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Abstract: In this paper, we study the problem of extracting trends from time series data involving
missing values. In particular, we investigate a general class of procedures that impute the missing
data and then extract trends using seasonal-trend decomposition based on loess (STL), where loess
stands for locally weighted smoothing, a popular tool for describing the regression relationship
between two variables by a smooth curve. We refer to them as the imputation-STL procedures.
Two results are obtained in this paper. First, we settle a theoretical issue, namely the connection
between imputation error and the overall error from estimating the trend. Specifically, we derive the
bounds for the overall error in terms of the imputation error. This subsequently facilitates the error
analysis of any imputation-STL procedure and justifies its use in practice. Second, we investigate
loess-STL, a particular imputation-STL procedure with the imputation also being performed using
loess. Through both theoretical arguments and simulation results, we show that loess-STL has the
capacity of handling a high proportion of missing data and providing reliable trend estimates if the
underlying trend is smooth and the missing data are dispersed over the time series. In addition
to mathematical derivations and simulation study, we apply our loess-STL procedure to profile
radiosonde records of upper air temperature at 22 Antarctic research stations covering the past
50 years. For purpose of illustration, we present in this paper only the results for Novolazaravskaja
station which has temperature records with more than 8.4% dispersed missing values at 8 pressure
levels from October/1969 to March/2011.

Keywords: imputation; local polynomial regression; smoothing; time series; trend extraction

1. Introduction

Extracting trends from time series data is a central task in many fields, including
economics, geophysics, climatology and engineering. Extensive research has been done on
trend extraction methods, and these methods can be roughly divided into two groups, the
smoothing-based approach and the non-smoothing-based approach. The division is due
to the dominant role smoothing-based methods historically played in the context of trend
extractions. Research along the smoothing-based path has yielded fruitful results and gained
much popularity. Some well-known methods are Henderson filters [1], seasonal-trend
decomposition based on loess (STL) [2], Hodrick-Prescott filters [3] and X12-ARIMA [4],
which was updated to X-13-ARIMA in 2013. All these methods give a set of weights that are
applied to the data as an averaging operator to give the underlying trend, and they differ
mainly in the class of functions used for fitting and the smoothness criterion. They are also
referred to as linear filters. For nonlinear filters, various methods have been suggested, see,
for example, the optimal order statistic filter [5], the stack filters [6] and the median filters [7].

The non-smoothness-based approach has received more attention in later years. Two
methods, originating from the field of signal processing, have made their way into the field
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of time series analysis. They are the Singular Spectrum Analysis (SSA) and the Empirical
Mode Decomposition (EMD). SSA is based on the idea of factorisation: it performs the
Singular Value Decomposition to the covariance matrix of trajectory matrices to give a
trend [8]. SSA has been actively developed [9–14] and applied to various kinds of data, e.g.,
climate data [15,16], financial data [17,18] and geophysical data [11]. On the other hand,
EMD is related to the idea of orthogonal projection: the method decomposes signals into
finite, nearly-orthogonal components that admit Hilbert transforms [19]. While the method
works in the time domain, it can also be interpreted as a special case of the Wavelet methods
which work in the frequency domain [20]. Due to its high adaptiveness to nonlinear and non-
stationary data, EMD has been widely studied and applied, cf. [21–23]. For a comprehensive
review of trend extraction methods, readers are referred to Alexandrov, Bianconcini, Dagum,
Maass and McElroy [24].

Out of all the methods noted, we investigate in this work seasonal-trend decomposition
based on loess, aka STL, in the context of trend extractions when there is missing data. We
study STL because, compared with other more recent and mathematically sophisticated
methods, STL has a broader user base. For one, STL is one of the few early methods that give
a full decomposition of time series data (into the trend, seasonal and residual components)
with almost no assumptions made about the data. Secondly, STL is easy to use and has
good properties, e.g., it can handle non-stationary data and has fast convergence. The
method also has the capacity to handle missing data, however, it seems this feature has not
been implemented in practice. This poses a challenge to practitioners as the missing data
problem is often encountered. A typical approach to circumvent the difficulty of missing
data is to make complete the data with imputation methods. Numerous questions arise
immediately upon the decision of doing so. To name a few, do imputations introduce bias?
How reliable the STL estimates are after the imputation? To what extent are imputation
methods able to recover missing data in the context of trend extraction with STL? It is the
goal of this paper to settle these questions.

Moreover, we remark that imputing missing data before applying STL is not merely to
avoid re-implementing a version of STL that can handle missing data. In fact, it addresses
a problem that was not fully considered in the work of Cleveland et al. [2] on proposing
STL. Cleveland et al. [2] suggested handling missing data with loess smoothing (in the
cycle-subseries smoothing step of the work), but this is not possible when the missing data
form large gaps in the observed data. By considering imputations before applying STL, we
open up ourselves to many imputation methods so that different types of missing data can
be handled, after which STL can be applied.

Regarding imputation methods and the general framework for handling missing data,
the major theoretical issues were settled in [25–27]. Later developments were mostly about
clarifications [28], implementations [29,30], and practical concerns [31,32]. One notable
imputation method is the multivariate imputations by chained equation (MICE) [33] which
deals with multivariate missing data (both categorical and numerical) and has raised some
revised interest in recent years [34,35].

In this work, we study the problem of extracting trends from time series data when
some data are missing. In particular, we investigate a general class of procedures that im-
pute the missing data and then extract trends using STL. We refer to them as the imputation-
STL procedures. Working under the settings given in [2], we derive an error bound for
the extracted trends in terms of imputation errors. This answers the questions we posed
earlier regarding the impact of imputations on the trend estimates. More importantly, this
provides a framework for analysing errors of the trend extracted with any imputation-STL
procedure. Apart from the theoretical results, we also examine a special case, the loess-STL
procedure through simulation studies. We demonstrate that loess-STL provides reliable
trend estimates when the ground-truth trend is smooth and the missing data disperse over
the time series. This, together with the theoretical results, justifies the use of the procedure
in practice. We also present an application to real data; specifically, we apply the loess-STL
procedure to the Antarctic upper air temperature data and make available a profile of
temperature trends for further climatological analysis.
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The structure of this paper is as follows. In Section 2, we review the methods loess
and STL for time series data and define some terminology. In Section 3, we present an
error analysis of the imputation-STL procedures in the context of trend extraction with
missing data. In Section 4, we present simulation studies with loess-STL procedures. In
Section 5, we apply the loess-STL procedure to a real dataset of radiosonde records of
upper air temperature at 22 Antarctic research stations covering the past 50 years, and we
conclude in Section 6.

2. Methods Review and Terminology

In this section, we first review the methods of loess and STL by summarising the work
of Cleveland, Cleveland and McRae [2]. This can be skipped by readers who are familiar
with the methods. Then we define some terminology which we will use in the rest of
the paper.

2.1. Loess

Locally weighted regression, aka loess, is a nonparametric method in regression analy-
sis. It models the dependent variable as a smooth function of the independent variables;
the smooth function is estimated by fitting the data locally with polynomials. The method
adapts well to data and has several advantages. First, the flexible form incorporates a wider
class of relationships beyond the linear. Second, no prior knowledge about the data is
required (other than that the data are a representative sample), so subjective judgement
can be avoided when little is known about the relationship between the variables. Third,
it is useful for explanatory analysis, e.g., it can serve as a baseline for searching for good
parametric models; it can also act as a benchmark against parametric models during model
evaluations. However, these advantages come at a cost: like other nonparametric methods,
loess requires more data than parametric models to get the same precision for the estimates.
In the following, we detail the assumptions and the fitting procedure.

2.1.1. Assumptions

Loess assumes a data generating process of Yj = f (Xj) + εj, j = 1, 2, . . . , N, where
Yj are observations of the dependent variable Y, Xj are those of the independent variable
X, N is the total number of observed data points and εj are independent normal random
variables with mean 0 and variance σ2. The function f specifies the functional relationship
between the dependent variable Y and the independent variable X and is assumed to be
smooth. This justifies the use of Taylor’s theorem, which gives grounds for approximating
functions locally by polynomials. The normality assumption about the data-generating
process allows the distribution of residuals, fitted values and residual sum of squares to
be represented by some known parametric families of distributions. In particular, given
the assumption, the residuals and the fitted values are normally distributed provided
that σ2 is known, and the residual sum of squares follows a chi-squared distribution [36].
The distributional results make it possible to assess the uncertainty in these quantities.
Loess also assumes that the estimate f̂ approximates f with no bias. The assumption is not
unrealistic as it is shown on p. 62 in [37] that under some mild conditions, the estimate is
asymptotically unbiased. Each assumption we saw is associated with a particular feature
of the method, and it is possible to forgo some of the properties for greater generality of the
model. For instance, ref. [38] relaxed the normality assumption using the idea of robust
regression by Huber [39]. In this case, a Monte Carlo simulation is then needed to assess
the standard error.

2.1.2. Fitting Procedure

Loess approximates the functional relationship f by fitting a polynomial locally at
each point x (in the domain of f ) using points in the neighbourhood of x. The fitting
uses weighted least square(WLS) regression. Overall, three quantities are needed in this
procedure, the degree of polynomials to be fit, the size of the neighbourhood and the
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weights for performing the WLS regression. Regarding the degree of polynomials to be fit,
first-degree or second-degree polynomials are commonly used and are usually sufficient as
long as the functional relationship is not too erratic. Quadratic fitting is generally preferred
over linear fitting near extrema [37]. Alternatively, the degree of polynomials can be chosen
using M-plots as suggested in [36]. Regarding the neighbourhood size, as it directly controls
the smoothness of the estimates, the choice should be made based on the research context.
The neighbourhood size is chosen such that the resulting estimate answers the research
question in some optimal sense. But in cases where one wants to avoid subjectivity, the
neighbourhood size can be chosen through data-driven techniques like cross-validation.
Regarding the weights for the WLS regression, we will calculate them based on the tricube
weight function

W(u) =

{
(1−u3)3 for 0 ≤ u < 1,

0 otherwise,

where u is a dummy variable. Concretely, suppose we have N data points, the degree
of polynomial to be fit is d and the size of the neighbourhood is q, and we want to fit a
polynomial locally at the point (X1, Y1). First, we identify the q data points, denoted by
(a1, b1), (a2, b2), . . . , (aq, bq), so that a1, . . . , aq are nearest to X1. Next, to each of these points,
we assign a weight,

vi(X1) = W
(
|ai − X1|

maxi |ai − X1|

)
, i = 1, . . . , q

where W(·) is the tricube weight function and the maximum is taken over the points in
the neighbourhood, i.e., (a1, b1), (a2, b2), . . . , (aq, bq). Then we fit a degree-d polynomial,
denoted by pd,X1(x), to these points using weighted least square regression. In the following
step, the fitted value for Y1 at X1 is given by pd,X1(X1). Finally, the above procedure is
repeated for each (Xj, Yj), j = 1, . . . , N, with each Yj being fitted by pd,Xj

(Xj).

2.2. STL

Seasonal-trend decomposition based on loess, aka STL, is a method of decomposition
of time series. Through iterative smoothing of the data, it decomposes a time series into
three components: the trend component, the seasonal component, and the remainder
component. From a frequency analysis point of view, what STL does is filter out signals
of different frequencies; the signal with the lowest frequency is regarded as the trend,
the one with the medium frequency is the seasonal component, and the ones with the
highest frequencies are the remainder (also named the noise in STL). Several advantages are
using STL for time series decomposition. First, it only makes weak assumptions about the
data-generating process, so it handles a wide class of data. Second, the computation is fast,
and it can handle missing data and outliers. Third, prior knowledge about the components
can be incorporated into the model.

To apply STL, six parameters need to be specified, they are the number of outer loops
no, the number of inner loops ni, the number of cycle-subseries np, the neighbourhood
size for seasonal smoothing ns, the neighbourhood size for trend smoothing nt, and the
neighbourhood size for seasonal trend smoothing nl . Cleveland et al. [2] recommend the
following choice of parameters. no = 1, ni = 2 if resistance to outliers are not needed,
and no = 5, ni = 1 otherwise; np depends on the application, for example, 12 would be
an appropriate choice for monthly climate data; ns is specified by the user to incorporate
prior knowledge of the regularity of the seasonal pattern. This must be an odd integer ≥ 7;
nt =

[
1.5np/(1− 1.5n−1

s )
]

odd and nl = [np]odd, where [ · ]odd is an operator such that [x]odd,
for any real number x, equals the smallest odd integer greater than or equal to x. Readers
are referred to the original paper for full details on the reasoning behind these choices.

Suppose we have a time series of N data points {Yν, ν = 1, . . . , N}, and the parameters
of the STL have been chosen, then the STL procedure works as follows. First we initialise
the robustness weight ρν = 1, ν = 1, . . . , N and the trend Tν = 0, ν = 1, . . . , N. Then we
feed them into the inner loop, which does the following three things.
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1. Detrend the data: The procedure subtracts the inputted trend from the data, i.e.,
Ydetrend

ν = Yν − Tν, ν = 1, 2, . . . , N.
2. Extract the seasonal component: this involves 7 minor steps. Denoting the data

Y1, Y2, ..., YN by Y, the steps are:

(a) Break into np cycle-subseries Ydetrend → (Ysub-1, Ysub-2, . . . , Ysub-np).
(b) Smooth each cycle-subseries using loess with a degree of the polynomial set

to 1 and neighbourhood size set to ns, i.e., Ysub-i-smooth = loess(Ysub-i, d =
1, q = ns), i = 1, . . . , np. Note that smoothed values are computed from the
position just prior to the first point to the position just after the last point.

(c) Combine smoothed cycle-subseries to get the seasonal component C, i.e.,
(Ysub-1-smooth, Ysub-2-smooth, . . . , Ysub-np-smooth)→ C.

(d) Run a moving average filter of length np through C twice.
(e) Then a moving average filter of length 3 once. The result is still denoted as C.
(f) Extract the seasonal trend vector L = (L1, . . . , LN) from the smoothed sea-

sonal component vector C, i.e., apply loess smoothing with a degree of the
polynomial set to 1, and neighbourhood size set to ns.

(g) Detrend the seasonal component, i.e., compute S = C− L, with Sν = Cν −
Lν, ν = 1, 2, . . . , N.

3. Deseasonalise the data and extract a new trend: The deseasonlising is done by
subtracting from the data the detrended seasonal component estimated in the last
step, i.e., YDeseasonalised

ν = Yν − Sν, ν = 1, 2, . . . , N, and the extraction of the new
trend is done by performing loess smoothing on the deseasonalised data with a
degree of the polynomial set to 1 and neighbourhood size set to nt, i.e., Tν =
loess(YDeseasonalised

ν , d = 1, q = nt).

After a single pass of the inner loop, we get a revised trend and a seasonal component.
If the data has not passed through the inner loop for ni times, then we feed the revised trend
into the inner loop again. Otherwise, both the revised trend and the seasonal component
are fed into the outer loop, which does the following.

1. Compute the remainder component with Rν = Yν − Tν − Sν, ν = 1, . . . , N.

2. Update the robustness weights with ρν = B
(

|Rν|
6 ·mediani=1,··· ,N{|Ri|}

)
, ν = 1, . . . , N,

where B(u) = (1− u2)2 · 10≤u<1 is the bisquare weight function suggested in [2],
with 10≤u<1 = 1 if u ∈ [0, 1), and = 0 if u 6∈ [0, 1). The idea is to give little weight to
any point far apart from the rest; this is to remove distortions of the result by outliers.

After a single pass of the outer loop, we get a full decomposition of the data (i.e., the
trend, seasonal and remainders components) and revised robustness weights. If the data
has not passed through the outer loop for no times, then we feed everything into a new
round of inner loops. Otherwise, the procedure ends and returns the full decomposition.
For readers’ convenience, we give in Figure 1 a schematic representation of the algorithm.

2.3. Terminology

We will use the following terminology throughout the remaining sections. We first
talk about data. We define

• the missing dataset to be the observed dataset that has some data missing,
• the complete dataset to be the dataset without any parts missing—assuming it actually

exists in the first place, and
• the imputed dataset to be the dataset we get after applying imputation methods to the

missing dataset.

Next, we talk about trends. The trend is the long-term low-frequency signal, obtained
by our procedure, which in the simplified form is deseasonalising the data and then
smoothing the result to remove short-term fluctuation. We define

• the complete trend to be the trend estimated with the complete dataset,
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• the imputed trend to be the trend estimated with the imputed dataset, and
• the true trend to be the true underlying trend.

In Section 3, we relate the imputed trend to the complete trend in terms of imputation
errors. In Section 4, we verify the result through simulations, demonstrating that the imputed
trend can approximate the true trend well. Combining the results from both sections, we
see a more complete picture of how missing data affects the trend estimate. This helps us
identify the situations where imputation-STL procedures can give reliable trend estimates.

Figure 1. Schematic representation of STL, where k is a running integer index in the inner loop
starting from 0 to ni.

3. Error Analysis of STL with Imputations

In this section, we first analyse the errors of the trend estimates from the imputation-
STL class of procedures. Then we investigate a particular case, the loess-STL procedure.
Lastly, we conclude the section with some remarks.

3.1. Error Bound for the Estimated Trend from an Imputation-STL Procedure

We first define the terms trend error and imputation error, and then we present our
results. The trend error is defined to be the mean of the squared differences between the
complete trend and the imputed trend. For complete dataset {Yj, j = 1, . . . , N}, denote

the complete trend by {zj, j = 1, . . . , N}. For imputed dataset {Yimputed
j , j = 1, . . . , N},

denote the corresponding imputed-trend by {zimputed
j , j = 1, . . . , N}. Then the trend error

MSEtrend is given by

MSEtrend =
∑N

j=1(zj − zimputed
j )2

N
=
‖z− zimputed‖2

N
,
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where z, zimputed are zj and zimputed
j (j = 1, . . . , N) in vector notation, and ‖ · ‖ denotes

the Euclidean norm. Similarly, the imputation error is defined to be the mean of the
squared differences between the complete dataset and the imputed dataset. With the above
introduced notations, the imputation error MSEimputation is given by

MSEimputation =
∑N

j=1(Yj −Yimputed
j )2

N
=
‖Y− Yimputed‖2

N
,

where Y, Yimputed are Yj and Yimputed
j (j = 1, . . . , N) in vector notation.

Our results can be stated plainly as follows. Assuming the settings given in Cleveland
et al. [2], the trend estimated by an imputation-STL procedure has an error bounded above
by a constant multiplying the imputation error. This is useful in two ways. First, one can
now explicitly assess the trend error with the imputation error. In other words, our result
answers the question “How much error do I get in my estimated trend if my imputations
are wrong by X amount?”. Second, given a desired accuracy level, our result specifies the
amount of imputation error a data set can tolerate. In addition, it also specifies how much
improvement the estimate could have when new data points become available. Further
discussion is given at the end of this section; now we present the mathematical statement.

Theorem 1. Suppose a time series is circular, and the parameters of STL are chosen according to
Section 2.2, then the trend produced by an imputation-STL type of procedure satisfies that

MSEtrend ≤ L ·MSEimputation,

where L = (2ni)
2 with ni being the number of inner loops chosen.

We first state the theoretical settings and consequences given in Cleveland et al. [2]
and then several lemmas, before we can prove Theorem 1.

Settings: The data {Y1, . . . , YN} is assumed coming from a circular time series {Yi, i =
1, 2, . . .} of period length N; namely Yi = Yj if i ≡ j (mod N), i.e., i− j is divisible by N.
Also, the parameter choices follow the recommendation as given in Section 2.2.

Consequences: Denote the operator matrices associated with the operations in steps 2 and
3 of Section 2.2 by S and T respectively. To be clear, S is the N × N operator matrix that
takes the input Ydetrend and outputs the seasonal component S, and T is the N× N operator
matrix that takes the input YDeseasonalised and outputs the revised trend T. Given the above
and by [40], we have

(C1) {Y1, . . . , YN} being from a circular time series implies S and T can be augmented to
be circulant matrices;

(C2) Enforcing the parameter choices in Section 2.2 implies that all eigenvalues of S and T
are inside or on the unit circle, and S and T each have, at most, one eigenvalue on
the unit circle.

The following definition and lemmas are taken from pages 104 and 113–114 in [40], except
Lemma 1(a) which follows directly from the usual definition of induced operator norms.

Lemma 1. Let A be a matrix and consider A : x 7→ Ax, x ∈ Rm as an operator, then

(a) ||Ax|| ≤ ||A||op||x||, where || · || is the Euclidean norm, and || · ||op is the induced operator
norm;

(b) ||A||op =
√

λ(G)(A>A), where λ(G)(A>A) denotes the greatest eigenvalue of A>A.

Definition 1. An n× n matrix of the form
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circ(a0, a1, ..., an−1) =



a0 a1 a2 · · · an−2 an−1
an−1 a0 a1 · · · an−3 an−2
an−2 an−1 a0 · · · an−4 an−3

...
...

...
. . .

...
...

a2 a3 a4 · · · a0 a1
a1 a2 a3 · · · an−1 a0


is named a circulant matrix.

Lemma 2. If A = circ(a0, a1, ..., an−1) and B = circ(b0, b1, ..., bn−1) are circulant matrices, then

(a) A+ B and AB are circulant;

(b) All eigenvalues of A are given by λj = ∑n−1
l=0 al exp(2πl jn−1

√
−1), j = 0, 1, . . . , n− 1;

(c) λj(AB) = λj(A)λj(B) and λj(A+ B) = λj(A) + λj(B), where λj(A) is the j-th eigen-
value A, and λj(B) and λj(AB) are similarly defined.

Now we present the proof of Theorem 1.

Proof. Denote the complete data by Y = (Y1, . . . , YN)
> and the resultant imputed data by

Yimputed. Also, we denote the operator matrix of the trend filter of STL after k iterations of
the inner loop by Tk; the expression for Tk can be shown to be

Tk =
2k

∑
m=1

(−1)m−1Bm, where Bm =

{
(T S)m/2 for m even
(T S)(m−1)/2T for m odd

(1)

We want to compare the trend extracted from the complete data and the trend extracted
from the imputed data. Hence, we compute the mean squared difference between the two
trends, MSEtrend = ||TkY− TkYimputed||2/N. By Lemma 1(a), we have

||TkY− TkYimputed||2
N

=
||Tk(Y− Yimputed)||2

N
≤
||Tk||2op · ||Y− Yimputed||2

N
(2)

Now we evaluate ||Tk||op. First from (1), we have

Tk =
2k

∑
m=1

(−1)m−1Bm

= T − TS + (TS)T − (TS)2 + (TS)2T − (TS)3 + ... + (TS)k−1T − (TS)k

=
[
T + (TS)T + (TS)2T + ... + (TS)k−1T

]
−
[
TS + (TS)2 + (TS)3 + ... + (TS)k

]
=
[
I + TS + (TS2 + (TS)3 + ... + (TS)k−1

]
T −

[
TS + (TS)2 + (TS)3 + ... + (TS)k

]
=
[
I + TS + (TS)2 + (TS)3 + ... + (TS)k−1

]
(T − TS). (3)

Note that T , S (by (C1)) and I are circulant matrices, so Lemma 2(a) implies Tk is circulant.
It then follows from Lemma 2(c) that λj(T >k Tk) = λj(T >k )λj(Tk). Next, note that A =

circ(a0, a1, ..., an−1) ⇒ A> = circ(a0, an−1, an−2, ..., a1) and denoting the eigenvalues of
A by λj’s and the eigenvalues of A> by λ̂j’s, we have by Lemma 2(b),

λj = a0 +
n−1

∑
l=1

al exp

(
2π
√
−1jl

n

)
and

λ̂j = a0 +
n−1

∑
l=1

an−l exp

(
2π
√
−1jl

n

)
= a0 +

n−1

∑
l=1

al exp

[
2π
√
−1j(n− l)

n

]
= λn−j.
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Setting A = Tk, it follows λj(T >k Tk) = λj(T >k )λj(Tk) = λN−j(Tk)λj(Tk) = |λj(Tk)|2.
We will need this later to get ||Tk||op. Continuing from (3) and applying Lemma 2(c) give

λj(Tk) = λj

(
I + TS + (TS)2 + (TS)3 + · · ·+ (TS)k−1

)
· λj(T − TS)

= λj(I)+λj(TS)+λj((TS)2)+λj((TS)3)+· · ·+λj((TS)k−1))·
[
λj(T )−λj(TS)

]
=
[
1 + tjsj + (tjsj)

2 + · · ·+ (tjsj)
k−1
]

tj (1− sj).

where λj(T ) = tj and λj(S) = sj are the j-th eigenvalues of T and S respectively, and
λj(I) = 1. Note that the indexing strictly follows that of Lemma 2(b). Now we take
modulus on both sides to get

|λj(Tk)| =
∣∣∣[1 + tjsj + (tjsj)

2 + ... + (tjsj)
k−1
]

tj (1− sj)
∣∣∣.

Let M be the index where |λj(Tk)| is maximised, i.e., maxj |λj(Tk)| = |λM(Tk)| and let t
and s be the M-th eigenvalues of T and S , respectively. Then we have

|λM(Tk)| =
∣∣∣[1 + ts + (ts)2 + ... + (ts)k−1

]
t (1− s)

∣∣∣
≤
∣∣∣1 + ts + (ts)2 + ... + (ts)k−1

∣∣∣ |t| |(1− s)|

≤
[
1 + |t||s|+ (|t||s|)2 + ... + (|t||s|)k−1

]
|t| |(1− s)| ≤ 2k

where the last inequality above is implied by (C2).
Finally, by Lemmas 1(b) and the result we referenced previously, we have ||Tk||2op =

λ(G)(T >k Tk) = |λM(Tk)|2. Substituting this back into (2), we have

MSEtrend ≤ (2k)2 · ||Y− Yimputed||2
N

≤ L ·MSEimputation (4)

Now the proof is completed noting that by definition MSEimputation = N−1||Y− Yimputed||2
and k ≤ ni with ni being the inner loop size in STL, and L = (2ni)

2.
As a particular case, if we enforce the parameter choice from Section 2.2, then we have

MSEtrend ≤
{

4 ·MSEimputation if ni = 1
16 ·MSEimputation if ni = 2.

(5)

With the expression we derived, we continue our discussion about the result. First,
we now have an upper bound for the error of the estimated trend in terms of the squared
imputation error. So if the imputation error is known, then we know how large the trend
error would be in the worst-case scenario. In practice, the imputation error is however
unknown; we will discuss how to estimate the imputation error in the next section. Second,
if we examine closely the right hand side of (4), we see two quantities affecting the upper
bound, namely the squared total imputation error ||Y− Yimputed||2 and the number of data
points “originally” available, N. They have the following implications:

1. Since the constant L is fixed beforehand, its influence on the upper bound becomes
negligible when N is far larger than L. For the same reason, large imputation errors
for a few data points would not cause too much trouble.

2. The expression suggests the imputation errors at individual data points can grow,
e.g., we have a faulty machine that goes wrong consistently once in a while and
produces missing data which are then imputed with some errors. Remarkably, we
know precisely how fast the total imputation error can grow before it is no longer
possible to keep the trend error small. Expression (4) says as long as ||Y− Yimputed||2
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grows at a rate (strictly) slower than N, then we will not lose much precision in our
estimated trend.

3.2. Error Bound for STL with Loess Imputation

In this section, we investigate the loess-STL procedure, which is a particular case of
the imputation-STL class of procedures. We made this choice because smoothing methods
are widely used in different branches of statistics. Furthermore, interpolation by smoothing
is a common way to handle missing data. The goal of this section is twofold. One, we
illustrate concretely how to apply oerror-boundund results in practice. Two, this prepares
us for the simulation studies we conduct in the next section.

Consider a case where data is missing every other point, i.e., out of the complete data
Y1, Y2, Y3, ..., YN , we have Y2, Y4, Y6, ... missing. One such example is that, for a monthly
mean temperature time series, the data is missing every second month. We study this
case because it corresponds to the worst-case scenario of the dispersing missing pattern.
By dispersing missing data patterns, we mean there are no consecutive missing data points.
In other words, the missing-ness incidences do not cluster and form any gap of size greater
than or equal to 2.

We use the same notation as the previous section, i.e., denote the time series data by Y
and the data with imputed values by Yimputed. We also write Yj = f (Xj), where Xj can be
regarded as the time at which Yj is observed, j = 1, 2, ..., N. As it only makes sense to apply
loess smoothing when the underlying trend is smooth, we assume f to be twice differentiable.
For mathematical convenience, we also assume f ′′(X) to be bounded, i.e., | f ′′(X)| ≤ D for
some constant D > 0. (Further justification is given at the end of this section.)

In the following, we find the imputation error at a point, i.e., we find |Yj −Yimputed
j | =

| f (Xj)− f̂ (Xj)|. First, by Taylor’s expansion theorem, we have

f (Xj + h) = f (Xj) + f ′(Xj)h +
f ′′(ζ)

2
h2,

where ζ ∈ (Xj, Xj + h) and h is a small increment. Next, since loess is a linear smoother,
we can express it in a form of equivalent kernels. We denote the kernel weight associated
with a data point Xi by wi|j when smoothing f (Xj); then the loess estimator is given by

f̂ (Xj) = ∑
Xi∈N(Xj)

wi|j f (Xi) (6)

= ∑
Xi∈N(Xj)

wi|j

[
f (Xj) + f ′(Xj)(Xi − Xj) +

f ′′(ζi|j)(Xi − Xj)
2

2

]
, (7)

where ∑i wi|j = 1, ζi|j ∈
(
min(Xi, Xj), max(Xi, Xj)

)
and N(Xj) is the set containing the

neighbours of Xj.
Note that as we have time series data, we know data points are equally spaced of

1-unit distance in the time domain. This together with our assumption of the missing
data pattern implies that we have symmetric neighbourhoods and weights for the loess
imputation. Hence, ∑Xi∈N(Xj)

wi|j f ′(Xj)(Xi − Xj) = 0, and we have

| f̂ (Xj)− f (Xj)| =

∣∣∣∣∣∣ ∑
Xi∈N(Xj)

wi|j
f ′′(ζi|j)(Xi − Xj)

2

2

∣∣∣∣∣∣ ≤ ∑
Xi∈N(Xj)

∣∣∣∣∣wi|j
f ′′(ζi|j)(Xi − Xj)

2

2

∣∣∣∣∣
≤ ∑

Xi∈N(Xj)

D

∣∣∣∣∣wi|j
(Xi − Xj)

2

2

∣∣∣∣∣ = ∑
Xi∈N′(Xj)

D
∣∣∣wi|j(Xi − Xj)

2
∣∣∣ (8)

where N′(Xj) is the one-sided neighbourhood of Xj. Now suppose the size of the neigh-
bourhood of Xj is 2l. Then the kernel weights wi|j is given by
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W(|Xi−Xj|/|Xl+j−Xj|)/
l

∑
`=−l

W(|X`+j−Xj|/|Xl+j−Xj|), i = −l+ j,−l+1+ j, . . . , l+ j,

where W(·) is the tricube weight function. Inequality (8) cannot be directly applied to
the aforementioned complete data {Yj, j = 1, . . . , N} which is recorded at {Xj = j, j =
1, 3, 5 . . .} but missing at {Xj = j, j = 2, 4, 6 . . .}. However, with slight variation in the
proof we obtain the following

| f̂ (Xj)− f (Xj)| ≤
l

∑
i=1

D

∣∣∣∣∣ W((2i− 1)/(2l − 1))

∑l
`=−l+1 W((2`− 1)/(2l − 1))

(2i− 1)2

∣∣∣∣∣;
and with the assistance of computer algebra software such as Maple 2020 we have shown
that the expression on the right-hand side is asymptotically

D ·
[

217
1000

− 7l
25

+
7l2

60
+ O

(
1
l

)]
.

We have thus found an upper bound for the imputation error at the point Xj. We can use the
bound directly as a conservative estimate of the imputation error. To get the total squared
imputation error over the whole time series, we square the individual errors and sum up
all the missing data points. In our current setting, we have N/2 points missing(ignoring
odd-even parity). Assuming for simplicity the neighbourhood size is the same for all points,
the total squared imputation error is

||Y− Yimputed||2 =
ND2

2
·
[

217
1000

− 7l
25

+
7l2

60
+ O

(
1
l

)]2

Now we can substitute this back to (5) and get

MSEtrend ≤


2D2 ·

[
217

1000
− 7l

25
+

7l2

60
+ O

(
1
l

)]2

if ni = 1

8D2 ·
[

217
1000

− 7l
25

+
7l2

60
+ O

(
1
l

)]2

if ni = 2

(9)

We arrive at the expression that tells us how large the trend error can be when loess-STL is
applied. Overall, we illustrated how to apply our result from Section 3.1 when a particular
imputation method is considered.

3.3. Remarks and Some Practical Concerns

Here we present remarks about Sections 3.1 and 3.2 in the order of descending impor-
tance.

• How to estimate D, the upper bound of | f ′′(x)|? One way is to smooth the data with
any choice of smoother, then differentiate the resulting curve twice to get D. There are
various packages in R [41] that can handle this, e.g., the fda package. In some cases,
eyeballing can give a rough but quick estimate. One simply traces the curve with
a tangent line, records the maximum slope and the minimum slope, and then takes
the difference.

• What to do if the estimated D gives a loose bound? If D gives a loose bound, or if
one feels that the bounded-second-derivative condition is too strong, one can redo the
derivation with an alternate form of Taylor’s theorem, given by

f (Xj + h) = f (Xj) + f ′(Xj)h +
f ′′(Xj)

2
h2 + o(h2),

where o(h2) is the remainder such that limh→0 = o(h2)/h2 = 0. Then one can replace
f ′′(ζi) in the derivation by f ′′(Xj), which can also be estimated by what we suggested
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in the previous point. In this case, one may directly evaluate the imputation error and
stop at the first inequality in Equation (8).

• In the later section, we will see loess smoothing is applied to subseries instead of the
whole time series. In that case, the dispersing missing data assumption should hold for
each subseries. This is, however, a relaxation rather than a tightening of assumption.

• Is bounded second derivative well justified? It is a reasonable assumption to make
unless one expects the trend changes direction with infinite acceleration. But again,
if the condition does not hold, or D is too large to be useful, one can still refer to the
second point above to get the result.

• It turns out from Section 3.2 that expression (9) also provides some guidelines on how
to pick the parameter of the imputation method considered. In particular, the (half)
neighbourhood size l can be chosen such that the upper bound is tight.

• In principle, any missing data pattern can be analysed in the same way as shown in
our derivation. The approach we used is quite standard in analysing linear smoothers.
See, for example, Hastie and Tibshirani [42], Fan and Gijbels [37].

• A minor technical remark: The bound of D only needs to hold over the domain where
the smoothing is performed.

4. Simulation Studies

In this section, we present simulation studies of the loess-STL procedure. Our goals are
to verify the theoretical results from Section 3 and to assess the applicability of loess-STL to
real data. The simulation studies are conducted under 40 settings; the settings are detailed
in Section 4.1. For each setting, 10,000 simulations are run. Each simulation consists of
three steps. First, we simulate a dataset and remove some proportions of points from it.
Second, we apply the loess-STL procedure to impute the missing data and extract a trend
from it. Third, we evaluate the estimated trend. These steps are detailed in Section 4.2.
We present the simulation result in Section 4.3 and its consistency with the theoretical result
in Section 4.4.

4.1. General Settings

The simulation studies are conducted with under 40 settings. Each setting specifies
how a time series is generated and how many data points are removed to create missing
data. The time series is made up of three components, the trend component, the seasonal
component and the remainder component. Two approaches are available for simulating
these components: the data-based approach and the model-based approach. In the former
approach, we extract the components from some real data with STL (using the stats::stl
function in R [41]) and use them directly as the simulated components; in the latter ap-
proach, we simulate the components from a model we specify. We consider the data-based
approach because our goal is to assess the loess-STL procedures’ applicability to real data,
so we want the simulated data to share similar characteristics as the real ones. On the other
hand, we consider the model-based approach to show that loess-STL not only works on
a particular dataset, but could also generalise to other situations. Full details of the two
approaches are given in the next section.

An outline of the 40 settings and some information about the real dataset we use are
given as follows. We consider:

• a model-based approach for the trend component.
• a model-based or data-based approach for each of the seasonal components (which is

of 12-month frequency) and the remainder component, and
• ten missing data proportions, ranging from 5% to 50% at a step of 5%.

These give a combination of 1× (2× 2)× 10 = 40 settings which is summarised in
Table 1.
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Table 1. Simulation settings (The details of the two approaches were given in Section 4.1).

Configurations 1 2 3 4

Trend component Model-based
Seasonal component Model-based Data-based Model-based Data-based

Remainders component Model-based Model-based Data-based Data-based

For the data-based approach, we consider the Antarctic upper air temperature data
which were obtained from the Integrated Global Radiosonde Archive (IGRA) available
at https://www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-
archive (accessed on 23 December 2022). The IGRA is a comprehensive radiosonde dataset
which consists of radiosonde and pilot balloon observations from more than 2800 globally
distributed stations. Observations are available at standard and variable pressure levels;
meteorological variables include pressure, temperature, geopotential height, relative hu-
midity, dew point depression, and wind direction and speed. For this study, we select the
temperature data from 22 Antarctic stations at 16 standard pressure levels for a period of
50 years. Radiosonde observations are usually performed twice a day, at noon and midnight
respectively.

The IGRA radiosonde data have undergone quality assurance procedures, includ-
ing, most notably, the basic checks on the elapsed time and relative humidity as well
as an improved selection of a single surface level within soundings in which multiple
levels are identified as surface; further information could be found at https://www.ncei.
noaa.gov/data/integrated-global-radiosonde-archive/doc/igra2-readme.txt (accessed on
23 December 2022).

Out of the 704 (= 22× 16× 2) noon or midnight time series that would have been fully
observed under ideal conditions, only 526 of them are available with each having at least
one observation but possibly many missing values. As the quantity of interest is the macro
movement of the temperature data, we aggregate the data using averaging to get monthly
noon or midnight data; this also helps reduce the noise (i.e., the local fluctuations) in the
data. Note that during the aggregation, a monthly average noon (or midnight) temperature
will be missing only when there were no radiosonde observations at all across all noons (or
midnights) of that month.

In the next session, we detail the simulation procedure.

4.2. Details of Simulation Studies

For each of the 40 settings, 10,000 simulations are run. Each simulation consists of
three steps. First, we simulate an artificial monthly mean temperature time series and
remove some proportions of data from it. Second, we apply the loess-STL procedure to
impute the missing data and extract a trend from it. Third, we evaluate the estimated trend.
Details are given in the remainder of this section.

4.2.1. Simulating a Dataset to Have Missing Data

To simulate a time series, we first search through the 526 time series in the real dataset
and collect those with no missing data. Then we sample one time series from this pool of
‘perfect’ time series randomly and apply STL to extract the trend, seasonal (of 12-month
frequency) and remainder components, denoted by T̂t, Ŝt and R̂t respectively. These com-
ponents are used directly as the simulated components in the data-based approach, or they
are used to estimate the model parameters in the model-based approach, which we detail
in the following.

Trend. We generate a piece-wise linear function and then apply loess smoothing to give a
smooth trend. The number of pieces follows a discrete uniform distribution Dunif(1, 10).
Each piece occupies the same amount of time (except the last piece may contain extra points
when exact division is not possible). Each slope is sampled from the normal distribution
Normal(µ, σ2), where the parameters µ and σ2 are estimated by the method of moment,

https://www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-archive
https://www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-archive
https://www.ncei.noaa.gov/data/integrated-global-radiosonde-archive/doc/igra2-readme.txt
https://www.ncei.noaa.gov/data/integrated-global-radiosonde-archive/doc/igra2-readme.txt
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i.e., we compute Dt = T̂t − T̂t+1, t = 1, · · · , n− 1, then we set µ̂ = D̄ = ∑n−1
t=1 Dt/(n− 1)

and σ̂2 = ∑n−1
t=1 (Dt − D̄)2/(n− 1), where n is the size of the corresponding monthly mean

temperature time series used in the current simulation. As for the intercept, the first piece
starts at 0, and the subsequent pieces start where the previous pieces end.

Season. We use a sine curve with random magnification at the stationary points. The size
of magnification follows a uniform distribution, U(0.8,1.2). To ensure the component is
smooth, the points in the neighbourhood of the stationary points are scaled by the same
factor; the radius of the neighbourhood is set to be a quarter of the wavelength of the
sine curve.

Remainder. We use the normal distribution Normal(µr, σ2
r ), where µr and σ2

r are estimated
by matching the moments of the remainder component of the sampled data set, R̂t.

After a time series is simulated, as above, we randomly remove from it a proportion
of points assuming an equal chance of removal for each point. The missing proportions we
consider are 5% to 50% at a step of 5%.

4.2.2. Loess-STL

Once the time series with missing data is ready, we proceed to impute the miss-
ing data with our procedure, i.e., we apply loess smoothing (using a neighbourhood size
= 0.75 × No. of available points; the choice of 0.75 follows the default setting in stats::stl
function in R [41]) to the cycle-subseries of the time series and interpolate the missing points.
By cycle-subseries, we mean the subseries formed by partitioning the series according to
the cycle implied by the research context. For example, for the artificial monthly tempera-
ture data simulated here, we partition the data according to months to form 12 subseries.
The first series contains the January temperature data over the years; the second series
contains the February temperature data over the years and so on. We consider the imputa-
tion as successful if all the missing points are imputed and failure if there is any point that
cannot be imputed, owing to, for example, having an insufficient number of data points.

Next, we apply STL to extract a trend from the imputed dataset. Six parameters need
to be specified. Five of them can be chosen automatically as given in Section 2.2. The only
one left is the neighbourhood size for seasonal smoothing, ns. ns is a tunable parameter that
incorporates expert knowledge about the seasonal component into the analysis, but the flex-
ibility opens up a gap to be filled when little is known about the data. We suggest two ways
to choose ns in such a situation. The first is to note that choosing ns is related to the bias-
variance trade-off in finding the best curve that describes the seasonal effect. Hence, one can
choose a value that minimises the smoothness-penalised least square error as ns. This ap-
proach makes sense theoretically but requires a large effort to implement. The second way is
more ad hoc. Noting that STL uses loess to smooth the data and loess in R uses a span of 0.75
by default, one can choose ns = 0.75 · {length of the time series}/{number of subseries}.
Admittedly, the value of 0.75 is somewhat arbitrary; the general idea is to avoid extreme
cases like 0 and 1 when one does not have much information. For our simulation, we
suggested using ns = 0.5 · {length of the time series}/{number of subseries}, reflecting
no preference is given to any of 0 and 1 over the other one.

4.2.3. Evaluation Measures for the Estimated Trend

For each simulation, we compute two measures to evaluate the estimated trend. The first
quantity is the mean squared difference between the complete trend and the imputed trend.
We refer to it as the trend error MSEtrend. For the second quantity, we first perform an
ordinary least square(OLS) fit on both the complete trend and the imputed trend versus
the time, and then we take the modulus of the difference of the two slope coefficients. We
refer to it as the slope error. Note that the slopes express the average (temperature) change
per unit time (month) change over the entire timeframe. We consider this quantity because
it is frequently used in the context of climate data (see for example, Turner, Lachlan-Cope,
Colwell, Marshall and Connolley [43]; Zhang [44]; Steig, Schneider, Rutherford, Mann,
Comiso and Shindell [45]).
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4.3. Results of Simulation Studies

For each of the 40 simulation settings (4 configurations × 10 missing proportions),
10,000 simulations are run; we summarise the results using boxplots in Figures 2 and 3.
The configurations referred to in the figures are given in Table 1.

In Figure 2 we present boxplots of the trend errors (defined in Section 4.2.3) against
the different proportions of missing data under the four configurations. In addition, we
label the averages with grey squares. In the following, we summarise our findings.

1. The average, the medium, the interquartile range and the maximum/minimum (ex-
cluding the outliers) of the trend errors in each configuration show a near-linear
increasing pattern as the proportion of missing points increases. Similar patterns are
observed over the four configurations.

2. Averages of the trend errors are significantly below 0.2 squared degree Celsius over
all the settings, with the maximum being at the 50% missingness setting. At this 50%
missingness level, the trend errors only go as high as 0.181 for the average, 0.718 for
the maximum(including outliers), and 0.110 for the interquartile range. The results
are satisfactory given that the amount of missing data is substantial.

3. At the 50% missingness level, a few outliers show abnormally large errors in config-
urations 2 and 4. Two facts contribute to this phenomenon. First, the missingness
proportion 50% is a critical point beyond which a dispersing missing-data pattern can-
not form. At the critical level, large gaps can sometimes form; this prevents loess-STL
from extracting trends accurately and gives rise to large errors. Second, both configura-
tions 2 and 4 use the data-based approach to generate the seasonal component. These
seasonal components are relatively more irregular, so it is harder to get an accurate
estimate. The large missingness proportion further worsens the situation, leading to
large errors in the extracted trend.

4. Relating to the true trend, in all 40 settings, the 10,000 mean squared differences between
the (smoothed) complete trend and the true trend have an average of less than 0.048
and a maximum of less than 0.34. The corresponding figures for the 10,000 mean
squared differences between the (smoothed) imputed trend and the true trend are 0.075
and 0.485 respectively. The first two statistics suggest STL can produce reliable trend
estimates while the last two statistics suggest when loess imputation is used, STL can
be robust against missing data. Figure 4 gives a visual impression of the comparison
between the complete trend, the imputed trend, and the true trend for a randomly
simulated time series of length 498 months using Configuration 2 and with a random
removal of 40% data.

5. As a supplementary note, the 95%-quantiles of the trend errors are below 0.324 in all
40 settings. Moreover, in each setting the 95%-quantile of the 10,000 trend errors is
less than 0.6 times the corresponding maximum error. This suggests that the typical
case is generally much better than the worst case.

In Figure 3, we present boxplots of slope errors (defined in Section 4.2.3) against the
different proportions of missing data under the four configurations. Again, we label the
averages using grey squares. Our findings can be summarised as follows:

1. The average, the medium, the interquartile range and the maximum/minimum (ex-
cluding the outliers) of the slope errors show a near-linear increasing pattern as the
proportion of missing points increases. Similar patterns are observed over the four con-
figurations.

2. Averages of the slope errors are below 0.001 over all the settings. At the 50% missing-
ness level, the slope errors only go as high as 0.00071 for the average, 0.00385 for the
maximum (including outliers), and 0.00074 for the interquartile range.

3. As a supplementary note, the 95%-quantiles of the slope errors are below 0.00172 in
all 40 settings. In each setting, the 95%-quantile of the 10,000 slope errors are less than
0.54 times the corresponding maximum error, again suggesting that the estimate one
typically gets is generally much better than that in the worst-case scenario.
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Figure 2. Boxplots of the trend errors (in squared degree Celsius) under different settings.

Figure 3. Boxplots of the slope errors (in degree Celsius per month change) under different settings.
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Figure 4. A comparison of the true trend and the estimated trends for a randomly simulated time
series of length 498 months using Configuration 2 and with a random removal of 40% data.

4.4. Consistency with Theoretical Results

Our simulation studies have shown that applying loess-STL to incomplete data (up to
50% missing) can produce trend estimates that are close to the ones from applying STL to
complete data. Now we relate these results to the theoretical results from Section 3. We
first compute theoretical upper bounds for the trend errors, then we check if the bounds
actually hold. Since we know the original data in the simulation studies (as we generated
them), we can directly compute the imputation errors and apply Equation (4) to find the
theoretical bounds. The maximum of the trend errors (over 10,000 simulations in each
setting) and the theoretical bounds are given in Tables 2 and 3 respectively.

Table 2. Maximum of trend errors (in squared degree Celsius) over 10,000 simulations.

Config. Proportions of Missing Data

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1 0.0664 0.1006 0.1878 0.2072 0.2721 0.3323 0.3708 0.4539 0.5212 0.5424
2 0.0388 0.1179 0.1175 0.1460 0.1891 0.2703 0.2937 0.3458 0.3791 0.5588
3 0.0538 0.1093 0.1330 0.1692 0.2195 0.2677 0.3195 0.3811 0.4119 0.4543
4 0.0354 0.0761 0.1034 0.1335 0.2446 0.2105 0.2622 0.3455 0.4170 0.7176

Table 3. Theoretical upper bounds.

Config. Proportions of Missing Data

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1 0.4486 0.9182 1.4050 1.8780 2.3821 2.8884 3.4318 3.9511 4.5352 5.1445
2 0.4011 0.8296 1.2630 1.6855 2.1358 2.5936 3.0501 3.5747 4.0772 4.6522
3 0.5074 1.0415 1.5777 2.1024 2.6729 3.2470 3.8160 4.4323 5.0864 5.7861
4 0.4762 0.9760 1.4852 1.9986 2.5099 3.0434 3.6271 4.2040 4.7851 5.4598

Comparing Tables 2 and 3, we see that the theoretical bounds are effective, showing
consistency of the numerical results with our theoretical results. However, we remark that
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these bounds inevitably become loose as the proportion of missing data gets large. This is
because the imputation error only gives information about the mean squared individual
imputation errors but not the signs of the individual errors. Thus, in the worst-case scenario
where all the individual imputation errors have the same sign, the trend extracted with
STL can indeed have a large bias. The bias is more pronounced when the proportions of
missing data are large, therefore, the bounds for those proportions are loose.

5. Application

Deriving an accurate trend in meteorological data (e.g., temperature) is important
for the detection and attribution of climate change. To derive plausible trends, long-term
time series, preferably over several decades, are used. However, these time series often
have missing data (e.g., due to failure of instruments) which impact the accuracy of the
estimated trend. In remote areas like the Arctic and the Antarctic, the proportion of missing
data could be particularly large, but at the same time, accurate trend estimates over these
areas are of great importance. For example, the response of the Arctic to global warming is
one of the major indicators of climate change, cf. IPCC [46].

In this section, we apply the loess-STL procedure to the Antarctic temperature data
introduced in Section 4.1. In particular, we apply the loess-STL to the midnight temperature
time series collected at the Novolazaravskaja station at 8 different pressure levels from
October 1969 to March 2011. We made this choice because the missing data in these time
series show a high degree of dispersed-ness, hence it fulfils the assumptions we proposed.
In Figure 5, we show as an illustration the monthly average midnight temperature time
series at 150 hPa pressure level over Novolazaravskaja station before and after imputations.
The circles are the original data points, and the rhombuses are the imputed data points.
The time series is 498 months long and has 42 data points missing, which is equivalent to a
missing proportion of 8.4%. Upon the imputation, STL is applied to extract the trend from
the time series. We do this to each of the 8-time series collected at the 8 pressure levels and
generate a profile plot displayed in Figure 6. In the figure, the bars and the dots represent the
average temperature change per decade (in degree Celsius) at the corresponding pressure
level. As a reminder, the average change is the slope coefficient (multiplying 120 months)
of the OLS line fit on the extracted trend. The ±2 standard errors are provided using error
bars to represent approximately 95% confidence intervals, and a smoothed line is plotted to
show the dynamics of the average temperature change over the different pressure levels.
Figure 6 confirms the climatologists’ understanding that radiosonde observations over
Antarctica become warming in the lower troposphere between 850 and 400 hPa, and strong
cooling in the upper troposphere between 250 and 150 hPa over the past 5 decades.

Figure 5. An illustration of the Novolazaravskaja time series at 150 hPa before and after imputation.
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Figure 6. Midnight temperature change at the Novolazaravskaja station from October 1969 to March
2011.

6. Conclusions

In this paper, we studied the problem of trend extraction when there are missing
data in time series. Specifically, we investigated and derived analytic results for a general
class of procedures, the imputation-STL procedures. The results provide insight into the
effect of imputation errors on the trend estimates and justify the use of the procedures in
practice. We also examined a particular case, the loess-STL procedure, and evaluated its
performance through simulated time series data and the Antarctic upper air temperature
time series. A set of conditions under which the procedure can give reliable trend estimates
is identified: the underlying trend needs to be smooth and the missing data needs to be
dispersed over the whole time series. The simulation studies and the theoretical results
showed consistency with each other and overall, they both support strongly the use of
loess-STL procedures when the conditions are satisfied. Finally, we apply loess-STL to
the upper air temperature data from station Novolazaravskaja between October 1969 and
March 2011, with the results on temperature change per decade being displayed in Figure 6.
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