toring of biospheric CO2 mixing ratio signals at global, regional, and local levels [4–7]. Both
the top-down and bottom-up CO2 monitoring approaches [8] have continued to provide
detailed, up-to-date inventory data on anthropogenic emissions from different sectors
such as on-road transportation, residential heating, power generation, and agricultural
land use. Nevertheless, the accurate determination of the partition between the net urban
biogenic and anthropogenic CO2 sources and sinks continues to pose major challenges.
One such challenge involves the quest to disentangle anthropogenic and biogenic sources
and sinks of CO2, which requires deploying expensive monitoring strategies that include
radioisotope techniques [9–11] or multi-species sampling [12,13]. In the recent past, other
monitoring techniques such as unmanned aerial vehicle (UAV)-based Aircore [14] and light
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detection and ranging (LIDAR) [15] have been utilized as alternative monitoring methods
to obtain spatial atmospheric CO2 ratios from strong point sources with high accuracy.

Although urban areas are directly or indirectly responsible for the majority of the
reported anthropogenic CO2 emissions [16], studies involving the measurement of urban
anthropogenic and biogenic CO2 mixing ratio signals and the influence of urban vegetation
on carbon flows are rather scarce, leading to many urban anthropogenic carbon emissions
being poorly constrained [17–19]. Since many urban ecosystems are surrounded by vegeta-
tion, unique growing conditions in urban ecosystems facilitate elevated biospheric carbon
cycling rates relative to non-urban ecosystems, leading to the urban heat island effect
(UHI) [20] and an extended urban growing season [21,22]. As a result, the deployment
of highly precise and accurate instruments to measure urban CO2 mixing ratio signals is
critical since accurately measured CO2 mixing ratio signals are critical components in the
derivation of net CO2 fluxes at regional scales.

Urban near-surface CO2 mixing ratio measurements are complicated by high spa-
tiotemporal variability and complex atmospheric processes that govern CO2 fluxes within
the urban domains [23–25]. Nevertheless, following recent unprecedented measurements
of large biogenic carbon signals supporting stronger than expected growing season photo-
synthetic uptake in the southeastern United States by the Atmospheric Carbon Transport
(ACT)-America Earth Venture mission [12], the need to disentangle urban anthropogenic
and biogenic CO2 sources cannot be overemphasized. Indeed, recent studies in Los Angeles
(LA), a megacity in the United States, have shown that even for dry urban areas dominated
by transportation and industrial emissions, the accuracy of urban fossil fuel CO2 emis-
sion signals can be hampered by a large urban biogenic CO2 mixing ratio signal with an
unexpected origin that is traced to the irrigation of turf and other urban vegetation [26].

Currently, continental and global fossil fuel CO2 emission data are readily avail-
able from top-down inventories, with a few studies documenting biospheric CO2 emis-
sions [10,27]. However, despite the advancement in both top-down and bottom-up CO2
measurement and modelling techniques, the magnitude and variability of anthropogenic
and biospheric urban CO2 mixing ratio signals remain poorly unknown and characterized
in many urban cities of the world. To this end, the present study is inspired by the con-
tinued need to obtain near-surface urban CO2 mixing ratio data that delineates biogenic
CO2 mixing ratio signals from the anthropogenic component in a humid subtropical urban
climate located within the poorly characterized southern region of the United States. This,
in part, is a follow-up on the Miller et al. [26] suggestion to use reliable methods to separate
fossil and biogenic CO2 signals in wetter urban areas. In our previous work [28], we utilized
the CO tracer technique to evaluate near-surface emission ratios in the city of Cookeville.
As a continuation of our efforts to understand and characterize near-surface CO2 and CH4
mixing ratios patterns within the Eastern Highland Rim region of the United States [28,29],
we now utilize the CO tracer technique to partition the observed ground-based CO2 mixing
ratios into anthropogenic and biogenic components. It should be made clear that whereas
CO2 flux studies usually utilize the eddy covariance method [30] to measure gas transport
and emission rates between the surface and the atmosphere by considering the respiration
characteristics of soil, vegetation, and soil microorganisms, the focus of the present study
is not to estimate CO2 fluxes but to characterize the CO2 mixing ratios within the urban
boundary layer. Using the CO tracer technique, [28,31–34] the contribution of biogenic
CO2 towards the overall near-surface CO2 mixing ratios is then estimated and compared to
related studies in other urban areas [26,35].

As a caveat, careful accounting of CO sources and sinks must be carried out when utilizing
the CO tracer technique since CO can have other major non-fossil fuel sources such as wildfires
and the atmospheric oxidation of methane and non-methane hydrocarbons [36–38]. For example,
in 2004, Hudman et al. [39] estimated that over 50% of the total CO in the eastern United States
during the summertime was due to oxidation of biogenic volatile organic compounds such
as isoprene. In addition to the Parazoo et al. study carried out in the southeastern region of
the United States, Ref. [12], several other studies have indicated that the non-fossil fuel CO
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fraction is indeed greater than the value reported in many inventories [40–43]. Based on the
uncertainty and unavailability of biogenic CO data at regional and local levels, we have adopted
a first-order kinetics method from Vimont et al. [44] and our previous work [28] to estimate the
overall contribution of methane and isoprene to the total CO budget in Cookeville. Whereas the
contribution of CH4 + OH oxidation toward the net urban CO mixing ratio signal is estimated
to be negligible, the overall CO enhancement from isoprene oxidation during the growing
season is estimated to be significant enough to affect the utilization of the CO tracer technique
in partitioning urban biogenic and anthropogenic CO2 mixing ratio signals. The results from
this study can be useful as a ground-truthing for the evaluation of satellite measurements and
regional climate air quality models.

2. Study Site and Methods
2.1. Study Site

Figure 1A is a map showing the location of Cookeville (36.1628◦ N, 85.5016◦ W), the
neighboring counties, main interstates, and state highways. The city is situated in the
Eastern Highland Rim region of the United States within the larger Upper Cumberland
Plateau of Tennessee, near the crossroads of Interstate 40 (I-40), State Route 136 (SR 136),
and U.S. Route 70N (US 70N). The light blue arrow in Figure 1A denotes the location of
Tucker Stadium (36.17823◦ N, 85.50693◦ W) where the measurements in the current study
were taken. The city is one of Putnam County’s micropolitan areas and is located between
the two major cities of Nashville and Knoxville along I-40. As of 2020, the city had a
population of about 35,000.
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Figure 1. (A) Map showing the location of the measurement site (36.1628◦ N, 85.5016◦ W) and
surroundings of the city of Cookeville with the neighboring counties and major highways. A detailed
description of Cookeville can be found in the main text. (B) GIS land cover map showing detailed
broadleaf and deciduous trees and shrubs for the region surrounding the Cookeville urban domain.
The data used to construct the map were initially obtained from the Land Cover Database (NLCD)
2019 Products (ver. 2.0, June 2021) [45].

Cookeville has a total area of 1405 acres, with ~0.77% and ~40% of the total land
being watersheds and canopy cover, respectively. In terms of climate, the city experiences
relatively high temperatures and evenly distributed annual precipitation, which is typical
of a humid subtropical climate. With an elevation of 1000 ft above mean sea level (AMSL),
Cookeville experiences slightly lower temperatures and humidity than the Nashville Basin
and the Tennessee Valley whose elevations are a few hundred feet lower. Specifically,
Cookeville experiences a hot season between May and September with average daily tem-
peratures that are above 26.7 ◦C. The hottest month, July, has an average high temperature
of 31.1 ◦C and a low of 18.8 ◦C. The cold season in Cookeville lasts between November
27 March 1 with average daily high temperatures of below 12.8 ◦C. January is the coldest
month of the year with an average low temperature of 2.2 ◦C and highs of 8.3 ◦C [46].

Recent studies have shown that the southeastern U.S. has large natural emissions of
volatile organic compounds (VOCS) that include isoprene and monoterpenes that rival the
emission fluxes observed in tropical areas [47]. Using the 14C tracer technique, Miller et al. [26]
showed that the urban biospheric CO2 signal component originating from urban vegetation
that includes turf and trees in the dry climate of Los Angeles (LA) has an estimated am-
plitude of 4.3 ppm, representing 33% of the observed annual mean fossil fuel contribution
of 13 ppm [26]. The results from the Miller et al. [26] study suggest that irrigated urban
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vegetation is a major contributor to the observed biospheric signal in the dry megacity of LA.
Intuitively, the biospheric contribution to the overall above background CO2 mixing ratios in
other wetter and greener urban areas such as Cookeville is expected to be larger. As a result,
Cookeville, a medium-sized city that is surrounded by vast vegetation, provides an ideal site
to study anthropogenic–biogenic CO2 exchange and interactions. Presented in Figure 1B is a
detailed land cover map showing broadleaf and deciduous trees and shrubs for the region
surrounding the city of Cookeville.

2.2. Continuous Wavelength-Scanned Cavity Ring-Down Measurements

CO2, CO, and CH4 dry mixing measurements were carried out using a Picarro G2401
gas concentration analyzer. The analyzer’s precision at 5 s, 5 min, and 60 min is 15, 1.5,
and 1 ppb for CO; 50, 20, and 10 ppb for CO2; and 1, 0.5, and 0.3 ppb for CH4, respectively.
The maximum drift at standard temperature and pressure (STP) over 24 h is 10 ppb for
CO; 100 ppb for CO2; and 1 ppb for CH4. The instrument is equipped with water correc-
tion software that automatically reports dry gas mole fractions. Calibration gases (from
Airgas: an Air Liquide Company in the USA) were introduced to the analyzer using three
whole-air, high-pressure reference gas cylinders with known CO2 and CH4 concentrations
based on the recommended World Mereological Organization (WMO) compatibility goals
of respective gases (±100 ppb and ±2 ppb for CO2 and CH4, respectively) at 5 s, 5 min,
and 1 h precision analysis test windows. Concentrations of the calibration gases spanned
the expected range of atmospheric concentrations. Measurements were recorded at 5 s
frequencies. All of the data used in this study were averaged from their original measure-
ment frequency into hourly averages. Further details regarding the calibration materials,
uncertainty measurements, and postprocessing of CO2, CO, and CH4 data used in this
analysis can be found in a previous publication by Gamage et al. [28].

A manual inspection of the raw cavity ring-down spectrometer (CRDS) data was
undertaken to exclude CO, CH4, and CO2 observations impacted by local point sources
that include unusually high traffic signals, breath from the CRDS instrument operator
on the sampling inlet, and agricultural- or domestic-related emissions. The obvious,
significant local point sources were easily observed in the acquired ground urban mixing
ratio measurements based on spikes that lasted a few seconds to a few minutes. Further
data flagging and filtering was achieved by applying a two-standard deviation (2σ) filter in
the observed CO, CH4, and CO2 mixing ratios. The total datasets subjected to the manual
inspection and filtering were less than 0.5% of the entire data, with over 95% of the data
being validated.

NIST traceable primary and secondary gas standards from Air Gas, an Air Liquide
company based in the USA, were used to maintain calibration and the check drift and
precision of the G2401 Picarro CRDS instrument. Periodically, we performed short-term
drift tests (24 h and 48 h drift analysis). During the measurement period, we did not see any
significant drifts or change in the calibration curve, allowing us to use the instrument for
many months without any significant re-calibration. To eliminate unusually high mixing
ratio signals from point sources, the instrument inlets were placed 15 m above the ground
on the President’s box on the west side of the Tucker football stadium at Tennessee Tech
University at a flow rate of 350–400 sccm.

2.3. Estimation of Urban Biogenic and Anthropogenic CO2 Signal

In our previous publication [28], we provided a detailed description of how the CO
tracer technique can be utilized to estimate ground-based CO:CO2 emission ratios. Here, we
utilize the same model to estimate the partition of the urban CO2 signal into anthropogenic
and biogenic components for the winter and spring seasons only. According to Equation (1),
the overall atmospheric CO2 signal (CO2(Tot)) is composed of background CO2 (CO2Bg),
anthropogenic CO2 (CO2An), and the biogenic CO2 (CO2Bio)

CO2(Tot)
= CO2Bg + CO2An + CO2Bio (1)
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As a result, the biogenic CO2 signal, CO2Bio, can be calculated using Equation (2)

CO2Bio = CO2(Tot)
− (CO2Bg + CO2An) (2)

During the winter and early spring seasons, the overall CO (CO(Tot)) mixing ratios
can be considered as being composed of background and local/regional signals with no
biogenic contribution. However, during the summertime and late springtime, an additional
biogenic CO source is expected to contribute to the overall CO mixing ratio signal since the
Cookeville urban domain is surrounded by leafy deciduous vegetation, a significant source
of biogenic non-methane volatile organic compounds (NM-VOCs), with isoprene being the
dominant contributor [48–52].

The contribution of wildfires and the burning of biomass toward the overall CO mix-
ing ratio signal can be ruled out since no major incidents of wildfires or biomass burning
were reported within the monitoring site during the study period. A similar approach of
utilizing the CO as a tracer in estimating the regional biospheric CO2 signal was adopted
by Oney et al. [31]. Using this approach, the local/regional anthropogenic wintertime CO
(COAn) can be estimated using Equation (3), which is basically the difference between the
total CO mixing ratio signal and the background CO concentrations as estimated based on the
fifth-percentile subtraction procedure

COAn = CO(Tot) − COBg (3)

Assuming that the CO and CO2 are co-emitted by anthropogenic sources at a given
ratio, β (CO2:CO), the anthropogenic CO2 signal (CO2An) can be derived from COAn
as follows:

CO2An = β(COAn) (4)

By combining Equation (1) through (4), we can use Equation (5) to estimate the CO2
biogenic signal in Cookeville

CO2Bio = CO2(Tot)
− CO2Bg −

(
CO(Tot) − COBg

)
β (5)

The value of β (CO2An:COAn) is basically an emission ratio determined by the weighted
least squares regression method, taking into account the uncertainties in both the measured
CO2 and CO mole fractions [53].

2.4. Review of Methane and Biogenic Isoprene’s Contribution to CO in Cookeville

To utilize the CO tracer technique to partition urban CO2 mixing ratios into anthro-
pogenic and biogenic CO2 components, it is worthwhile to review how biogenic emissions
from VOCS might influence the overall CO budget in an area surrounded by deciduous
vegetation such as Cookeville. In this section, we utilize a simple first-order kinetic model
to highlight the importance of careful accounting of CO biogenic signals during the growing
season when using CO as a tracer. As the predominant VOC emitted by vegetation during
warm weather [54–56], the short-lived, highly reactive isoprene (C5H8) contributes to atmo-
spheric reactions that control the concentrations and lifetimes of longer-lived species such
as CO. As mentioned by Duncan et al., interpreting atmospheric CO concentration levels
requires accurate accounting of all CO sources and sinks that include CO production from
CH4 and C5H8 oxidation [37] since the measured urban CO signals are part of a sequence of
atmospheric photochemical reactions that involve CH4, C5H8, and the OH radical. To this
end, we briefly utilize a simple first-order reaction model by Vimont et al. [44] to review and
estimate the respective overall effect and magnitude of CH4 and C5H8 oxidation reactions
on CO mixing ratios within the Cookeville city limits.
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Noting that the predominant loss mechanism for atmospheric CO is the primary
reaction with the OH radical, we utilize Equation (6) to calculate the effective change in CO
mixing ratios resulting from the OH + CH4 oxidation reaction

∆XCO = γ
(
XCH4,i

)[
1 − e−kOH[OH]t

]
(6)

∆XCO in Equation (1) is the change in CO mole fraction due to CH4 oxidation by OH;
γ is the CO yield from OH + CH4 reaction, which in this case, is 0.96 mole of the CO
produced per mole of CH4;

(
XCH4,i

)
is the measured CH4 mole fraction (i.e., the average

CH4 mole fraction during the sampling period, which is 1900 nmol:mol); and kOH is the
room temperature (298 K) and pressure (1 atm) reaction rate constant for the CH4 + OH
reaction, which is 6.4 × 10−15 cm3 s−1; [57]. The OH utilized in this case corresponds to the
maximum [OH] concentration in a polluted environment, which is 2 × 107 molecules cm−3;
and t is the theoretical transit time. For isoprene, we estimate the value of COisoprene based
on a transit time of 1.4 h. This transit time is the travel time between the forest edge where
isoprene is produced to the urban core. Unlike the long-lived CH4, which has an atmo-
spheric lifetime of nearly 10 years [58] and so is relatively well-mixed in the atmosphere,
isoprene is rapidly oxidized by the OH radical, especially near its source [59]. Isoprene’s
high reactivity limits its accumulation in the atmosphere such that, despite its large flux,
only moderate mixing of up to 10 ppb is observed, mostly near its source [60]. Under
typical atmospheric summer daytime conditions, the chemical conversion of isoprene into
more oxidized VOCs occurs with a time constant of approximately 1 to 2 h [61,62]. At
standard temperature and pressure conditions (300 K and 760 Torr), the reaction of isoprene
with OH is the dominant sink [63].

Using Equation (6), we obtain a value of 0.84 nmol:mol as the maximum amount of
CO produced from the oxidation of CH4. To estimate the contribution of isoprene to the CO
budget in Cookeville, we use a value of 8.9 ppb for the isoprene mixing ratio as reported
by Helming et al. [64] during the Nashville Southern Oxidants Study (SOS). The Nashville
SOS reported isoprene mixing ratio levels as high as 8.9 ppm in a forest site near Oak Ridge,
Tennessee, with the other biogenic VOCs of α-pinene, β-pinene, and limonene having mixing
ratios value close to 1 ppb [64]. We estimate the CO yield from the isoprene oxidation using
values of 1.90 [63] and 3.0 [65] as the total number of CO molecules produced per molecule of
isoprene. With an OH + C5H8 reaction rate constant of 1.0 × 10−10 cm3 s−1 [62], a maximum
[OH] concentration value of 2 × 107 molecules cm−3 [66] and a transit time of 1.4 h, we
estimate the amount of CO production from isoprene oxidation (COisoprene) to be between 17.1
and 27.0 nmol:mol. In 2021, the Atmospheric Carbon Transport (ACT)–America Earth Venture
mission reported summertime biogenic CO enrichment on the order of 40–80 ppb [12]. The
stronger than expected summertime CO enrichment reported by the ACT–America airborne
mission is spread mostly evenly throughout the southeastern United States and is driven by
CO2 uptake. Our estimated urban COisoprene and the CO enhancements from biogenic sources
reported by the ACT–America airborne mission highlights the importance of considering CO
emissions from precursor greenhouse gas emissions such as NM-VOCs in any CO or CO2
measurements within the southern part of the United States.

As the air parcel is advected from the canopy, isoprene rapidly reacts with the OH
radical to form CO product. The OH radical is extremely reactive, with a lifetime of less
than a second; therefore, if we assume that the OH reacts as soon as it is formed; we can use
Equation (6) to calculate the maximum amount of CO produced at the forest canopy and
transported to our study site by wind (using a wind speed of 4.0 miles per hour), assuming
that in the canopy, the rate of production of isoprene exceeds its rate of destruction. Using
a transit time of 1.4 h, we obtain a value of 27 nmol:mol as the maximum amount of
COisoprene that can be produced from isoprene oxidation, using 3.0 as the total number of
moles of CO molecules produced per mole of isoprene. Using a CO + OH reaction rate
constant of 1.44 × 10−13 cm3 s−1 [62], and a transit time of 1.4 h, we estimate the loss of CO
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during the transit of an air mass across Cookeville from a background measurement site
using Equation (2), to obtain a ∆XCO value of 1.65 nmol:mol

∆XCO = (XCO,i )
[
1 − e−kOH[OH]t

]
(7)

Tables S1 and S2 summarize the calculated contributions to the urban CO sink and
biogenic source by the respective OH + CO, OH + CH4, and OH + C5H8 oxidation reactions.

3. Results and Discussion
3.1. Baseline Concentrations

To isolate the urban CO2, CO, and CH4 mixing ratio enhancements resulting from
combustion of fossil fuels such as petroleum and natural gas within Cookeville, it is nec-
essary to determine the baseline conditions that define background mixing ratio levels.
Generally, the two main methods used by researchers to derive background CO2 concen-
trations are the statistical [67,68] and the trajectory end-point methods [69–71]. In the
statistical method approach, the background concentrations are based on observations only
without considering atmospheric transport processes. On the other hand, the end point
method uses atmospheric transport models to identify regions that are not affected by large
CO2 enhancements resulting from wildfires. To address the shortcomings associated with
each of these background determination methods, Pei et al. [72] recently proposed a new
Lagrangian approach that is founded on the Bayesian inversion framework.

In the present study, the baseline mixing ratio measurements are derived using the
lowest fifth percentile within a three-day window centered around each hourly averaged
data point to obtain a three-day running average. The baseline mixing ratios were then
subtracted from the hourly averaged mixing ratio concentrations to determine the excess
concentrations (i.e., “CO2ex”) that are due to the urban emissions of each species. It should
be noted here that the baseline selected was somewhat different from the concept of a
“background” concentration, which oftentimes remains unaffected by urban emissions.
Figure 2 shows the monthly mixing ratio variations (solid lines) and monthly background
mixing ratio values (dash lines) for CH4 and CO2 during the daytime (6.00 am to 6.00 pm)
and the nighttime between August 2016 and July 2018. Both the CO2 and CH4 monthly
background mixing ratios are higher during the nighttime than the daytime. The fifth-
percentile background mixing ratios for CO2, CH4, and CO are shown in Figures S1–S3 of
the Supporting Information.

3.2. Anthropogenic CO:CO2 Emission Ratios (β−1 Values)

As reported in our earlier CO:CO2 ratio study [28], in contrast to the high CO:CO2
correlation in the wintertime, the correlations in the spring and summer are weaker [28].
In addition to the winter, spring, and summer ratios reported earlier, we also computed
fall ratios. These results are summarized in Table 1. To obtain a full picture of the extent
of anthropogenic emissions in the study site, we also calculated CO:CH4 emission ratio
correlations (Figure S4 and Table S3). A detailed discussion on the CO:CH4 emission ratio
correlations is provided in the Supporting Information. The summer CO:CO2 ratios have
weaker correlations mainly due to lower ground anthropogenic CO2 mixing ratios and
large, variable contributions from the strong summertime biogenic signal. The fall is a
transition season that is accompanied by the foliage turning yellow or brown or dropping
off. As a result, in addition to decreased photosynthesis, the biogenic signal becomes
weaker in the fall season than in the summertime, leading to stronger anthropogenic CO2
signals. The biogenic influence is dramatically reduced during the wintertime, leading to
a stronger correlation above background CO2 and CO signals since the urban CO2 signal
has a major contribution from human-induced combustion processes. The spring season is
characterized by initial plant growth with greater photosynthesis than that in the winter.
As a result, the springtime ratios reflect a slightly lower anthropogenic CO2 signal than in
the wintertime.
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Table 1. Seasonal CO:CO2 correlation ratios (β−1) in units of ppb ppm−1 observed between 2017
and 2019.

Year Season Correlation CO:CO2 Ratio (ppb ppm−1) R2

2017

Winter 9.7 ± 0.4 0.9
Summer 2.0 ± 0.2 0.4

Fall 2.8 ± 0.4 0.7
Spring 5.3 ± 0.4 0.9

2018

Winter 8.7 ± 0.5 0.8
Summer 2.6 ± 0.5 0.4

Fall 4.0 ± 0.4 0.8
Spring 7.4 ± 0.7 0.7

2019
Winter 7.3 ± 0.6 0.9
Spring 3.2 ± 0.2 0.6

3.3. Wintertime Biogenic and Anthropogenic CO2

It is justifiable to utilize the CO tracer technique during the winter season when
both the photosynthesis and respiration CO2 signals are minimal, with CO2 mixing ratios
arising almost entirely from combustion processes. Before discussing the wintertime
biogenic and anthropogenic CO2 signals in Cookeville, we first provide a brief review
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of the CO2 mixing ratio trend in Cookeville as presented in Figure 2. Just like in other
similar Northern Hemisphere urban sites [73–76], previous CO2 mixing ratio measurements
in Cookeville [28] have reported consistent diurnal and seasonal cycles that are largely
influenced by atmospheric stability. The presence of strong convection that is mostly driven
by both thermal heat from the Earth’s surface and the turbulent shear produced by synoptic
scale motion contributes to the atmospheric instability during the daytime [77].

During the night, the surface of the Earth becomes sufficiently cooled, resulting in
stable nighttime atmospheric conditions that ultimately elevate CO2 mixing ratios above
the daytime levels [77,78]. Turning to the seasonal cycle, temporal differential heating
of the Earth’s surface by the solar radiation and varying wind speeds plays a crucial
role in regulating the dynamics and stability of the atmosphere [78,79]. Weaker solar
radiation and shorter daytime heating of the land’s surface during the winter makes the
atmosphere more stable than the springtime or summertime. As a result, the wintertime
is accompanied by elevated CO2 levels. In addition to a more unstable summertime and
springtime atmosphere, increased convection and photosynthetic CO2 drawdown during
the summertime also contributes to lower CO2 mixing ratios [80].

Although ground-based urban CO2 measurements in Cookeville exhibit an annual
cycle that is characteristic of the Northern Hemisphere, the amplitude in CO2 mixing ratios
has a larger wintertime crest than the one observed in free tropospheric global background
measurement sites such as Mauna Loa, Hawaii (HI), and Niwot Ridge, Colorado [81,82].
Such differences are attributed to the influence of local to regional uptake and release
processes within the urban domain. The seasonal maxima and minima occurring during
the respective winter and summer months also indicate contributions from residential
wintertime heating, which is superimposed on traffic and other local emission sources
when photosynthesis is minimal and the diurnal atmospheric boundary layer is thinner [83].

Figure 3 shows the background-subtracted wintertime biogenic and anthropogenic
CO2 mixing ratio signals for the years 2017 through 2019. From the plot, higher variability
in both the anthropogenic and biogenic signal can be seen, which correlates with diur-
nal variations of CO2 mixing ratios. The average, minimum, and maximum values of
anthropogenic and biogenic CO2 mixing ratios are summarized in Table 2. From Figure 4
and Table 2, the average anthropogenic CO2 mixing ratios between 2017 and 2019 are all
positive and varied between 7.84 ± 4.33 ppm and 9.02 ± 4.46 ppm. Maximum values of
20.17 ppm, 19.94 ppm, and 15.30 ppm were recorded in the winters of 2017, 2018, and
2019, respectively. Previous measurements in the urban areas of southern Los Angeles by
Fischer et al. reported anthropogenic CO2 levels that range between 5 and 30 ppm [84].
A similar study by Newman et al., utilizing the CO tracer technique in the megacity of
Los Angeles, reported overnight to midday fossil fuel CO2 mixing ratios of 12–21 ppm,
with biospheric CO2 mixing ratios that ranged from ~2 ppm during midday to 17 ppm
during the early morning [85]. Between November 2014 and March 2016, Miller et al.
observed mean anthropogenic CO2 (Cff) of 14.0 ± 12.7 ppm during the winter months
(November–February) in the Los Angeles megacity [26].

Turning to the wintertime biogenic mixing ratio signals, the results presented in
Figure 3 and summarized in Table 2 are indicative of biogenic CO2 mixing ratios that
are largely negative. The average biogenic CO2 mixing ratio values observed during
the winters of 2017, 2018, and 2019 were 0.65 ± 3.44, 0.96 ± 2.66, and 0.17 ± 2.27 ppm,
respectively. Maximum biogenic mixing ratio values that varied between 5.01 and 7.84 ppm
were recorded between the years 2017 and 2019. During these three years, we observed
minimum (negative) wintertime biogenic CO2 mixing ratios that varied between −8.59
and −3.09 ppm. Similar trends where urban fossil fuel CO2 signals are larger than biogenic
signals have been observed in other urban areas such as California [84,85]. Whereas the
negative biogenic mixing ratio signals indicate net CO2 drawdown, positive biogenic
values show that the contribution from respiration exceeds the one from photosynthesis.
It should also be noted that just like in the study of Fischer et al. [84] we see biogenic and
anthropogenic CO2 signals that have large measurement uncertanities. The lower biogenic
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signal during the wintertime is a result of reduced photosynthesis and weak plant and
soil respirations [31].
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Figure 3. Wintertime biogenic and anthropogenic CO2. The CO2 mixing ratios in this plot were
estimated using the respective wintertime β−1 values and Equation (5).

Table 2. Wintertime biogenic and anthropogenic CO2 (ppm) mixing ratios calculated using the CO
tracer technique. The number of days (n) in winter 2017, 2018, and 2019 are 33, 25, and 19, respectively.

Anthropogenic Biogenic

Year Average Maximum Minimum Average Maximum Minimum

2017 9.02 ± 4.46 20.17 3.39 −0.65 ± 3.44 5.01 −8.59
2018 9.90 ± 4.94 19.94 3.26 0.96 ± 2.66 7.84 −3.48
2019 7.84 ± 4.33 15.30 1.72 0.17 ± 2.27 6.48 −3.09

To shed more light on our observed urban biogenic CO2 signal, we compare our results
with other measurements from other urban areas. Our 2017, 2018, and 2019 wintertime
biogenic CO2 mixing ratios for all of the years are mostly close to one with respective
amplitudes of 4.09, 3.62, and 2.44. Wintertime and summertime enhancements of 3.5 ± 0.9
and 0.3 ± 1.0 ppm were observed in the dry metropolitan Los Angeles (L.A.) megacity in
2015 by Miller et al. [26]. Although a much more accurate ∆14C tracer technique was used
in the L.A. study by Miller et al. [26], we note that in addition to having a total of ~40%
canopy cover that is mainly comprised deciduous trees, Cookeville has a humid subtropical
climate that makes it much wetter than the dry L.A. megacity; hence, in addition to CO2Bio
from trees and surrounding vegetation, the biogenic CO2 contribution from turf grass and
other urban vegetation is expected to be larger than that of LA. We also note that while our
seasonal CO2Bio shows a significant variation as we move from wintertime to springtime,
the CO2Bio seasonal cycle amplitude in the L.A. megacity remains unchanged at 4.3 ppm.

3.4. Springtime and Anthropogenic CO2

The springtime biogenic and anthropogenic CO2 mixing ratios are presented in Figure 4
and summarized in Table 3. The average springtime anthropogenic CO2 mixing ratios between
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2017 and 2019 are all positive and varied between 5.74 ± 2.05 ppm and 8.12 ± 3.94 ppm.
Maximum values of 16.68 ppm, 9.81 ppm, and 16.68 ppm were recorded in the winters of 2017,
2018, and 2019, respectively.The springtime anthopogenic CO2 mixing ratios are slightly less
than the wintertime values. This is not surprising since spring is the season when vegetation
starts to appear with the the biomess transition from a net CO2 source to a net sink.
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Figure 4. Springtime biogenic and anthropogenic CO2. The CO2 mixing ratios in this plot were
estimated using the respective springtime β−1 values and Equation (5).

Table 3. Springtime biogenic and anthropogenic CO2 (ppm) mixing ratios calculated using the CO
tracer technique. The number of days (n) in winter 2017, 2018, and 2019 are 13, 31, and 30, respectively.

Anthropogenic Biogenic

Year Average Maximum Minimum Average Maximum Minimum

2017 8.12 ± 3.94 16.68 1.30 −6.10 ± 5.89 5.41 −13.68
2018 5.74 ± 2.05 9.81 1.63 −6.11 ± 4.94 6.63 −13.22
2019 7.48 ± 3.22 13.65 2.14 −3.25 ± 4.65 4.58 −14.33

In contrast to the wintertime biogenic signals (Figure 3) that are close to zero, Figure 4
clearly shows that the springtime biogenic CO2 mixing ratios are largely negative. The average
biogenic CO2 mixing ratio values observed during the spring of 2017, 2018, and 2019 were
−6.10 ± 5.89, 6.11 ± 4.94, and −3.25 ± 4.65 ppm, respectively. Maximum biogenic mixing ratio
values that varied between 4.58 and 5.41 ppm were recorded between the years 2017 and 2019.
During the three years, we observed minimum (negative) springtime biogenic CO2 mixing
ratios that varied between −13.22 and −14.33 ppm. Although our measurements are ground-
based, we now briefly compare earlier springtime boundary layer and free tropospheric
aircraft measuments over the city of Sacramento, California, obtained by Turnbull et al. [35].
In the spring of 2009, Turnbull et al. measured biospheric CO2 mixing ratios that ranged from
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8 ± 2 ppm in the Sacramento urban plume to −6 ± 1 ppm in the surrounding boundary layer
air [35]. Whereas photosynthesis was the main contributor to the negative biogenic CO2 signal,
Turnbull et al. [35] attributed the use of biofuels to up to 1 ppm of the observed positive CO2bio
signal since California required ∼ 8% ethanol in gasoline in 2009. The remaining positive
CO2bio in the Turnbull et al. study was largely attributed to agriculture and grasslands in the
surrounding rural areas with trees being mentioned as the main contributor to the Sacramento
urban biospheric CO2 signal. Whereas the Sacramento measurements were taken in the
springtime when biomes were transitioning from a net CO2 source to a net sink, we note
that our springtime biogenic CO2 signal in the Cookeville urban domain is higher than the
one observed in Sacramento. This is not surprising given the presence of a deeper canopy
density and an urban ecology in Cookeville that is very different from that in Sacramento.
The respective seasonal biogenic and anthopogenic CO2 mixing ratios estimated using the
respective wintertime and springtime β−1 values and Equation (5) are presented in Figure 5.
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In summary, we have shown that for urban environments where local biogenic sources
of CO are negligible, the CO tracer technique can be used to resolve the contribution of
fossil-fuel-derived CO2 to the overall CO2 atmospheric signal. Simultaneous measurements
of CO and CO2 mixing ratios provide an avenue for obtaining continuous information
about CO2 sources, giving insights about local diurnal and seasonal patterns of energy use
and respiratory fluxes. While the CO tracer technique is relatively inexpensive compared
to isotopic tracer techniques [10,32], its effectiveness can be hampered by a lack of a
well-defined local background and the uncertainty in the combustion efficiency of local
anthropogenic CO2 point sources.

3.5. Broader Environmental Implications: Carbon Cycle and Balance in Urban Areas

In order to achieve the ambitious goal of reducing greenhouse gas (GHG) emissions
50–52% below the 2005 levels by the year 2030 [86] and improve the current understanding
of the underlying drivers of urban carbon fluxes at local and regional levels, there is a
need to increase monitoring sites that acquire near-surface mixing ratio data pertaining
to the contribution of biogenic CO2 to the overall near-surface CO2 mixing ratios. In
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particular, the ultimate realization of the GHG emission reduction goal can be hampered by
inadequate or a lack of accurate accounting of the sources and sinks that contribute to the
overall near-surface urban CO2 mixing ratio signals since most continuous CO2 monitoring
sites generally monitor well-mixed CO2 mole fractions at distances far away from urban
sources [87,88]. Nevertheless, in the recent past, greenhouse networks such as the Utah
Urban Carbon Dioxide (UUCON) and Uintah Basin greenhouse gas networks [89] have
performed extensive near-surface CO2 campaigns where the observed CO2 mixing ratios
have not only contributed to a deeper understanding of spatial and temporal variability of
emissions in urban and rural locations throughout northern Utah [90] but they have also
assisted in the validation of emission inventories [91].

The present study has highlighted the importance of accurate quantification of biogenic
and anthropogenic CO2 mixing ratios in a medium-sized urban site surrounded by vast
canopy cover. Despite the limited temporal coverage, studies such as the one presented
in this paper have the potential to provide an independent assessment of emissions for
cities. Indeed, a 2021 provocative Vulcan project reported that the average United States
city has CO2 emissions that are underestimated by nearly 20%, with some cities such as
Torrance, CA, and Blacksburg, VA, reporting underestimates that were over 145% and
123% [16], respectively. The need to acquire accurate ground-based measurements of urban
CO2 mixing ratios across United States cities cannot be overemphasized. According to the
latest estimates by Nowak and Greenfield [92], urban land is projected to more than double
between 2010 and 2060. Such an increase in urban land is expected to have adverse impacts
on forest and agricultural lands, which will in turn have a major effect on the urban CO2
budget and air quality.

Indeed, this study has demonstrated that despite the obvious, growing dominance
of anthropogenic fossil fuel emissions associated with the rapid expansion of urban areas,
there is a need to take into consideration the heterogeneity of urban atmospheric CO2
mixing ratio signals that bring about the mixing of biological and fossil fuel sources and
sinks. As cities across the United States continue to set ambitious targets for reducing GHG
emissions, it is of paramount importance that they keep track of how well they are meeting
their decarbonization goals by counterchecking the accuracy of their CO2 inventories with
independent CO2 measurements such as the one reported in this work. The main limitation
of the current research study is the choice of background mixing ratios that may be slightly
higher than the ones from a free tropospheric site. The other limitation of this study is
the oversimplification of the role of CO from the oxidation of volatile organic compounds
within the study area. At a time when the contribution of isoprene to the CO2 budget is
becoming more prevalent within the southeastern region of the United States, the role of
biogenic CO to the overall carbon cycle should be investigated in more detail.

4. Conclusions and Future Directions

This study has provided valuable information on urban anthropogenic and biogenic
CO2 signals in Cookeville, TN, a medium-sized city located in a humid subtropical climate.
Using the CO tracer technique, we obtained 2017, 2018, and 2019 wintertime biogenic CO2
components that have amplitude values of 4.09, 3.62, and 2.44 ppm, respectively. Compared
to the largely negative springtime biogenic CO2 signals, the observed wintertime seasonal
biogenic mixing ratios are positive and close to unity. The measured CO2 signals were
partitioned into anthropogenic and biogenic dry mole fractions, utilizing CO as a tracer.
Between the years 2017 and 2019, the average seasonal wintertime biogenic CO2 dry mixing
ratios varied between −0.65 ± 3.44 ppm and 0.96 ± 2.66. During the three years, maximum
seasonal biogenic mixing ratios that varied between 5.01 and 7.84 ppm were recorded.
On the other hand, between 2017 and 2019, the average anthropogenic CO2 mixing ratios
varied between 5.74 ± 4.94 ppm and 8.12 ± 4.33 with respective maximum seasonal values
of 16.68, 9.81, and 13.65 ppm. The results from this study can be useful as a ground-truthing
for the evaluation of satellite measurements and regional climate air quality models. In
the future, this study can be enhanced by comparing the observed anthropogenic and bio-
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genic CO2 mixing ratios to those predicted by a numerical modeling system that includes
inventory-based emission estimates and atmospheric transport models. Such a comparison
would be very useful in testing the degree to which the observed CO2 mixing ratio enhance-
ments are similar to those expected from prior knowledge of emissions and atmospheric
transport. Finally, since biofuels continue to play a major role in the transport industry,
the use of other tracers such as carbonyl sulfide and stable isotopes of CO2 in future stud-
ies will improve the accuracy of the attribution of urban CO2 signals to fossil fuel and
biogenic contributions.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/atmos14020208/s1. CO:CH4 Emission Ratios [40,93–103]; Figure S1. Fifth
percentile CO2 background mixing ratios (monthly averaged fifth percentile values and three-day moving
average values); Figure S2. Fifth percentile CH4 background mixing ratios (monthly averaged fifth
percentile values and three-day moving average values); Figure S3. Fifth percentile CO background mixing
ratios (monthly averaged fifth percentile values and three-day moving average values); Figure S4. Seasonal
CO:CH4 ratios in ppb ppm−1 observed between 2017 and 2019; Table S1. Estimated contributions to
the urban CO sink and biogenic source by the respective OH + CO, OH + CH4, and OH + isoprene
oxidation reactions, utilizing a maximum [OH] of 2 × 107 molec./cm3; Table S2. Estimated contributions
to the urban CO sink and biogenic source by the respective OH + CO, OH + CH4, and OH + isoprene
oxidation reactions, utilizing a minimum [OH] of 1 × 106 molec./cm3; Table S3. Seasonal CO:CH4 ratio
and correlations.
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