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Abstract: Ambient air quality is the most important environmental factor affecting human health,
estimated by the WHO to be responsible for 4.2 million deaths annually. Having timely estimates
for air quality is critical for implementing public policies that can limit anthropogenic emissions,
reduce human exposure and allow for preparation and interventions in the health sector. In Brazil,
wildfires constitute an important source of particulate matter emission, particularly in the country’s
northern and midwestern regions, areas that are under-served in terms of air quality monitoring
infrastructure. In the absence of regulatory-grade monitoring networks, low-cost sensors offer a
viable alternative for generating real-time, publicly available estimates of pollutant concentrations.
Here, we examine data from two low-cost sensors deployed in Brasília, in the Federal District of
Brazil, during the 2022 wildfire season and use NOAA’s HYSPLIT model to investigate the origin
of a particulate matter peak detected by the sensors. There was high agreeability of the data from
the two sensors, with the raw values showing that daily average PM2.5 concentrations reached peak
values of 46 µg/m3 and 43 µg/m3 at the school and park sites, respectively. This study demonstrates
the value of low-cost sensors and their possible application in real-time scenarios for environmental
health surveillance purposes.

Keywords: particulate matter; low-cost sensors; wildfires; air trajectories; source contribution

1. Introduction

Ambient (external) air pollution is now the primary environmental factor impacting
human health [1], estimated to be responsible for 4.2 million deaths in 2019 [2]. In Brazil,
wildfires represent a significant source of air pollutant emissions, particularly fine par-
ticulate matter (PM2.5) [3]. The public health impact of wildfires in Brazil has long been
analysed [4], with increasingly improved estimates of short- and long-term implications for
morbidity and mortality [5,6]. One factor that limits the precision of these estimates is the
lack of in loco monitoring data. Although several major metropolitan areas in Brazil possess
state-of-the-art air quality monitoring networks, those regions most heavily impacted by
wildfires—mainly the northern and midwestern regions—in large part do not [7]. This lack
of information limits the viability of timely environmental health surveillance interventions
as well as the development of well-informed public policies to address wildfire-related
air degradation in these areas. Remotely sensed estimates of pollutants such as PM2.5 are
useful in this context but lack the spatiotemporal resolution needed for more finely tuned
estimates of exposure.
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One city in Brazil that lacks adequate air quality monitoring is the nation’s capital,
Brasília. Located in the Brazilian savanna region (the Cerrado biome), Brasília has a popu-
lation of 2,817,068 residents and covers an area of 5760 square kilometres [8], resulting in
one of the highest population densities in the country by state. Previous work investigating
air pollution in Brasília has focused on source apportionment through land-use regression
models [9] and chemical analyses of high-volume sample materials of PM in Brasília and
has linked episodes of poor air quality in the city to burning events in the Cerrado [10].
This complements other research in this area which has shown that smoke emitted during
the Brazilian wildfire season can travel long distances, leading to air pollution episodes in
cities hundreds of kilometres away [11].

The city’s environmental regulatory agency conducts monthly air quality monitoring
at six sites throughout the capital, measuring levels of inhalable particulate matter (PM10)
and total suspended particles (TSP) by using high-volume samplers. A technique that
dates back to the 1960s [12], high-volume sampling remain a valid approach to determining
particulate concentrations [13]. However, the required sampling period and the need to
retrieve and weight the samples limit the temporal coverage that can be achieved through
such devices as well as the availability of data in a timely manner.

Low-cost air quality sensors have been publicly available for several years, and their
introduction to the environmental science field has given new tools to urban decision and
policy makers, presenting a wide array of opportunities and challenges [14]. The ability
to deploy spatially dense networks of air quality sensors that transmit unprecedented
volumes of data in real time, much of which is publicly available, has resulted in new
paradigms for hyperlocal air pollution mapping [15]. While not capable of providing the
same level of validity as regulatory-grade monitoring stations, these technologies have
their own benefits, such as being easy to deploy in the field and requiring little or no
technical support to operate. Most are also able to make readings at a high frequency and
transmit them in real time, which is particularly important in detecting and responding to
air pollution episodes. Many low-cost sensors have also undergone independent testing to
compare their performance to reference monitors.

Low-cost sensors have been deployed in multiple cases to detect wildfire smoke, with
one study reporting good performance during collocation with reference monitors during
the 2018–19 wildfire seasons [16]. In this study, the PurpleAir Sensor (hereafter PA sensor)
showed the highest correlation with the collocated reference monitor, although it is noted
that the sensor tends to overestimate PM2.5 at concentrations over 200 µg/m3. In another
study, which used the same Plantower measuring device, He et al. were able to detect the
impact of wildfire smoke in Seattle on both outdoor and indoor PM2.5 concentrations during
a particular episode in the 2020 wildfire season [17]. Other work in this area conducted in
Brasília has, in fact, employed the use of low-cost sensors and calibrated them using the
current high-volume samplers [18]. This study builds on this work by using an extended
sampling period and incorporating measurements of PM2.5.

The main goal of this study was to obtain particulate matter measurements during
the period from 2022 to 2023 in Brasília. Specifically, the study aimed to describe PM2.5
concentrations throughout the year analysed as well as the spatial distribution of wildfires
during this period and assess the contribution of such biomass burning events to the
concentrations observed at the study site. The data collected show elevated levels of
particulate matter during periods that correspond to the Brazilian wildfire season and
indicate a significant contribution of biomass burning to PM2.5 concentrations in the city.

2. Materials and Methods
2.1. Overview

In this study, we deployed two PurpleAir PA-II-SD model sensors to measure air
quality in Brasília, in the Federal District of Brazil. While one was located within a city
park, the other was located in a populous neighbourhood and closer to major highways;
these locations were selected to assess the impact that green/blue areas may have on
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mitigating particulate matter concentrations [19,20]. The data collected over the course
of one year were analysed using R Studio to describe temporal PM2.5 variations and then
combined with particle trajectory analysis using the Hysplit model to assess possible
source contributions.

2.2. Sensor Installation

Two PA sensors were acquired for this study. This model of sensor was chosen
because of its relatively low cost and practicality as well its history of use in previous
studies. The PA sensor has a retail cost of approximately USD 300 and does not require
calibration or maintenance after installation, provided the instruments are functioning
normally. Instruments that meet the EPA’s monitoring standards for Federal Reference
Methods and Federal Equivalent Methods, for comparison, have costs that can range
from USD 15,000 to 40,000. Additionally, these instruments are rarely used as stand-alone
devices, generally requiring robust on-site infrastructure as well as dedicated staff for
calibration and quality checks.

The PA sensors use a pair of Plantower PMS5003 laser particle counters and convert
their readings into particulate matter concentrations (µg/m3). The PMS5003 instrument
draws air by fan through a set of inlet holes at 0.1 L/min and then routes the air stream
through a chamber perpendicular to a laser. Here, a sensor captures 90◦ light scattering of
the laser by converting scattered light to voltage pulses. The particle count values (scat-
tering signal pulses) are transformed into mass readings in µg/m3 through a proprietary
algorithm developed by Plantower. Although the instruments operate at a frequency of 10 s,
the highest-resolution readings recorded by the sensor are 2 min averaged data, unless the
user manually modifies the sensor [21,22]. The sensor uses a separate instrument (BOSCH
BME688) to measure meteorological parameters. Table S1 provides an overview of the PA
sensor characteristics and limitations, as reported by the manufacturer.

Although previous studies have successfully deployed PA sensors in remote areas
using solar arrays, we opted to use existing electrical infrastructure at both sites. The PA
sensor is equipped with an SD card, which stores all measurements, but is also capable of
transmitting data continuously to the PurpleAir network through Wi-Fi connection. We
connected the sensor to existing Wi-Fi networks at both sites; in addition to allowing for
remote data verification, this has the benefit of creating a publicly available repository
of data.

Both sensors were installed in the North Wing of Brasília, in the Federal District of
Brazil. The first sensor (hereafter ‘park sensor’) was installed on a supporting post of an
outdoor pavilion at a municipal park (Olhos d’Água) on 15 April 2022. Several candidate
sites were evaluated for the second sensor (hereafter ‘school sensor’), which was eventually
installed on a pillar at the entrance to a public elementary school (Escola Classe 115 Norte)
on 30 August 2022. Although the SD cards were the primary data access tool, both sensors
were connected to onsite Wi-Fi networks for transmission to the PurpleAir platform.

2.3. Site Description

The park sensor is located in a forested municipal park that contains a series of walking
paths. The park is 28 hectares in size, includes a small pond (Lagoa do Sapo) and receives
around 1000 visitors per weekday (1500/day on the weekend). Due to the limited range of
the Wi-Fi network, as well as the need to keep the sensor protected from the elements, the
park sensor was installed on an open wood shelter near the park’s main office and is located
approximately 30 m from a moderate-traffic arterial avenue. The school sensor is located in
a municipal elementary school in the same neighbourhood of Brasília (Asa Norte–North
Wing), adjacent to local residential access routes. The park sensor and the school sensor are
located approximately 360 and 140 m, respectively, from the major freeway that transects
the pilot plan sector of Brasília. Figure 1 shows the location of both sites within the Federal
District of Brazil.
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2.4. Air Quality Data Analysis

One full year of raw data from the two sensors were analysed for this study, covering
the period from 1 September 2022 to 31 August 2023. To limit data gaps, most data
were collected directly from the sensors’ SD cards, although data from the period from
11 August to 31 August 2023 were downloaded using the PurpleAir Data Download Tool
and combined with the SD card readings. All data were compiled and manipulated as
described below using R Studio. Due to the occasional unreliability of Wi-Fi signals, the
transmitted datasets are generally less complete; however, even the SD card readings were
impacted by occasional power outages.

Data obtained directly from the SD cards were more complete, with the data ob-
tained online showing more incomplete readings for the school site. However, the data
downloaded for this period still have an acceptable number of readings, as presented in
Table 1.

Table 1. Number of readings by site and period of the study.

Period Park School

Full year 2.6 × 105 2.6 × 105

1 September 2022 to 10 August 2023 2.5 × 105 2.5 × 105

11 August 2023 to 31 August 2023 1.43 × 104 1.28 × 104

The meteorological parameters measured by the PA sensor are temperature, humidity,
dewpoint and pressure, while particulate matter readings are available for three size



Atmosphere 2023, 14, 1796 5 of 15

fractions, being PM1.0, PM2.5 and PM10. For each of these, the readings are available for two
correction factors, recommended for applications in indoor (CF = 1) and outdoor (CF = atm)
settings. The PA sensor has duplicate particulate measuring instruments for increased
redundancy, resulting in two channels (a and b) for each particulate matter parameter. For
this study, we used the PM2.5 (cf = 1, a and b channels) and relative humidity data.

The data were organized into 5 min averages for all parameters analysed. Due to an
apparent sensor malfunction, the school data included two gaps, during which relative
humidity was not recorded by the sensor. The larger of the gaps occurred during the
period from early January to mid-February, after which the meteorological sensor resumed
reading as normal. This gap resulted in 2.5 × 104 missing 5 min averaged relative humidity
readings for the school sensor data. The relative humidity data from the two sensors are
highly correlated (p < 0.0001), with values being slightly higher at the park site compared
to those at the school site, which is to be expected given the surrounding greenspace. A
linear correlation model was, thus, used to fill these gaps using data from the park sensor.

Data cleaning steps were applied to ensure agreement between the two channels
of each sensor. The hourly average was calculated for each channel, as well as the total
difference and percent difference between the two channels. Hourly average readings
were removed if the two channels did not agree by both more than 5 µg/m3 and by more
than 70% [23]. This cleaning process resulted in the removal of 5 h readings, which are
highlighted in Figure S4.

The a and b channels were averaged to produce a single PM2.5 time series for each site.
The resulting data consisted of 1.05 × 105 5 min averaged values for the one-year period
analysed for each site. The correction factor developed by the United States Environmental
Protection Agency (EPA) was then applied to generate EPA-corrected PM2.5 values, using
the formula below.

EPA-Corrected PM2.5 = raw PA PM2.5 data (CF = 1) × 0.52 − RH × 0.085 + 5.71 (1)

The correction factor developed by Barkjohn et al. for PM2.5 data was derived from
PA sensors.

This correction factor was developed by Barkjohn et al. through comparisons of PA
data to reference regulatory monitoring data and reduces error and bias compared to the
raw cf = 1 output [21].

Once all monitoring data were combined and corrected, the R package Openair [24]
was used to generate graphs showing average daily and hourly concentrations. This
package has many functionalities and has been used in conjunction with PurpleAir data to
describe temporal and spatial variations in particulate matter concentrations for similar
applications [25,26]. For the Hysplit analyses (below), the data from both sensors were
averaged to obtain a single series for the city.

2.5. Wildfire Hotspot Analysis

To describe wildfire distribution throughout the study period, wildfire hotspot de-
tection data were acquired from the Brazilian Space Research Institute (Instituto Nacional
de Pesquisa Espacial—INPE) platform BDQueimadas for the whole study period. The
‘reference satellite’ was selected for the wildfire hotspot detection data. The satellite uses
data from Aqua’s MODIS sensor, specifically data that correspond to the afternoon period
in Brazil [27,28]. The wildfire hotspot data were then separated by biome and graphed
using the same Openair package.

To visualize wildfire hotspot density throughout the year, the wildfire hotspots de-
tected during the study period were broken into yearly quarters and raster files were created
by applying a kernel function to the wildfire hotspot shapefile (radius used: 300 km). For
the day that corresponded to the highest concentrations observed, five days of accumulated
wildfire hotspot data were mapped using the same kernel function, alongside the Hysplit
trajectories for that day (see below).
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Lastly, 5-day averages of hotspots detected in Brazil were calculated for each day
in the study period and compared to 5-day averages of PM2.5 using a standard Pearson
correlation test.

2.6. Hysplit Analyses

The Hysplit analyses focused on the main PM2.5 episode observed during the study
period, having occurred in September 2022, and were performed in R Studio using the
packages Openair and Splitr. Given the close proximity of the sensors, along with the
model resolution, the model was run using the midpoint of the two sensors as the reference
location. For the one-month period that corresponded to the maximum peak observed
during this episode, the backwards trajectories were generated for 120 h paths at 3 h
intervals, using a height of 250 m. The meteorological model selected for these trajectories
was gdas1. The Hysplit model’s output trajectory data were combined with the PM2.5
concentration data using R Studio to identify the trajectories that corresponded to peak
concentrations observed in September 2022. For the peak concentration date—15 September
2022—the same parameters were used but the trajectories were generated at 1 h intervals.
These trajectories, corresponding to the highest concentrations observed during the episode,
were then mapped in QGIS to combine this information with wildfire hotspots detected
during the same period.

2.7. Source Allocation

Although the trajectory analyses for the peak episode shed some light on the origin of
air masses during this period, it is difficult to identify what specific areas throughout the
region contribute to PM2.5 concentrations throughout the year. To better understand these
processes over a longer time series, Hysplit trajectories were generated for the entire study
period. In this case, backwards trajectories were generated for 120 h paths at 3 h intervals,
using heights of 250, 500 and 1000 m. The meteorological model selected for this analysis
was NCEP/NCAR Reanalysis 1. The resulting trajectory data were once again joined with
the averaged sensor data for the entire study period.

We then used simplified quantitative transport bias analysis (SQTBA) to identify
possible contributing sources throughout the study period. This technique uses trajectory
and concentration data and estimates the likely contribution of different areas on a grid to
the receptor (sensor site) [29,30].

3. Results
3.1. Descriptive Analysis

The results revealed that particulate matter concentrations at both sites varied greatly
throughout the day and over the course of the year. Figure 2 shows the daily average PM2.5
concentrations for both sensors. The data from the two sensors are well correlated (r = 0.90,
p < 0.0001), presenting highly similar behaviour in terms of overall concentrations and
temporal variation. The first month of data collected presented the highest concentrations,
reaching peak daily average concentrations of 43 µg/m3 and 46 µg/m3 at the park and
school locations, respectively. Figure 2 also shows WHO guideline values for daily aver-
age PM2.5 concentrations, showing exceedances of this threshold for both the park and
school sites.

Figure 3 shows the temporal distribution of the data from the two sites in more
detail. We observe that both sensor locations present highly similar behaviour, with some
important differences. Higher hourly average concentrations are observed at the park
sensor site during the period from 18 to 23 h, whereas the school sensor experiences higher
concentrations during the period from 2 to 7 h.

In terms of the distribution by day of the week, there is a slight upward trend from
the beginning to the end of the week, which could reflect higher transit volumes on the
weekend. As for the monthly distribution, we see that September had the highest average
concentrations, followed by October and August.
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3.2. Hotspot Analysis

Figure 4 shows the distribution of wildfire hotspots by Brazilian biome for the period
analysed, showing that the Amazonia biome accumulated the most wildfire hotspots
(1.01 × 105), followed by the Cerrado (5.24 × 104), the biome in which the study area is
located. Higher wildfire hotspot frequencies can be observed for the periods from October
to December and from June to August.
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As expected, in agreement with the frequency of wildfire hotspots (Figure 4), we
see that the first and last quarters saw by far the largest and most dense wildfire hotspot
clusters. In both periods, the wildfire hotspots were concentrated in the northern and
northeastern regions, with some clusters entering the central–west region as well.

Figure S5 shows the relationship between PM2.5 and hotspots during the study period.
Statistical analysis of the daily PM2.5 and wildfire hotspot values showed only a moderate
correlation (r = 0.51, p < 0.0001). However, this relationship became more significant when
considering the 5-day average values of both parameters (r = 0.67, p < 0.0001).

3.3. Hysplit Analysis

Figures 6 and 7 show the results of the Hysplit analyses. The trajectories are shown
separately for each day, with each of the eight 120 h trajectories being classified by corre-
sponding PM2.5 concentrations at the sensor location.
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We can see that many trajectories during this period originate off the southeastern coast
of Brazil, passing from east to west over land as they approach Brasília. The trajectories
for the period surrounding the concentration peak during this month, however, appear to
originate mostly in areas that include the Cerrado and Amazon biomes. The trajectories on
the 15th (peak concentration) originate in the region east of Brasília (Cerrado) and those on
the 16th and 17th are shown to originate northwest (Amazon) and travel southeast before
redirecting north to the city. Figure 7 shows the trajectories for the peak-concentration day
(15 September 2022) in more detail, using 1 h interval trajectories.

In general, trajectories on this date show an east-to-west movement, with those orig-
inating further west moving south before moving north toward the sensor location. We
can see that many of the 120 h trajectories that correspond to the highest concentrations on
this day originated in the Cerrado biome, in areas that presented elevated wildfire hotspot
indices on during the 5-day period leading up to this date.

3.4. SQTBA Analysis

Figure 8 shows the results of the transport bias analysis, covering the entirestudy
period.

The results of the SQTBA analysis identified two likely source locations of PM2.5 for
the data obtained by the two sensors in Brasília. The first includes the area west of Brasília,
namely the border of Brazil with Paraguay and Bolivia, while the second corresponds to
the São Paulo Metropolitan Area.
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4. Discussion

The hourly distribution of PM2.5 concentrations (Figure 3) agrees with the literature
regarding PM2.5 emissions in metropolitan areas that are influenced by mobile sources,
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with peak concentrations corresponding to high-traffic periods [31]. Although Brasília
does not contain large industrial areas and, therefore, has few major point sources of air
pollution, the city’s high population density, poor public transportation system, widespread
urban design and large individual vehicle fleet result in a high number of mobile sources.
However, the hourly distribution differs at the two sites during the morning and evening
periods, with slightly higher concentrations at the school site observed in the morning and
higher concentrations at the park site observed in the evening. While the overall trend
throughout the day is consistent with the influence of vehicle traffic, the closer proximity of
the school site to a major highway could be causing the higher morning concentrations. The
higher concentrations observed at the park location, on the other hand, may be related to
trash burning in nearby encampment communities, a practice that is particularly common
at night during the winter months. This is consistent with data reported by the fire brigade
in Brasília, which identifies trash burning in the first semester of 2022 as one of the main
causes of fires and shows that fire-burning events generally occur in the period from 6 p.m.
to midnight [32].

The month-to-month trend observed in the data, with the period from August to
October having the highest concentrations of PM2.5, supports the argument that wildfires
contribute to air quality degradation during the dry season. During this part of the year,
the Cerrado and Amazon biomes are subject to high concentrations of wildfires, resulting
primarily from deforestation and land-use change dynamics [33]. While the smoke released
from wildfires generally impacts the immediate area most severely, smoke plumes can
travel hundreds of kilometres and impact air quality in other regions.

In terms of the possible mitigating influence of vegetation, the annual average for the
park sensor (9.3 µg/m3) is essentially equal to that of the school site (9.2 µg/m3), indicating
that the park site does not present the expected profile for a green area and is not providing
a protective factor against PM2.5. This certainly does not counter the established evidence
for these ecological services [34,35] but could be explained by the sensor’s location within
the park, since the sensor is located at the park’s edge and close to a nearby road. This site
could also be impacted more by routine trash/solid fuel-burning activities that occur in the
city, given its proximity to undeveloped plots.

The Hysplit and SQTBA analyses further confirm the contribution of biomass-burning
events to the elevated PM2.5 concentrations observed in the dry season. The identification
of a source near the Brazilian border with Paraguay and Bolivia (obtained by SQTBA) is
consistent with the large number of wildfires observed in this area during the dry season
as well as with common smoke transport routes from northwest to southeast [36]. The
northward trajectories that pass through the São Paulo Metropolitan Area, meanwhile,
could indicate that elevated PM2.5 concentrations in this area [37], which are largely due to
local sources, also contribute to the PM2.5 concentrations observed at the receptor site.

It should be noted that this work is limited by the fact that the PA sensors were not
collocated with a reference monitor, which would have allowed for a site-specific calibration
factor. A longer time series of PM and wildfire hotspot data would likely provide a more
complete picture of the contribution of biomass burning. Lastly, deploying more sensors
across a wider range of environments in Brasília would allow for more comprehensive
source contribution assessments.

5. Conclusions

In this paper, we demonstrated the use of low-cost sensors, in conjunction with the
Hysplit model, to detect air pollution episodes in a metropolitan area and to identify wild-
fires as a contributing emission source, building on previous works that have shown the
value of data derived from these sensors to investigate the impact of this phenomenon.
The data from the sensors showed relatively low overall concentrations of PM2.5 (annual
daily average between sites: 9.3 µg/m3), with September 2022 standing apart as a month
that experienced much higher readings from both sensors (average during this month:
19 µg/m3). These results show the large impact that biomass-burning events can have on
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communities hundreds of kilometres away, shedding light on the importance of deterrence
actions to slow illegal deforestation and burning. Wildfires in Brazil represent a seasonal,
predictable public health emergency that occurs every year. During the dry season, concen-
trations of pollutants such as PM2.5 routinely reach levels that can be many times greater
than guideline thresholds. With global warming estimated to increase susceptibility to
wildfires across many parts of Brazil, the need to respond to this crisis demands the urgent
deployment of innovative technologies that can help guide interventions in both public
health and environmental regulatory arenas. Real-time monitoring of air pollution from
wildfires is needed to generate alerts and implement interventions that can reduce popula-
tion exposure and prepare healthcare systems accordingly. As sophisticated monitoring
networks are slowly expanded across Brazil, alternative technologies such as satellite-
derived estimates and low-cost sensors should be considered to fill this gap, especially in
under-served areas. These technologies can, in fact, be incorporated in conjunction and can
leverage existing monitoring networks; these systems can work in sync with one another
to constantly improve calibration methods and deliver highly granular data that provide a
more comprehensive picture of air pollution in these areas. This would allow for better
quantification of exposure levels and provide visibility to this important issue.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14121796/s1. Figure S1. Photos showing sites where
park (top) and school (bottom) sensors were installed. Table S1. Characteristics of the PurpleAir
PA-II-SD sensor. Figure S2. Graph showing correlation relationship between the EPA-corrected
5 min averaged measurements at the school (x) and park (y) sites. Figure S3. Graph showing
correlation relationship between relative humidity values measures at the school (x) and park (y)
sites. Figure S4. Comparison of A and B channel hourly average readings. The values in light blue
are those which met the exclusion criteria during the data cleaning steps, and which were removed
from the analysis. Figure S5. Comparison of daily (top) and 5-day average (bottom) PM2.5 and
wildfire hotspot values.

Author Contributions: Conceptualization, P.C., P.K., T.N. and H.R.; methodology, P.C. and T.N.;
software, P.C. and T.N.; validation, T.N., P.K. and H.R.; formal analysis, P.C.; investigation, P.C. and
T.N.; writing—original draft preparation, P.C.; writing—review and editing, P.C., T.N., H.R. and P.K.;
visualization, P.C.; supervision, T.N.; project administration, H.R.; funding acquisition, P.C. and H.R.
All authors have read and agreed to the published version of the manuscript.

Funding: HR received a productivity grant from CNPq, level 1A. This grant was partially used for
the acquisition of the low-cost samplers used in this research. PC received a visiting PhD scholarship
from CAPES, Brazilian Ministry of Education—Finance Code 001. PK acknowledges the support
received from the NERC-funded GreenCities (NE/X002799/1) and UKRI (NERC, EPSRC, AHRC)
funded RECLAIM Network Plus (EP/W034034/1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data used in this study are available online at the PurpleAir website.

Acknowledgments: Authorization was obtained from the Brasília Environmental Agency (IBRAM)
to install the sensor at the park location (authorization number 81961952/2022). The authors thank
the management of both Parque Olhos D’Água and Escola Classe 115 Norte for their willingness
to participate in the project by hosting the sensors and are grateful for the help of onsite staff in
installing the sensors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. GBD 2019 Risk Factors Collaborators. Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990–2019: A Systematic

Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [CrossRef] [PubMed]
2. World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization:

Geneva, Switzerland, 2016.

https://www.mdpi.com/article/10.3390/atmos14121796/s1
https://www.mdpi.com/article/10.3390/atmos14121796/s1
https://doi.org/10.1016/S0140-6736(20)30752-2
https://www.ncbi.nlm.nih.gov/pubmed/33069327


Atmosphere 2023, 14, 1796 14 of 15

3. Cobelo, I.; Castelhano, F.J.; Borge, R.; Roig, H.L.; Adams, M.; Amini, H.; Koutrakis, P.; Réquia, W.J. The Impact of Wildfires on Air
Pollution and Health across Land Use Categories in Brazil over a 16-Year Period. Environ. Res. 2023, 224, 115522. [CrossRef]
[PubMed]

4. Ribeiro, H.; de Assunção, J.V. Efeitos Das Queimadas Na Saúde Humana. Estud. Avançados 2002, 16, 125–148. [CrossRef]
5. Ye, T.; Xu, R.; Yue, X.; Chen, G.; Yu, P.; Coêlho, M.S.Z.S.; Saldiva, P.H.N.; Abramson, M.J.; Guo, Y.; Li, S. Short-Term Exposure to

Wildfire-Related PM2.5 Increases Mortality Risks and Burdens in Brazil. Nat. Commun. 2022, 13, 7651. [CrossRef] [PubMed]
6. Wu, Y.; Li, S.; Xu, R.; Chen, G.; Yue, X.; Yu, P.; Ye, T.; Wen, B.; de Sousa Zanotti Stagliorio Coêlho, M.; Saldiva, P.H.N.; et al.

Wildfire-Related PM2.5 and Health Economic Loss of Mortality in Brazil. Environ. Int. 2023, 174, 107906. [CrossRef] [PubMed]
7. Vormittag, E.d.M.; de Araújo, P.A.; Cirqueira, S.S.R.; Wicher Neto, H.; Saldiva, P.H.N. Análise Do Monitoramento Da Qualidade

Do Ar No Brasil. Estud. Avançados 2021, 35, 7–30. [CrossRef]
8. Instituto Brasileiro de Geografia e Estatística (IBGE). Censo Demográfico 2022—População e Domicílios: Primeiros Resultados.

2023; Volume 75. Available online: https://www.ibge.gov.br/estatisticas/sociais/trabalho/22827-censo-demografico-2022.html
(accessed on 1 September 2023).

9. Réquia, W.J.; Roig, H.L.; Koutrakis, P. A Spatial Multicriteria Model for Determining Air Pollution at Sample Locations. J. Air
Waste Manag. Assoc. 2015, 65, 232–243. [CrossRef]

10. Maia, P.D.; Vieira-Filho, M.; Prado, L.F.; Martins da Silva, L.C.; Sodré, F.F.; Ribeiro, H.d.S.V.; Ventura, R.S. Assessment of
Atmospheric Particulate Matter (PM10) in Central Brazil: Chemical and Morphological Aspects. Atmos. Pollut. Res. 2022,
13, 101362. [CrossRef]

11. Vara-Vela, A.L.; Herdies, D.L.; Alvim, D.S.; Vendrasco, É.P.; Figueroa, S.N.; Pendharkar, J.; Fernandez, J.P.R. A New Predictive
Framework for Amazon Forest Fire Smoke Dispersion over South America. Bull. Am. Meteorol. Soc. 2021, 102, E1700–E1713.
[CrossRef]

12. Jutze, G.A.; Foster, K.E. Recommended Standard Method for Atmospheric Sampling of Fine Particulate Matter by Filter
Media—High-Volume Sampler. J. Air Pollut. Control Assoc. 1967, 17, 17–25. [CrossRef]

13. Krug, J.D.; Dart, A.; Witherspoon, C.L.; Gilberry, J.; Malloy, Q.; Kaushik, S.; Vanderpool, R.W. Revisiting the Size Selective
Performance of EPA’s High-Volume Total Suspended Particulate Matter (Hi-Vol TSP) Sampler. Aerosol Sci. Technol. 2017, 51,
868–878. [CrossRef] [PubMed]

14. Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The Rise of
Low-Cost Sensing for Managing Air Pollution in Cities. Environ. Int. 2015, 75, 199–205. [CrossRef] [PubMed]

15. Environmental Defense Fund. Making the Invisible Visible: A Guide for Mapping Hyperlocal Air Pollution to Drive Clean Air Action;
Environmental Defense Fund: New York, NY, USA, 2020.

16. Holder, A.L.; Mebust, A.K.; Maghran, L.A.; McGown, M.R.; Stewart, K.E.; Vallano, D.M.; Elleman, R.A.; Baker, K.R. Field
Evaluation of Low-cost Particulate Matter Sensors for Measuring Wildfire Smoke. Sensors 2020, 20, 4796. [CrossRef] [PubMed]

17. He, J.; Huang, C.H.; Yuan, N.; Austin, E.; Seto, E.; Novosselov, I. Network of Low-Cost Air Quality Sensors for Monitoring Indoor,
Outdoor, and Personal PM2.5 Exposure in Seattle during the 2020 Wildfire Season. Atmos. Environ. 2022, 285, 119244. [CrossRef]

18. Aguiar, E.F.K.; Roig, H.L.; Mancini, L.H.; de Carvalho, E.N.C.B. Low-Cost Sensors Calibration for Monitoring Air Quality in the
Federal District—Brazil. J. Environ. Prot. 2015, 6, 173. [CrossRef]

19. Tomson, M.; Kumar, P.; Barwise, Y.; Perez, P.; Forehead, H.; French, K.; Morawska, L.; Watts, J.F. Green Infrastructure for Air
Quality Improvement in Street Canyons. Environ. Int. 2021, 146, 106288. [CrossRef] [PubMed]

20. Tiwari, A.; Kumar, P. Integrated Dispersion-Deposition Modelling for Air Pollutant Reduction via Green Infrastructure at an
Urban Scale. Sci. Total Environ. 2020, 723, 138078. [CrossRef]

21. Barkjohn, K.K.; Gantt, B.; Clements, A.L. Development and Application of a United States-Wide Correction for PM2.5 Data
Collected with the PurpleAir Sensor. Atmos. Meas. Tech. 2021, 14, 4617–4637. [CrossRef]

22. Sayahi, T.; Butterfield, A.; Kelly, K.E. Long-Term Field Evaluation of the Plantower PMS Low-Cost Particulate Matter Sensors.
Environ. Pollut. 2019, 245, 932–940. [CrossRef]

23. Barkjohn, K.K.; Holder, A.L.; Frederick, S.G.; Clements, A.L. Correction and Accuracy of PurpleAir PM2.5 Measurements for
Extreme Wildfire Smoke. Sensors 2022, 22, 9669. [CrossRef]

24. Carslaw, D.C.; Ropkins, K. Openair—An R Package for Air Quality Data Analysis. Environ. Model. Softw. 2012, 27–28, 52–61.
[CrossRef]

25. Byrne, R.; Ryan, K.; Venables, D.S.; Wenger, J.C.; Hellebust, S. Highly Local Sources and Large Spatial Variations in PM2.5 across a
City: Evidence from a City-Wide Sensor Network in Cork, Ireland. Environ. Sci. Atmos. 2023, 3, 919–930. [CrossRef]

26. Jang, Y.W.; Jung, G.W. Temporal Characteristics and Sources of PM2.5 in Porto Velho of Amazon Region in Brazil from 2020 to
2022. Sustainability 2023, 15, 14012. [CrossRef]

27. Martins, G.; Nogueira, J.; Setzer, A.; Morelli, F. Comparison between Different Versions of INPE’S Fire Risk Model for the
Brazilian Biomes. In Proceedings of the 2020 IEEE Latin American GRSS and ISPRS Remote Sensing Conference, LAGIRS
2020—Proceedings, Santiago, Chile, 22–26 March 2020.

28. Instituto Nacional de Pesquisas Espaciais BDQueimadas. Available online: https://queimadas.dgi.inpe.br/queimadas/portal
(accessed on 1 September 2023).

29. Brook, J.R.; Johnson, D.; Mamedov, A. Determination of the Source Areas Contributing to Regionally High Warm Season PM2.5
in Eastern North America. J. Air Waste Manag. Assoc. 2004, 54, 1162–1169. [CrossRef] [PubMed]

https://doi.org/10.1016/j.envres.2023.115522
https://www.ncbi.nlm.nih.gov/pubmed/36813066
https://doi.org/10.1590/S0103-40142002000100008
https://doi.org/10.1038/s41467-022-35326-x
https://www.ncbi.nlm.nih.gov/pubmed/36496479
https://doi.org/10.1016/j.envint.2023.107906
https://www.ncbi.nlm.nih.gov/pubmed/37030285
https://doi.org/10.1590/s0103-4014.2021.35102.002
https://www.ibge.gov.br/estatisticas/sociais/trabalho/22827-censo-demografico-2022.html
https://doi.org/10.1080/10962247.2014.971976
https://doi.org/10.1016/j.apr.2022.101362
https://doi.org/10.1175/BAMS-D-21-0018.1
https://doi.org/10.1080/00022470.1967.10468936
https://doi.org/10.1080/02786826.2017.1316358
https://www.ncbi.nlm.nih.gov/pubmed/32025079
https://doi.org/10.1016/j.envint.2014.11.019
https://www.ncbi.nlm.nih.gov/pubmed/25483836
https://doi.org/10.3390/s20174796
https://www.ncbi.nlm.nih.gov/pubmed/32854443
https://doi.org/10.1016/j.atmosenv.2022.119244
https://doi.org/10.4236/jep.2015.62019
https://doi.org/10.1016/j.envint.2020.106288
https://www.ncbi.nlm.nih.gov/pubmed/33395936
https://doi.org/10.1016/j.scitotenv.2020.138078
https://doi.org/10.5194/amt-14-4617-2021
https://doi.org/10.1016/j.envpol.2018.11.065
https://doi.org/10.3390/s22249669
https://doi.org/10.1016/j.envsoft.2011.09.008
https://doi.org/10.1039/D2EA00177B
https://doi.org/10.3390/su151814012
https://queimadas.dgi.inpe.br/queimadas/portal
https://doi.org/10.1080/10473289.2004.10470984
https://www.ncbi.nlm.nih.gov/pubmed/15468668


Atmosphere 2023, 14, 1796 15 of 15

30. Zhou, L.; Hopke, P.K.; Liu, W. Comparison of Two Trajectory Based Models for Locating Particle Sources for Two Rural New York
Sites. Atmos. Environ. 2004, 38, 1955–1963. [CrossRef]

31. Requia, W.J.; Higgins, C.D.; Adams, M.D.; Mohamed, M.; Koutrakis, P. The Health Impacts of Weekday Traffic: A Health Risk
Assessment of PM2.5 Emissions during Congested Periods. Environ. Int. 2018, 111, 164–176. [CrossRef]

32. Corpo de Bombeiros Militar do Distrito Federal (CBMDF). Relatório Técnico de Análise Pericial de Incêndios No DF—1 Semestre de
2022; CBMDF: Brasilia, Brazila, 2022.

33. Brando, P.; Macedo, M.; Silvério, D.; Rattis, L.; Paolucci, L.; Alencar, A.; Coe, M.; Amorim, C. Amazon Wildfires: Scenes from a
Foreseeable Disaster. Flora Morphol. Distrib. Funct. Ecol. Plants 2020, 268, 151609. [CrossRef]

34. Kumar, P.; Druckman, A.; Gallagher, J.; Gatersleben, B.; Allison, S.; Eisenman, T.S.; Hoang, U.; Hama, S.; Tiwari, A.; Sharma, A.;
et al. The Nexus between Air Pollution, Green Infrastructure and Human Health. Environ. Int. 2019, 133 Pt A, 105181. [CrossRef]

35. Abhijith, K.V.; Kumar, P. Quantifying Particulate Matter Reduction and Their Deposition on the Leaves of Green Infrastructure.
Environ. Pollut. 2020, 265, 114884. [CrossRef]

36. de Magalhães, N.; Evangelista, H.; Condom, T.; Rabatel, A.; Ginot, P. Amazonian Biomass Burning Enhances Tropical Andean
Glaciers Melting. Sci. Rep. 2019, 9, 16914. [CrossRef]

37. Andrade, M.d.F.; Kumar, P.; de Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.; de Miranda,
R.M.; Albuquerque, T.; et al. Air Quality in the Megacity of São Paulo: Evolution over the Last 30 Years and Future Perspectives.
Atmos. Environ. 2017, 159, 66–82. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.atmosenv.2003.12.034
https://doi.org/10.1016/j.envint.2017.11.025
https://doi.org/10.1016/j.flora.2020.151609
https://doi.org/10.1016/j.envint.2019.105181
https://doi.org/10.1016/j.envpol.2020.114884
https://doi.org/10.1038/s41598-019-53284-1
https://doi.org/10.1016/j.atmosenv.2017.03.051

	Introduction 
	Materials and Methods 
	Overview 
	Sensor Installation 
	Site Description 
	Air Quality Data Analysis 
	Wildfire Hotspot Analysis 
	Hysplit Analyses 
	Source Allocation 

	Results 
	Descriptive Analysis 
	Hotspot Analysis 
	Hysplit Analysis 
	SQTBA Analysis 

	Discussion 
	Conclusions 
	References

