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Abstract: This study examined the impact of temporary air quality control measures on reducing
pollutants during the 2022 Winter Olympics in China, utilizing real-time monitoring data from 2017
and 2022 to assess spatial and temporal variations in critical air pollutant concentrations. The results
showed that concentrations of PM2.5, PM10, CO, SO2, and NO2 in the Beijing–Tianjin–Hebei region
during the Olympic Games showed a marked decrease compared to the historical period, with
reductions of 36.59%, 20.35%, 33.95%, 28.90%, and 22.70%, respectively. Significant north–south
spatial differences were observed in Beijing, Tianjin, and Hebei Province during the Olympic period.
The cities of Zhangjiakou, Chengde, Qinhuangdao, Beijing, and Tangshan showed the most significant
pollution reduction. Based on assessments conducted during the Olympic period, it was noted that
more than 95% of the daily average concentrations of pollutants are below the maximum values
set by the World Health Organization for the interim target. Our research shows that provisional
regulations effectively control the emission of air pollutants, providing a solid reference and basis for
ensuring air quality during major international events.

Keywords: 2022 Winter Olympics; air pollutants; particulate matter; influencing factor; combined
indicators; pollution control effectiveness

1. Introduction

The concentrations of criteria air pollutants (suspended particulate matter (PM) with
a diameter less than or equal to 2.5 µm (PM2.5), PM10, SO2, NO2, CO, and O3) are the most
commonly used indicators of the air pollution degree. Among them, the concentration
of suspended PM in the air is correlated with mortality related to cardiopulmonary dis-
eases [1–3]. Industrial fossil fuel combustion and air pollutants, including SO2, NO2, and
CO, in vehicle exhaust emissions are among the most important factors contributing to
increased human respiratory and cardiovascular system morbidity [4–6]. Ozone in the
atmospheric stratosphere plays a crucial role in blocking harmful solar ultraviolet (UV) rays,
but ozone (considered a secondary pollutant) in the surface atmosphere can greatly irritate
the human respiratory system [4,7]. Ozone in the surface atmosphere is mainly produced
via photochemical reactions, and the production rate is influenced by a combination of
organic chemicals, nitrogen oxides, and sunlight [4,8,9]. Its concentration can also reflect
the air pollution degree. Thus, it is obvious that the study of the concentration changes of
criteria air pollutants is very important for human health, economy, society, and sustainable
development.
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Anthropogenic activities notably influence air quality. Disease containment, industrial
production, and traditional customs have all been demonstrated to rapidly affect regional
air quality. Tao et al. found that prevention measures to control the spread of coronavirus
disease 2019 (COVID-19) by reducing vehicle movement and factory production levels
could improve air quality [10]. Wang et al. reported that prohibiting fireworks during the
Lunar New Year in Shanghai, China could effectively reduce the PM2.5 concentration [11,12].
The Olympic Games are a global sporting event, and the air quality conditions in the host
area directly affect the physical health and competitive level of athletes [13]. The Inter-
national Olympic Committee (IOC) requires the continuous monitoring of air pollutant
concentrations at host venues to ensure that the air quality reaches relevant standards [14].
The Metro Atlanta Rapid Transit Authority reduced traffic emissions and safeguarded the
air quality during the 1996 Atlanta Olympics by using a 24 h traffic management system and
increasing public transportation services. The city of Atlanta lowered its average daily emis-
sions of CO, NO2, and PM10 by 18.5%, 6.8%, and 16.1%, respectively [15]. During the Beijing
Summer Olympics in 2008, the Chinese government enacted the Measures to Safeguard
the Air Quality in Beijing for the Games of the 29th Olympics, which focused on reducing
soot emissions originating from the power industry and PM emissions. Beijing exhibited a
90% reduction in PM10 emissions originating from the construction sector and a 35% reduc-
tion in the total emissions based on an air pollution prediction model [16]. The Nanjing
Municipal Government implemented the Nanjing Temporary Environmental Regulations
for Air during the 2014 Youth Olympic Games, which attempted to reduce air pollution
through a series of prevention and control measures, such as closing coal-fired plants,
shutting down construction, and increasing public transportation. Subsequent remote
sensing observations revealed that the NOx concentration was approximately 25% lower
than the average concentration from 2005 to 2012, and the implementation of the above
regulation effectively improved the regional air quality [17]. The 24th Winter Olympic
Games were held in Beijing and Zhangjiakou, China. The Chinese government acted to
ensure the regional air quality. Moreover, specific air quality targets were established in
64 cities to reduce the concentrations of harmful microscopic particles (PM2.5), dozens of
factories in the Beijing–Tianjin–Hebei (BTH) region were temporarily closed [18], and the
number of severe pollution days from October 2021 to March 2022 was greatly reduced.
During the 24th Winter Olympic Games readiness period, Wang et al. (2022) predicted,
through a combination of atmospheric circulation and climate prediction models, that the
emissions of SO2, NO2, CO, and other pollutants would follow a downward trend [19].
Chu et al. assessed the trends of PM2.5, PM10, SO2, and NO2 air quality in Beijing and
Zhangjiakou before and after the 2022 Winter Olympics using ground-based monitoring
data. Furthermore, it found that air pollutants decreased significantly during the Winter
Olympics [20]. Similarly, Wu et al. found a significant decrease in PM2.5 concentrations and
an increase in air quality during the Olympic Games [21].

We analyzed—by combining past research with continuous observation of the concen-
trations of criteria—pollutants in the Beijing–Tianjin–Hebei region over various subperiods.
We further analyzed the spatial and temporal variations of the concentrations of criteria
pollutants and compared them with historical levels over the same period, and assessed
whether the interim air pollution control policies and regulations were effective and to what
extent these measures improved air quality during the Winter Olympics in the Olympic
Games host regions (Beijing and Zhangjiakou). This research can be a reliable reference
point for ensuring air quality during significant international events. It can contribute to
regional environmental decision making, economic development, social governance, and
sustainable urban development.

2. Materials and Methods
2.1. Air Pollution Prevention Policies and Regulations

To safeguard air quality during the 24th Winter Olympic Games and the 13th Win-
ter Paralympic Games (hereinafter referred to as the 2022 Winter Olympics), appropriate
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departments have released applicable measures (Table 1). The Ministry of Industry and
Information Technology and the Ministry of Ecology and Environment of China issued the
policy regulation Notification of the Two Departments on BTH Region 2021–2022 Heating
Season Steel Industry Staggered Production on 30 September 2021. The provisions of
this law, developed from 15 November 2021 to 15 March 2022, required heavy industry
enterprises in Beijing, Tianjin, Hebei, Shanxi, Shandong, and Henan provinces to reduce
their criteria air pollutant emissions [22]; moreover, heavy industries and high-emission
enterprises in Shijiazhuang, Tangshan, Xingtai, Handan, Langfang, Qinhuangdao, and
Cangzhou were prohibited from engaging in production activities. Moreover, the Gen-
eral Office of the Tianjin Municipal People’s Government issued the Notice of Firework
Inhibition During the Spring Festival in 2022 to ensure the safe and smooth progression
of the Winter Olympics, which prohibited the public from lighting fireworks during the
Lunar New Year to prevent air pollution [23]. The control measures implemented in Beijing
were particularly strict. The Beijing Municipal People’s Government issued the Notice
on Temporary Traffic Management Measures during the Olympic Cycle, which imposed
strict traffic controls from January to 15 March 2022. These controls included the creation of
dedicated Olympic lanes, restrictions on foreign vehicles, and a ban on medium and heavy
fuel (gas) trucks [24].

Table 1. Air control measures during the 2022 Winter Olympic Games.

Agency Period Regulations Impact Area

Ministry of Industry and
Information Technology
Ministry of Ecology and

Environment

15 November 2021–15 March
2022

Heavy industrial enterprises
should aim to reduce air

pollutant emissions to achieve
staggered production and

pollutant reduction

Beijing, Tianjin, Hebei, Shanxi,
Shandong, and Henan

provinces

1 January 2022–15 March 2022

High-emission enterprises
were prohibited from

engaging in production
activities

Shijiazhuang, Tangshan,
Xingtai, Handan, Langfang,

Qinhuangdao, and Cangzhou
in Hebei Province

Tianjin Municipal
Government 1 January 2022–15 March 2022 The discharge of fireworks

was prohibited Tianjin

Beijing Municipal
Government 1 January 2022–15 March 2022

Vehicle restrictions were
enacted, dedicated lanes were
opened, and heavy fuel (gas)
trucks were not allowed to

drive on roads

Beijing

2.2. Study Area and Air Monitoring Sites

The 2022 Winter Olympics were held in the BTH region of China (Figure 1), encom-
passing the cities of Beijing and Zhangjiakou, which exhibit a high topography in the
northwest and low plains in the southeast, as well as low mountains and coastal wetlands.
The Yanshan Mountains, Taihang Mountains, and Bohai Sea surround the region, creating
a unique geomorphological environment. The region belongs to a temperate semihumid
and semiarid continental monsoon climate zone with high summer rainfall levels and
distinct dry and wet seasons [25,26]. These geographical and climatic characteristics pro-
vide favorable conditions for hosting the 2022 Winter Olympics. The BTH region includes
11 prefecture-level cities in Beijing (BJ), Tianjin (TJ), and Hebei (HB) provinces, including
Shijia-zhuang (SZJ), Tangshan (TS), Qinhuangdao (QHD), Handan (HD), Xingtai (XT),
Langfang (LF), Baoding (BD), Hengshui (HS), Zhangjiakou (ZJK), Chengde (CD), and
Cangzhou (CZ). The BTH region has become one of the most economically developed
regions in China, with a suitable industrial base and political and economic advantages,
but it is also one of the most seriously affected regions in China in terms of air pollutant
emissions [26–29].
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Figure 1. Study area and air monitoring site distribution.

We obtained hourly monitoring data from 78 ground air quality monitoring sites
of the air quality monitoring network of the China Environmental Monitoring Center
(http://www.cnemc.cn accessed on 10 January 2023) for the period of 1 December 2017
to 19 July 2022 (Figure 1). The data include monitoring data of the criteria air pollutants
PM2.5, PM10, SO2, NO2, O3 (concentration in µg/m3), and CO (concentration in mg/m3),
as well as Air Quality Index (AQI) data and monitoring station information such as the
station code, city, and latitude and longitude accession numbers.

2.3. Definition of the Time Window

The earliest date for the promulgation of air pollution prevention policies and reg-
ulations for the 2022 Winter Olympics was 15 November 2021 (Table 1). The opening
date of the Winter Olympics was 4 February, and the end date of the enacted air pollution
prevention policies and regulations was 15 March, which is the main basis for our time win-
dow delineation. Therefore, we defined the period of 1 December 2021 to 4 February 2022
as the pre-Olympic subperiod (Pre-O period), totaling 65 days; the period of 4 February
2022 to 15 March 2022 was defined as the Olympic subperiod (O period), totaling 40 days;
and the 65-day period after 15 March 2022 was defined as the post-Olympic subperiod
(Post-O period), totaling 65 days. Moreover, 19 May 2022 was defined as the end date of the
Olympic cycle. In addition, to ensure the consistency of the comparison of air pollutant con-
centrations, historical monthly intervals covering the above four time periods were used in
this paper as historical periods (1 December 2017–19 July 2021). It should be noted that the
time period of 1 December 2019 to 19 July 2020 was excluded from the considered historical
periods in this paper due to the significant reduction in air pollutants during the COVID-19
lockdown in China [30–33]. In addition, we defined the 60-day period of 19 May to 19 July
2022 as the beyond-Olympic cycle period (Beyond-O period), thus eliminating the impacts
of the various control policies implemented during the Winter Olympics and ensuring the
comparison to the various Olympic cycle subperiods to reveal the emission-reduction effect
(Figure 2). The study time window division scheme is summarized below.

http://www.cnemc.cn
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Figure 2. Time window and timing of policy implementation.

2.4. Air Pollutant Dataset

We preprocessed the hourly observation data obtained from 1 December 2017 to 19
July 2022 to generate a standard air pollutant dataset, as shown in Figure 3, to ensure
temporal continuity and to relate the observation data to the geographic site locations. We
correlated the data items with the corresponding geographic locations based on the latitude
and longitude attributes of each monitoring site. Statistically, in the dataset, pollutant
monitoring values were missing during different time periods or at various stations to
different degrees, and the number of missing values accounted for approximately 3% of
the total data.
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Regarding the missing hourly pollutant concentration values in the dataset, we used
two interpolation methods for replacement purposes. First, if there were missing values in
the dataset at a single monitoring station within the same city, with complete data at n sur-
rounding stations, we calculated the distance to the surrounding stations and interpolated
the missing data using the inverse distance weighting method (Equations (1) and (2)) [34].
Second, if there were missing data at multiple sites around the same city and the inverse
distance weighting interpolation conditions could not be satisfied, we then interpolated the
missing values using the time series linear interpolation method based on the data retrieved
from individual sites. With the use of these methods, we could achieve the interpolation
and supplementation of missing data to generate a continuous and complete time series
dataset. Furthermore, the continuous time series data for each site were processed using the
Savitzky–Golay filter. This filter could improve the autocorrelation of the data and enhance
the pollutant concentration trend over time, thus reducing noise and errors in the observed
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dataset [35]. The Savitzky–Golay filter could improve the autocorrelation and fluctuation
of the data and enhance the pollutant concentration trend over time, thus reducing noise
and errors in the observed dataset [35,36]. The application of inverse distance weighting
for interpolation can consider the spatial correlation of monitoring stations [37].

Zo=
n

∑
i=1

1
(Di)

p zi

(
n

∑
i=1

1
(Di)

p

)−1

(1)

Di=

√
(xo − xi)

2 + (yo − yi)
2 (2)

where Z0 denotes the missing value at a given monitoring station, Zi is the pollutant
monitoring value at i sample stations (i = 1, 2, 3. . .n), p is the power exponent of the
distance, Di is the distance to each neighboring station, and x and y are the location
information attributes of the stations.

2.5. Reducing the Impacts of Weather and Human Factors on the Dataset

Notable impacts of extreme weather events and anthropogenic activities on the air
quality have been widely noted. For example, hazy weather can lead to the accumula-
tion and stagnation of airborne PM; dust storms and tornadoes may transport surface
PM into the air, resulting in a sharp and rapid increase in airborne PM concentrations;
and hot weather can lead to increased emissions of pollutants such as volatile organic
compounds (VOCs) and nitrogen oxides (NOx), resulting in further increases in ozone (O3)
concentrations [38–44]. In addition, anthropogenic activities such as fires, traffic conges-
tion, COVID-19 lockdown measures, and industrial production activities can release large
amounts of air pollutants within a short period of time. Fossil fuel combustion leads to
short-term increases in O3 and particulate matter concentrations in the region, leading to
heavy metal pollution and subsequent human disease [45,46]; emissions from industry,
forest fires, and domestic activities lead to increases in SO2, PM10, and VOCs emissions,
threatening human life and health [47,48]. The COVID-19 mitigation measure leads to
a decrease in particulate matter concentrations, a significant reduction in aerosols, and
an improvement in air quality [31,49]. This shows that anthropogenic activities have a
significant impact on air quality.

These extreme climatic events and anthropogenic activities may cause extreme values,
which may affect the overall criteria pollutant concentrations within a given time window.
Thus, meteorological factors and anthropogenic activities can greatly impact the air quality.

To manage these inevitable extreme values, a density-based local outlier factor (LOF)
method was used to detect and reject outliers in the dataset. This method can be effec-
tively applied to a continuous time-based observation dataset, independent of the data
distribution, and can significantly improve the outlier detection rate and reduce the time
complexity of anomaly detection [50–53].

First, we expanded the hourly observations at the various sites and calculated the
reachable distance of data point P reach_distk(o, p) based on the data density around the
data point (Equation (3)):

reach− distk(o, p) = max{dk(o), d(o, p)} (3)

where d(o, p) is the distance from the observed data point P to another observed data point
O; reach− distk(o, p) is the kth reachable distance from data point O to data point P, defined
as the larger of dk(o) and d(o, p); and dk(o) is the kth reachable distance from data point O
to data point P.
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Second, we calculated the local reachability density of data point P lrdk(p) as follows
(Equation (4)):

lrdk(p) =

 ∑
O∈Nk(P)

reach− distk(o, p)

|Nk(p)|


−1

(4)

where lrdk(p) is the local reachability density; Nk(p) is the kth distance neighborhood of
data point P, which is the set of points within the kth distance of index data point P; and
lrdk(p) characterizes the density of data point P.

Finally, the local outlier factor LOFk(p) of data point P was calculated according to
lrdk(p) and Nk(p), the extreme value points of the dataset were eliminated according to the
threshold of LOFk(p) (Equation (5)), and linear interpolation was applied to replace the
missing points of the dataset after elimination, thus completing the air dataset production
process.

LOFk(p) =

∑
O∈Nk(P)

lrdk(o)
lrdk(p)

|Nk(p)| =

∑
O∈Nk(P)

lrdk(o)

|Nk(p)| /lrdk(p) (5)

where LOFk(p) is the local outlier factor of data point P. The average local reachable density
of the points in the neighborhood of point P Nk(p) was compared to the local reachable
density of point P. LOFk(p) ≥ 1 indicates that the density of point P is lower than that of
its surrounding points, and point P is probably an outlier. LOFk(p) < 1 indicates that the
density of point P is higher than that of its surrounding points, and point P is very likely a
normal point.

2.6. Statistical Analysis Methods

We classified the study regions, municipalities, provinces, and cities based on the
geographical information of the monitoring sites and comprehensively analyzed the spatial
and temporal characteristics of the criteria air pollutant concentrations during all four
periods of the Olympic cycle (Pre-O, O, Post-O, and Beyond-O). To mitigate the effects
of seasonal differences on the quantitative analysis of pollutants, we controlled for time
interval variables to ensure that both the historical and current pollutant concentrations
were subject to the same seasonal interval [54–58]. To address the potential impact of
continued regulatory control due to air quality policies implemented by governments [59],
we used Levene’s test to perform chi-square and two-sample t tests for the comparison
of the differences in pollutant concentration data between the historical and current time
periods [60–62]. At a significance level of 0.05, we used the p value (p) to determine the
statistical significance of the correlation between the two samples. The null hypothesis H0
indicates that the pollutant concentrations do not significantly differ between the historical
and selected time interval samples, while the alternative hypothesis H1 indicates that
the pollutant concentrations of the historical sample significantly differ from those of the
selected time interval sample. H1 is accepted for p < 0.05, and H0 cannot be rejected for
p > 0.05. Hypothesis testing of the historical and current samples during the Beyond-O
period can verify the impact of historical trends.

Thereafter, we calculated the median and mean values of the air pollutant concen-
trations at each scale during the different periods and combined the spatial and temporal
division categories to compare the pollutant concentrations in the study area on each scale
to those during the historical period. We used the median of the time series data during
each period as an indicator to measure the changes in pollutant concentrations throughout
the Olympic cycle and during the historical period via sample hypothesis testing to reduce
the effects of extreme observations. In addition, the absolute values and percentages of
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the changes in the different categories of pollutants were calculated (Equation (6)), and the
hypothesis test results were summarized and analyzed.

Rchange =
Vcurrent −Vhistory

Vhistory
× 100% (6)

where Rchange is the percentage change of the pollutants over the historical period relative
to the different time periods selected in this study, Vhistory is the median value of the sample
over the historical period, and Vcurrent is the median value over the different time periods
selected in this study.

3. Results and Discussion
3.1. Analysis of the Criteria Pollutant Concentrations in the Entire Study Area, Provinces,
and Municipalities within a Given Time Window

We statistically analyzed the concentration changes of criteria air pollutants (PM2.5,
PM10, SO2, CO, and O3NO2) in the BTH region, including BJ, TJ, and HB, within different
time intervals, aiming to clarify the effects of emission-reduction measures on the concen-
trations of various pollutants during the different time periods and in the major regions
(Figure 4).

3.1.1. Overall Evaluation Analysis of PM2.5

Figure 4a shows the daily average PM2.5 concentration statistics for the BTH region,
including BJ, TJ, and HB, over the four time intervals (Pre-O, O, Post-O, and Beyond-O)
relative to the historical period. Specific statistics (numerical values) are detailed in Table 2.
The statistical results showed that the PM2.5 concentrations in all parts of the BTH region
during the O period highly significantly differed from those during the historical period, in
which the PM2.5 concentration in the whole BTH region decreased by 36.59%, while the
ratios of decrease in the PM2.5 concentrations in Beijing, Tianjin, and Hebei were 46.07%,
38.54%, and 35.78%, respectively. Beijing contributed the most to the observed PM2.5
emission reduction percentage during the O period.

Table 2. Statistical values, change rates, and hypothesis test results for the PM2.5 concentration
(µg/m3) during the different time periods in the BTH, BJ, TJ, and HB regions based on the historical
and current data.

Region Period Historical Median Current Median Absolute Change Change Rate p Value

BTH Pre-O 45.94 44.63 −1.30 −2.84% 0.652
O ** 53.17 33.72 −19.45 −36.59% 0.000

Post-O * 38.75 32.38 −6.37 −16.45% 0.022
Beyond-O 23.78 21.70 −2.07 −8.73% 0.257

BJ Pre-O 25.33 26.91 1.57 6.21% 0.767
O ** 45.68 24.63 −21.05 −46.07% 0.000

Post-O 34.83 28.81 −6.02 −17.29% 0.121
Beyond-O 16.85 19.38 2.53 15.02% 0.134

TJ Pre-O 45.39 44.57 −0.81 −1.79% 0.317
O ** 61.55 37.83 −23.72 −38.54% 0.002

Post-O * 37.06 33.06 −4.00 −10.79% 0.028
Beyond-O 24.38 23.43 −0.94 −3.87% 0.421

HB Pre-O 50.21 48.84 −1.38 −2.74% 0.821
O ** 55.24 35.48 −19.76 −35.78% 0.001

Post-O * 38.66 32.77 −5.89 −15.23% 0.026
Beyond-O 25.19 21.29 −3.90 −15.47% 0.057

*: If p < 0.05, the sample is significantly different; **: if p < 0.01, the sample is highly significantly different.
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Figure 4. Subfigures (a–f) show the daily average criteria pollutants concentrations (PM2.5, PM10, SO2,
CO, NO2, and O3) in the BTH region, including BJ, TJ, and HB, within each time interval between
the historical and current periods. The solid red horizontal line indicates the median pollutant
concentration within the time interval; the dashed blue horizontal line indicates the mean pollutant
concentration within the time interval; the top and bottom of the box indicate the 75th and 25th
percentile ranges, respectively; the top and bottom whiskers indicate the 95th and 5th percentile
values, respectively; and the divergence indicates the deviation. Solid line-filled boxes with solid
colors represent History, whereas solid-colored filled boxes represent Current. The slope of the line
represents a negative proxy for decline, the slope of the line represents a positive proxy for increase,
and the slope of the line tends towards zero, indicating no change.
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Moreover, we found that there was no significant difference in the PM2.5 concentration
in each part of the BTH region between the Pre-O and historical periods. However, during
the Post-O period, significant differences were found in the PM2.5 concentrations in the
BTH, TJ, and HB regions, while during the Beyond-O period, none of the regions exhibited
significant differences in pollutant concentrations, and it could be assumed that the pol-
lutant concentrations returned to normal historical levels. Therefore, we could conclude
that the implemented control measures reduced the PM2.5 concentration during the Winter
Olympics (O period).

The nonsignificant difference in the PM2.5 concentration during the Post-O period may
be a result of the lag effect of the combined emission reduction measures and meteorological
conditions, which are usually lagged by precipitation and relative humidity, respectively,
on the PM concentration [16,63]. Thereafter, as the lag effects of the abatement measures
diminished, the pollutant concentrations returned to normal levels, with no significant
differences relative to the historical periods. Thus, our study showed that in the BTH region,
the control measures implemented during the Winter Olympics effectively reduced the
PM2.5 concentration. Beijing contributed the most to the obtained PM2.5 emission reduction
percentage in the process. Studies have shown that for Beijing, the local contribution was
62% and 69% in January and March, respectively, while the regional transport was mainly
from the surrounding cities of Zhangjiakou, Baoding, and Langfang [64,65]. During the
Olympic Games period (January to March), Hebei Province implemented control measures
targeting industries, which reduced the input of PM emissions to Beijing. Therefore, PM
emissions in Beijing during this period were mainly from local contributions, significantly
affected by local control measures. The short-term traffic control measures may be one of
the reasons for the sharp decrease in PM2.5 concentrations in Beijing.

3.1.2. Overall Evaluation Analysis of PM10

We statistically analyzed the PM10 concentration in the BTH region during the four
periods of the current and historical years (Figure 4b and Table 3), and the results showed
that the PM10 concentration significantly decreased during the Winter Olympics (O period),
while there was no significant difference in the PM10 concentration between the Beyond-O
and historical periods. Therefore, we could conclude that the emission-reduction measures
implemented by the government successfully reduced the PM10 concentration during the
Winter Olympics.

Table 3. Statistical values, change rates, and hypothesis test results for the PM10 concentration
(µg/m3) during the different time periods in the BTH, BJ, TJ, and HB regions based on the historical
and current data.

Region Period Historical Median Current Median Absolute Change Change Rate p Value

BTH Pre-O ** 87.25 76.00 −11.26 −12.90% 0.001
O * 98.01 78.06 −19.94 −20.35% 0.015

Post-O ** 83.74 73.09 −10.65 −12.71% 0.004
Beyond-O 48.85 47.10 −1.75 −3.59% 0.315

BJ Pre-O ** 57.85 50.55 −7.30 −12.63% 0.003
O ** 83.51 55.72 −27.79 −33.27% 0.003

Post-O 71.46 65.36 −6.09 −8.53% 0.059
Beyond-O 40.02 40.24 0.22 0.54% 0.900

TJ Pre-O 79.89 72.83 −7.06 −8.84% 0.551
O * 102.05 75.10 −26.95 −26.41% 0.027

Post-O ** 77.86 71.49 −6.37 −8.18% 0.001
Beyond-O 51.92 49.42 −2.50 −4.81% 0.249

HB Pre-O ** 97.24 80.53 −16.71 −17.18% 0.000
O * 103.28 81.16 −22.11 −21.41% 0.014

Post-O ** 88.47 73.60 −14.87 −16.80% 0.005
Beyond-O 52.67 48.32 −4.35 −8.26% 0.205

*: If p < 0.05, the sample is significantly different; **: if p < 0.01, the sample is highly significantly different.
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During the O period, Beijing contributed the most to the emission reduction percentage
effect, at 33.27%, followed by Tianjin and Hebei, at 26.41% and 21.41%, respectively. The
PM10 concentration in Beijing decreased very significantly during this period, which may
be due to the effect of the implemented traffic-restriction measures. We also found that the
PM10 concentrations in Hebei and Beijing during the Pre-O period significantly differed
from those during the historical periods, indicating that the government applied effective
measures to control the PM10 concentration during the Pre-O period, which may be related
to the in-plant emission-reduction measures in both regions during the Pre-O period. The
PM10 concentration in Hebei Province also significantly differed from that in the other
regions throughout the Olympic cycle, indicating that the longest cycle of control measures
was implemented in Hebei Province.

Combining these analysis results, we could conclude that the PM10 concentration in the
BTH region showed a more significant decrease during the O period, with a total percentage
decrease of 20.35%. During this period, Beijing contributed the most to PM10 emission
reduction, while Hebei Province implemented the longest control measure cycle. The PM10
concentration significantly decreased without a lag effect throughout the Olympic cycle,
and when the lag effect of the control measures was eliminated, the pollutant concentrations
returned to normal levels everywhere. This indicates that the government-issued emission-
reduction measures achieved satisfactory results. Moreover, during the Beyond-O period,
there were no significant deviations observed in PM10 concentrations in all three regions
compared to the historical period. It can be concluded that the Olympic policy had an
influence on the PM10 concentrations in the BTH area.

3.1.3. Overall Evaluation Analysis of CO

CO statistical analysis could facilitate the development of effective environmental
policies and regulatory measures to reduce CO emissions and safeguard public health and
environmental quality. Based on the statistical data (Figure 4c and Table 4), we found that
during the O period, the CO concentration in the whole study area significantly decreased
relative to the historical periods, with Beijing contributing the most, with a 40.15% reduction,
followed by Hebei Province, with 31.61%, and Tianjin, with 21.46%. During the Beyond-O
period, when Olympic factors were eliminated, there was no significant difference in the CO
concentration in the study area relative to the historical periods, but the CO concentration
in the BTH region was 33.95% lower during the O period than during the historical periods.
Therefore, it could be concluded that the relevant air pollution prevention and control
policies implemented during the Winter Olympics positively affected the CO emissions in
the BTH region during the Beyond-O period.

We further observed that Hebei Province and Tianjin City achieved significant reduc-
tions in their CO concentrations during the Pre-O period, and according to the relevant
reduction measures, the restriction of enterprise production activities during the Pre-O
period played a key role in CO reduction [22]. Beijing, which is dominated by high-tech
industries, has fewer emitting enterprises than the other two areas [29]; therefore, there
was no significant reduction during the Pre-O period, while the traffic closure and control
measures in Beijing during the O period could significantly reduce the CO concentrations.
In conclusion, an unbalanced regional industrial structure often leads to variability in
pollutant concentration changes.

During the Post-O period, the PM10 concentration in Tianjin continued to decrease,
showing a highly significant difference, which indicates that Tianjin experienced a longer
period of CO concentration control. In contrast, no significant differences in pollutant
concentrations were observed in either Beijing or Hebei. Therefore, we could conclude that
the BTH region achieved a significant reduction in the CO concentration during the Winter
Olympics, with Beijing showing the highest percentage reduction and Tianjin adopting a
longer CO concentration control cycle.
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Table 4. Statistical values, change rates, and hypothesis test results for the CO concentration (mg/m3)
during the different time periods in the BTH, BJ, TJ, and HB regions based on the historical and
current data.

Region Period Historical Median Current Median Absolute Change Change Rate p Value

BTH Pre-O * 0.89 0.80 −0.09 −9.80% 0.017
O ** 0.94 0.62 −0.32 −33.95% 0.000

Post-O 0.58 0.55 −0.03 −4.99% 0.152
Beyond-O 0.59 0.58 −0.01 −2.05% 0.827

BJ Pre-O 0.55 0.61 0.06 10.63% 0.724
O ** 0.80 0.48 −0.32 −40.15% 0.000

Post-O 0.47 0.39 −0.07 −15.65% 0.119
Beyond-O 0.55 0.50 −0.05 −8.99% 0.697

TJ Pre-O * 0.90 0.77 −0.13 −14.89% 0.018
O ** 0.93 0.73 −0.20 −21.46% 0.000

Post-O ** 0.73 0.63 −0.10 −13.73% 0.005
Beyond-O 0.79 0.75 −0.04 −5.57% 0.173

HB Pre-O ** 0.98 0.87 −0.11 −11.34% 0.001
O ** 0.94 0.64 −0.30 −31.61% 0.000

Post-O 0.57 0.58 0.01 1.79% 0.375
Beyond-O 0.56 0.56 0.00 0.71% 0.765

*: If p < 0.05, the sample is significantly different; **: if p < 0.01, the sample is highly significantly different.

3.1.4. Overall Evaluation Analysis of SO2

Based on the data shown in Figure 4d and Table 5, it is evident that there is a signifi-
cant difference in the concentration of SO2 in the BTH area throughout the study period.
Compared to those for PM2.5, PM10, and CO, the SO2-reduction effect in the BTH region
was the most obvious during the Pre-O period, with all three regions showing a highly
significant reduction in the SO2 concentration, with Hebei Province contributing the most,
with a 47.82% reduction, followed by Beijing at 30.76% and Tianjin at 14.08%, which is
consistent with the plant-reduction measures during the Pre-O period. During the O period,
the SO2 concentrations in both Beijing and Hebei Province showed significant decreases,
with the abatement rate in Hebei Province reaching 32.15%, while the SO2 concentration in
Tianjin did not differ from that during the historical periods. During the Post-O period, the
SO2 concentration in Tianjin increased, while the SO2 concentration in Beijing stabilized,
and the SO2 concentration in Hebei continued to show significant decreases, which may
be related to the more concentrated industrial structure in Hebei. During the Beyond-O
period, the SO2 concentrations in Hebei and Beijing remained basically consistent with
those during the historical periods, while Tianjin showed a highly significant increase.

Summarizing the above analysis results, we could conclude that Hebei Province
achieved the greatest SO2 emission reduction throughout the Olympic cycle and had the
longest emission reduction period, which may be related to its concentrated industrial
structure. Beijing also effectively reduced its SO2 emissions during the Pre-O and O periods,
while Tianjin only realized effective control during the Pre-O period, and the control effect
during the O period was not significant. In general, the air pollution prevention and control
policies in the Beijing, Tianjin, and Hebei regions played a positive role in lowering SO2
emissions.

3.1.5. Overall Evaluation Analysis of NO2 and O3

NO2 is a harmful gas usually part of the combustion emissions of nitrogen oxides
stemming from fossil fuels [66]. NO2 participates in photochemical reactions and interplays
with other pollutants, ultimately leading to the generation of O3 [67]. O3 poses a grave
threat to human respiratory health and air quality [68]. According to Figure 4f and Table 6,
we can find that the NO2 concentration in TJ decreased by 13.42% compared with the
historical period in the Pre-O period, followed by a decrease of 7.86% in HB, and there
was no significant decrease in the NO2 concentration in BJ. It is worth noting that the
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decreases in NO2 concentrations in TJ and HB Province during the Pre-O period may be
related to industry emission-reduction measures. The NO2 concentration in BJ decreased
by 32.74% during the O period. The emission reduction percentage is the largest in the
BTH region, which may be attributed to the traffic-control measures. Further, we find that
the percentage of NO2 concentration in BJ and TJ still decreases during the Post-O period.
This indicates a delay effect of the measures taken to reduce emissions, which positively
enhances regional air quality.

Table 5. Statistical values, change rates, and hypothesis test results for the SO2 concentration (µg/m3)
during the different time periods in the BTH, BJ, TJ, and HB regions based on the historical and
current data.

Region Period Historical Median Current Median Absolute Change Change Rate p Value

BTH Pre-O ** 13.30 7.44 −5.86 −44.04% 0.000
O ** 10.20 7.25 −2.95 −28.90% 0.000

Post-O ** 8.26 6.94 −1.32 −16.02% 0.000
Beyond-O 6.77 7.01 0.24 3.58% 0.449

BJ Pre-O ** 3.77 2.61 −1.16 −30.76% 0.000
O * 3.29 2.68 −0.61 −18.58% 0.013

Post-O 2.92 2.77 −0.14 −4.88% 0.186
Beyond-O * 2.67 2.76 0.09 3.20% 0.040

TJ Pre-O ** 10.69 9.18 −1.50 −14.08% 0.001
O 9.11 8.57 −0.54 −5.91% 0.182

Post-O * 8.31 8.98 0.67 8.03% 0.014
Beyond-O

** 6.67 8.29 1.62 24.27% 0.000

HB Pre-O ** 16.34 8.53 −7.82 −47.82% 0.000
O ** 11.94 8.10 −3.84 −32.15% 0.000

Post-O ** 9.75 7.72 −2.02 −20.75% 0.000
Beyond-O 7.87 7.82 −0.04 −0.54% 0.971

*: If p < 0.05, the sample is significantly different; **: if p < 0.01, the sample is highly significantly different.

Table 6. Statistical values, change rates, and hypothesis test results for the NO2 concentration (µg/m3)
during the different time periods in the BTH, BJ, TJ, and HB regions based on the historical and
current data.

Region Period Historical Median Current Median Absolute Change Change Rate p Value

BTH Pre-O 44.04 41.26 −2.79 −6.33% 0.080
O * 37.70 29.14 −8.56 −22.70% 0.038

Post-O ** 29.36 23.92 −5.44 −18.52% 0.001
Beyond-O * 20.56 18.47 −2.09 −10.18% 0.014

BJ Pre-O 34.48 35.85 1.37 3.97% 0.606
O ** 37.01 24.89 −12.12 −32.74% 0.001

Post-O ** 28.75 21.69 −7.05 −24.53% 0.001
Beyond-O * 19.70 18.10 −1.60 −8.14% 0.036

TJ Pre-O * 50.47 43.90 −6.57 −13.02% 0.011
O 44.51 39.72 −4.79 −10.77% 0.380

Post-O ** 35.24 28.24 −6.99 −19.85% 0.001
Beyond-O

** 24.20 19.06 −5.15 −21.26% 0.001

HB Pre-O * 45.11 41.57 −3.54 −7.86% 0.031
O ** 35.61 29.93 −5.68 −15.96% 0.006

Post-O ** 28.08 23.35 −4.73 −16.85% 0.001
Beyond-O 20.55 18.77 −1.78 −8.64% 0.089

*: If p < 0.05, the sample is significantly different; **: if p < 0.01, the sample is highly significantly different.

The data analysis based on Figure 4f and Table 7 exhibits that O3 concentrations
across the BTH region do not show a significant decrease compared to historical periods.
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We further found a negative correlation between NO2 and O3 concentrations (a decrease
in NO2 and an increase in O3 percentage). This change in negative correlation can be
attributed to the titration effect in photochemical processes [69]. This titration effect may
cause an increase in airborne O3, which offsets the health benefits due to the reduction
in NO2 [70]. Therefore, while controlling NO2 emissions, emission-reduction measures
would need to control emissions of VOCs simultaneously [31]. Integrating and balancing
NO2 and O3 emission reductions is the ultimate goal of protecting air quality and people’s
health.

Table 7. Statistical values, change rates, and hypothesis test results for the O3 concentration (µg/m3)
during the different time periods in the BTH, BJ, TJ, and HB regions based on the historical and
current data.

Region Period Historical Median Current Median Absolute Change Change Rate p Value

BTH Pre-O 28.00 28.46 0.46 1.64% 0.844
O ** 49.99 54.79 4.80 9.59% 0.005

Post-O 73.51 76.16 2.65 3.61% 0.079
Beyond-O 104.71 104.37 −0.34 −0.33% 0.080

BJ Pre-O 31.51 27.50 −4.01 −12.73% 0.510
O ** 44.64 56.46 11.82 26.48% 0.001

Post-O 68.20 70.91 2.71 3.98% 0.053
Beyond-O

** 92.89 98.33 5.44 5.86% 0.004

TJ Pre-O 25.42 25.66 0.24 0.95% 0.257
O * 47.64 51.10 3.46 7.26% 0.040

Post-O ** 64.87 76.46 11.58 17.85% 0.002
Beyond-O

** 98.00 110.54 12.54 12.79% 0.002

HB Pre-O 29.00 28.65 −0.35 −1.20% 0.794
O * 52.04 56.16 4.12 7.92% 0.046

Post-O 75.73 76.63 0.91 1.20% 0.193
Beyond-O * 104.23 105.22 0.99 0.95% 0.024

*: If p < 0.05, the sample is significantly different; **: if p < 0.01, the sample is highly significantly different.

3.2. Reduction in Emissions in the BTH Urban Area during the 2022 Winter Olympics

We obtained the percentage changes of criteria air pollutant concentrations across
the study area in each city during the Winter Olympic Games (period O) relative to the
historical periods, and the statistics of the percentage changes of pollutant concentrations
can reflect the strength of the air-control measures enacted in each city.

Figure 5 shows the distribution of the air quality changes for the different types of
pollutants during the O period. Among them, the decrease in PM2.5 was concentrated in
the central (BJ) and northeastern (TJ and QHD) parts of the BTH region, with a decrease
of more than 30%, while the concentration in the southern region (XT, HD, and HS) was
higher than that during the historical period. The decrease in PM10 was concentrated in the
northern BTH region (ZJK, CD, and QHD), while the PM10 concentration in the northern
region was higher than that during the historical period. The CO concentrations in the
central and northeastern regions significantly decreased, while the SO2 concentrations in the
westernmost and easternmost regions decreased from historical levels. In addition, the NO2
concentrations were found to significantly decrease in the northern region while increasing
in the southern region, whereas the O3 concentration in the northern region increased while
decreasing in the southern region. Both pollutants caused significant differences between
the northern and southern regions. There were significant geographical differences in the
changes in the different criteria pollutants relative to the historical periods.
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Figure 5. Rate of change of the urban criteria air pollutant concentrations in the study area during
the Olympic Games relative to the historical periods, including Beijing (BJ), Tianjin (TJ), Shijiazhuang
(SZJ), Tangshan (TS), Qinhuangdao (QHD), Handan (HD), Xingtai (XT), Langfang (LF), Baoding (BD),
Hengshui (HS), Zhangjiakou (ZJK), Chengde (CD), and Cangzhou (CZ).

The comprehensive assessment determined that the air pollutant control effect was
stronger in the northern part of Beijing, Tianjin, and Hebei than in the southern part. The
pollutant concentrations in Zhangjiakou, Chengde, Qinhuangdao, Beijing, and Tangshan
were significantly lower than those during the historical periods, which verifies that these
areas achieved notable protection during the Winter Olympics.

3.3. Evaluation of the Daily Average Quality via the Air Pollution Concentration in the Cities
Hosting the 2022 Winter Olympics

In this section, we evaluate the daily criteria pollutant concentrations in Beijing and
Zhangjiakou City, Hebei Province, during the O period to assess the effectiveness of their
air control policies directly and effectively and to discern whether the health of personnel
was protected during the Olympics. The discussion and analysis of the criteria pollutant
concentration exceedance statistics are based on the latest Global Air Quality Guidelines
published by the World Health Organization (WHO) in 2021 [71] (Table 8).
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Table 8. Global Air Quality Guidelines published by the WHO in 2021 that describe the intermediate
targets and air quality guideline (AQG) levels for the different pollutants at different averaging times.
The limit values for each pollutant are determined based on their degree of risk to human health,
international experience, and the latest scientific research. These limit values can be used as reference
standards for government departments and the public to assess and control air pollution.

Items Averaging Time Interim Target AQG Level

1 2 3 4

PM2.5, µg/m3 24 h 75 50 37.5 25 15
PM10, µg/m3 24 h 150 100 75 50 45

O3, µg/m3 24 h 100 70 – – 60
NO2, µg/m3 24 h 120 50 – – 25
SO2, µg/m3 24 h 125 50 – – 40
CO, mg/m3 24 h 7 – – – 4

Interim target: The WHO sets interim targets for various types of emissions, and if these interim targets are
met, one can expect the risks of the acute and chronic effects of air pollution on human health to be significantly
reduced. Interim target 1 can also be regarded as the maximum value of the emissions of the bound air pollutant.
Additionally, this interim target is referred to as the maximum indicator. AQG level: The WHO-recommended
emission concentrations of the criteria air pollutants are ultimate goals. At these concentrations, the air pollutants
exert a limited impact on human health. Additionally, the AQG level is referred to as the minimum indicator of
air pollution emissions.

We calculated the daily average (24 h averaging time) criteria pollutant concentrations
in Beijing and Zhangjiakou City during the O period based on the geographical location
of the air monitoring stations and the hourly observed concentrations, and the results
are shown below (Figure 6). Under the control of relevant air-control measures, the daily
average PM2.5 concentration in Beijing was below the minimum target (AQG level) on
10 days, exceeded the maximum target (Target 1) on 3 days, and varied between the two
targets on the remaining 27 days, while that in Zhangjiakou City was below the minimum
target on 8 days and varied between the maximum and minimum targets for the remaining
32 days. The maximum indicator was not exceeded. Therefore, Zhangjiakou City controlled
its PM2.5 emissions better than Beijing City during the O period. At the same time, the daily
average PM10 and PM2.5 concentration levels at these two locations seemed very similar
during this period, and the changes were basically the same.

The statistics showed that the daily average CO and SO2 concentrations in both
areas were below the AQG level, and the safeguard measures played a very positive
role in controlling the CO and SO2 concentrations. In regard to the NO2 daily average
concentration, it was found that the daily average concentration in Zhangjiakou persistently
remained below the AQG level, while that in Beijing was below the AQG level on 22 days
and varied between the maximum and minimum targets on the remaining 18 days, and the
daily average concentrations in both areas did not exceed the maximum emission targets
during the O period. Moreover, regarding the O3 concentration, Beijing exhibited 26 days
below the minimum emission index during the O period, while the maximum emission
index was not exceeded on the remaining days. In contrast, the level in Zhangjiakou City
exceeded the minimum emission index on all days, it exceeded the maximum emission
index on two days, and it varied between the maximum and minimum targets on the
remaining 38 days. Hence, the control ability of Zhangjiakou City for O3 was lower than
that of Beijing City. Considering the above statistical results, we found that the overall daily
average concentrations of the criteria air pollutants were basically lower than the maximum
emission reduction limits, the daily average concentration values below the minimum
emission reduction limits accounted for the majority of all data, and the overall pollutant
concentration control ability of Zhangjiakou was higher than that of Beijing. Therefore, it
could be considered that the air-control measures in Zhangjiakou played a more positive
role in reducing its pollutant emissions during the Winter Olympics.
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the O period and the WHO urban air criteria pollutant limits. The dotted red line represents Interim
target 1; the dotted blue line represents the AQG level concentration value.

4. Conclusions

We used data retrieved from ground–air quality monitoring stations to quantify the
concentrations of criteria air pollutants (PM2.5, PM10, CO, SO2, NO2, and O3) during the
2022 Winter Olympics and Paralympics in the Beijing, Tianjin, and Hebei regions of China
during four periods (Pre-O, O, Post-O, and Beyond-O), thereby comparing their temporal
characteristics and spatial differences to those during the historical periods. Moreover,
we assessed the concentrations of the criteria air pollutants in Beijing and Zhangjiakou
cities based on the Global Air Quality Guidelines published by the WHO and indirectly
assessed the effectiveness of the temporary prevention and control policies and regulations
implemented by the Chinese government during the Olympic Games (O period). We
concluded this based on the following results: (1) Temporal analysis revealed the most
substantial decreases in PM2.5, PM10, CO, and NO2 concentrations during the O period.
SO2 experienced its most significant decline in the pre-O period, while O3 concentrations
did not notably decrease compared to historical levels. Notably, PM2.5, PM10, and SO2
concentrations exhibited a lag effect, displaying a significant downward trend during the
Post-O period until returning to historical levels in the Beyond-O period. (2) NO2 and O3
concentrations exhibit a negative correlation, necessitating emission-reduction strategies
to control volatile organic compounds (VOCs) to manage O3 levels while regulating NO2
emissions. (3) Variations in industrial structures led to differences in pollutant concentration
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cycles. Beijing, dominated by high-tech industries, saw significant control during the O
period, whereas Hebei and Tianjin, dominated by heavy industries, initiated control during
the Pre-O period with a longer cycle. (4) Spatial variations existed among cities: PM2.5
concentrations decreased in the central and northeastern parts of the BTH region but
increased in the southern region, while PM10 and CO concentrations showed diverse
patterns across different regions. (5) In the Olympic Games, Zhangjiakou controlled
PM2.5 better than Beijing, while both cities positively affected CO and SO2. Zhangjiakou
had slightly less control over NO2 and O3 compared to Beijing. Despite this, both cities
kept daily pollutant levels mostly below set limits, showing the success of the air-control
measures during the Olympics. Our study can be used as a reference for enhancing
regional atmospheric conditions during significant social events. The research outcomes
offer valuable insights for regional environmental decision making, economic development,
social governance, and fostering sustainable urban development.
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8. Bozkurt, Z.; Üzmez, Ö.Ö.; Döğeroğlu, T.; Artun, G.; Gaga, E.O. Atmospheric Concentrations of SO2, NO2, Ozone and VOCs in
Düzce, Turkey Using Passive Air Samplers: Sources, Spatial and Seasonal Variations and Health Risk Estimation. Atmos. Pollut.
Res. 2018, 9, 1146–1156. [CrossRef]

http://www.cnemc.cn
https://doi.org/10.1371/journal.pmed.1002856
https://www.ncbi.nlm.nih.gov/pubmed/31335874
https://doi.org/10.1016/j.ecoenv.2016.01.030
https://www.ncbi.nlm.nih.gov/pubmed/26896893
https://doi.org/10.1016/j.partic.2013.11.001
https://doi.org/10.1016/j.envint.2006.03.012
https://doi.org/10.1080/15287394.2016.1153548
https://doi.org/10.1016/j.atmosenv.2005.08.004
https://doi.org/10.1016/j.atmosenv.2004.02.040
https://doi.org/10.1016/j.apr.2018.05.001


Atmosphere 2023, 14, 1774 19 of 21

9. Hossain, M.S.; Frey, H.C.; Louie, P.K.K.; Lau, A.K.H. Combined Effects of Increased O3 and Reduced NO2 Concentrations on
Short-Term Air Pollution Health Risks in Hong Kong. Environ. Pollut. 2021, 270, 116280. [CrossRef]

10. Tao, C.; Liao, Z.; Hu, M.; Cheng, B.; Diao, G. Can Industrial Restructuring Improve Urban Air Quality?—A Quasi-Experiment in
Beijing during the COVID-19 Pandemic. Atmosphere 2022, 13, 119. [CrossRef]

11. Wang, Y.; Yuan, Y.; Wang, Q.; Liu, C.; Zhi, Q.; Cao, J. Changes in Air Quality Related to the Control of Coronavirus in China:
Implications for Traffic and Industrial Emissions. Sci. Total Environ. 2020, 731, 139133. [CrossRef] [PubMed]

12. Yao, L.; Wang, D.; Fu, Q.; Qiao, L.; Wang, H.; Li, L.; Sun, W.; Li, Q.; Wang, L.; Yang, X.; et al. The Effects of Firework Regulation on
Air Quality and Public Health during the Chinese Spring Festival from 2013 to 2017 in a Chinese Megacity. Environ. Int. 2019, 126,
96–106. [CrossRef] [PubMed]

13. McKenzie, D.C.; Boulet, L.-P. Asthma, Outdoor Air Quality and the Olympic Games. Can. Med. Assoc. J. 2008, 179, 543–548.
[CrossRef] [PubMed]

14. Ventura, L.M.B.; Ramos, M.B.; Santos, J.O.; Gioda, A. Monitoring of Air Quality before the Olympic Games Rio 2016. An. Acad.
Bras. Ciências 2019, 91, e20170984. [CrossRef]

15. Friedman, M.S.; Powell, K.E.; Hutwagner, L.; Graham, L.M.; Teague, W.G. Impact of Changes in Transportation and Commuting
Behaviors During the 1996 Summer Olympic Games in Atlanta on Air Quality and Childhood Asthma. JAMA 2001, 285, 897–905.
[CrossRef]

16. Wang, S.; Zhao, M.; Xing, J.; Wu, Y.; Zhou, Y.; Lei, Y.; He, K.; Fu, L.; Hao, J. Quantifying the Air Pollutants Emission Reduction
during the 2008 Olympic Games in Beijing. Environ. Sci. Technol. 2010, 44, 2490–2496. [CrossRef]

17. Ding, J.; van der A, R.J.; Mijling, B.; Levelt, P.F.; Hao, N. NOx Emission Estimates during the 2014 Youth Olympic Games in
Nanjing. Atmos. Chem. Phys. 2015, 15, 9399–9412. [CrossRef]

18. Li, S.; Xu, S.; Liu, Y. Major Features of China’s Current Macro Economy. In The China Economy Yearbook; Brill: Leiden, The
Netherlands, 2010; Volume 4, pp. 51–61. ISBN 978-90-04-19033-7.

19. Wang, T.; Du, H.; Zhao, Z.; Zhou, Z.; Russo, A.; Xi, H.; Zhang, J.; Zhou, C. Prediction of the Impact of Meteorological Conditions
on Air Quality during the 2022 Beijing Winter Olympics. Sustainability 2022, 14, 4574. [CrossRef]

20. Chu, F.; Gong, C.; Sun, S.; Li, L.; Yang, X.; Zhao, W. Air Pollution Characteristics during the 2022 Beijing Winter Olympics. Int. J.
Environ. Res. Public. Health 2022, 19, 11616. [CrossRef]

21. Wu, Q.; Wu, Z.; Li, S.; Chen, Z. The Impact of the Beijing Winter Olympic Games on Air Quality in the Beijing–Tianjin–Hebei
Region: A Quasi-Natural Experiment Study. Sustainability 2023, 15, 11252. [CrossRef]

22. Central People’s Government of the People’s Republic of China, Beijing, China. Two Departments on the Beijing-Tianjin-Hebei
and Surrounding Areas in the Heating Season of 2021–2022 Steel Industry Peak Production Notice. 2021; p. 1. Available online:
http://www.gov.cn/zhengce/zhengceku/2021-10/15/content_5642770.htm (accessed on 30 September 2021).

23. Tianjin Municipal People’s Government, Tianjin, China. General Office of Tianjin Municipal People’s Government on the Work of
the Ban on Fireworks during the Spring Festival in 2022. 5 January 2022. Available online: https://www.tj.gov.cn/zwgk/szfwj/
tjsrmzfbgt/202201/t20220110_5775314.html (accessed on 10 January 2022).

24. Beijing Municipal People’s Government. Beijing Municipal People’s Government Notice on Temporary Traffic Management
Measures during the Beijing 2022 Winter Olympic Games and Winter Paralympic Games_Policy Documents_Beijing Municipal
People’s Government Portal. 2022. Available online: http://www.beijing.gov.cn/zhengce/zhengcefagui/202201/t20220114_2590
998.html (accessed on 14 January 2022).

25. Wang, Z.; Li, J.; Liang, L. Spatio-Temporal Evolution of Ozone Pollution and Its Influencing Factors in the Beijing-Tianjin-Hebei
Urban Agglomeration. Environ. Pollut. 2020, 256, 113419. [CrossRef] [PubMed]

26. Lyu, Y.; Ju, Q.; Lv, F.; Feng, J.; Pang, X.; Li, X. Spatiotemporal Variations of Air Pollutants and Ozone Prediction Using Machine
Learning Algorithms in the Beijing-Tianjin-Hebei Region from 2014 to 2021. Environ. Pollut. 2022, 306, 119420. [CrossRef]
[PubMed]

27. Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al.
High Secondary Aerosol Contribution to Particulate Pollution during Haze Events in China. Nature 2014, 514, 218–222. [CrossRef]

28. Zhu, L.; Gan, Q.; Liu, Y.; Yan, Z. The Impact of Foreign Direct Investment on SO2 Emissions in the Beijing-Tianjin-Hebei Region:
A Spatial Econometric Analysis. J. Clean. Prod. 2017, 166, 189–196. [CrossRef]

29. Yue, J.; Zhu, H.; Yao, F. Does Industrial Transfer Change the Spatial Structure of CO2 Emissions?—Evidence from Beijing-Tianjin-
Hebei Region in China. Int. J. Environ. Res. Public Health 2021, 19, 322. [CrossRef]

30. Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of Major Air Pollutants to COVID-19 Lockdowns in China. Sci. Total Environ.
2020, 743, 140879. [CrossRef]

31. Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected Air Pollution with Marked Emission Reductions
during the COVID-19 Outbreak in China. Science 2020, 369, 702–706. [CrossRef]

32. Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between Short-Term Exposure to Air Pollution and COVID-19 Infection: Evidence
from China. Sci. Total Environ. 2020, 727, 138704. [CrossRef]

33. Air Pollution Reduction and Mortality Benefit during the COVID-19 Outbreak in China–The Lancet Planetary Health. Available
online: https://www.thelancet.com/journals/lancet/article/PIIS2542-5196(20)30107-8/fulltext (accessed on 12 March 2023).

34. Beelen, R.; Hoek, G.; Cyrys, J.; Eeftens, M.; De Hoogh, K. S-156: Air Pollution Exposure Assessment Using Land Use Regression
Modeling in 36 European Study Areas—Results of the ESCAPE Project. Epidemiology 2012, 23, 1. [CrossRef]

https://doi.org/10.1016/j.envpol.2020.116280
https://doi.org/10.3390/atmos13010119
https://doi.org/10.1016/j.scitotenv.2020.139133
https://www.ncbi.nlm.nih.gov/pubmed/32402905
https://doi.org/10.1016/j.envint.2019.01.037
https://www.ncbi.nlm.nih.gov/pubmed/30784805
https://doi.org/10.1503/cmaj.080982
https://www.ncbi.nlm.nih.gov/pubmed/18687919
https://doi.org/10.1590/0001-3765201920170984
https://doi.org/10.1001/jama.285.7.897
https://doi.org/10.1021/es9028167
https://doi.org/10.5194/acp-15-9399-2015
https://doi.org/10.3390/su14084574
https://doi.org/10.3390/ijerph191811616
https://doi.org/10.3390/su151411252
http://www.gov.cn/zhengce/zhengceku/2021-10/15/content_5642770.htm
https://www.tj.gov.cn/zwgk/szfwj/tjsrmzfbgt/202201/t20220110_5775314.html
https://www.tj.gov.cn/zwgk/szfwj/tjsrmzfbgt/202201/t20220110_5775314.html
http://www.beijing.gov.cn/zhengce/zhengcefagui/202201/t20220114_2590998.html
http://www.beijing.gov.cn/zhengce/zhengcefagui/202201/t20220114_2590998.html
https://doi.org/10.1016/j.envpol.2019.113419
https://www.ncbi.nlm.nih.gov/pubmed/31706769
https://doi.org/10.1016/j.envpol.2022.119420
https://www.ncbi.nlm.nih.gov/pubmed/35526642
https://doi.org/10.1038/nature13774
https://doi.org/10.1016/j.jclepro.2017.08.032
https://doi.org/10.3390/ijerph19010322
https://doi.org/10.1016/j.scitotenv.2020.140879
https://doi.org/10.1126/science.abb7431
https://doi.org/10.1016/j.scitotenv.2020.138704
https://www.thelancet.com/journals/lancet/article/PIIS2542-5196(20)30107-8/fulltext
https://doi.org/10.1097/01.ede.0000417009.16212.cd


Atmosphere 2023, 14, 1774 20 of 21

35. Delavar, M.; Gholami, A.; Shiran, G.; Rashidi, Y.; Nakhaeizadeh, G.; Fedra, K.; Hatefi Afshar, S. A Novel Method for Improving
Air Pollution Prediction Based on Machine Learning Approaches: A Case Study Applied to the Capital City of Tehran. ISPRS Int.
J. Geo-Inf. 2019, 8, 99. [CrossRef]

36. Gregório, J.; Gouveia-Caridade, C.; Caridade, P.J. Modeling PM2. 5 and PM10 Using a Robust Simplified Linear Regression
Machine Learning Algorithm. Atmosphere 2022, 13, 1334. [CrossRef]

37. Ma, J.; Ding, Y.; Gan, V.J.L.; Lin, C.; Wan, Z. Spatiotemporal Prediction of PM2.5 Concentrations at Different Time Granularities
Using IDW-BLSTM. IEEE Access 2019, 7, 107897–107907. [CrossRef]

38. Zheng, M.; Salmon, L.G.; Schauer, J.J.; Zeng, L.; Kiang, C.S.; Zhang, Y.; Cass, G.R. Seasonal Trends in PM2.5 Source Contributions
in Beijing, China. Atmos. Environ. 2005, 39, 3967–3976. [CrossRef]

39. D’Amato, G.; Holgate, S.T.; Pawankar, R.; Ledford, D.K.; Cecchi, L.; Al-Ahmad, M.; Al-Enezi, F.; Al-Muhsen, S.; Ansotegui, I.;
Baena-Cagnani, C.E.; et al. Meteorological Conditions, Climate Change, New Emerging Factors, and Asthma and Related Allergic
Disorders. A Statement of the World Allergy Organization. World Allergy Organ. J. 2015, 8, 1–52. [CrossRef]

40. Orru, H.; Ebi, K.L.; Forsberg, B. The Interplay of Climate Change and Air Pollution on Health. Curr. Environ. Health Rep. 2017, 4,
504–513. [CrossRef]

41. Ng, E.; Ren, C. China’s Adaptation to Climate & Urban Climatic Changes: A Critical Review. Urban Clim. 2018, 23, 352–372.
[CrossRef]

42. Kinney, P.L. Interactions of Climate Change, Air Pollution, and Human Health. Curr. Environ. Health Rep. 2018, 5, 179–186.
[CrossRef]

43. Wen, W.; Ma, X.; Tang, Y.; Wei, P.; Wang, J.; Guo, C. The Impacts of Meteorology on Source Contributions of Air Pollution in
Winter in Beijing, 2015–2017 Changes. Atmos. Pollut. Res. 2020, 11, 1953–1962. [CrossRef]

44. Pérez, I.A.; García, M.Á.; Sánchez, M.L.; Pardo, N.; Fernández-Duque, B. Key Points in Air Pollution Meteorology. Int. J. Environ.
Res. Public Health 2020, 17, 8349. [CrossRef]

45. Yienger, J.J.; Galanter, M.; Holloway, T.A.; Phadnis, M.J.; Guttikunda, S.K.; Carmichael, G.R.; Moxim, W.J.; Levy, H. The Episodic
Nature of Air Pollution Transport from Asia to North America. J. Geophys. Res. Atmos. 2000, 105, 26931–26945. [CrossRef]

46. Goldman, G.T.; Desikan, A.; Morse, R.; Kalman, C.; MacKinney, T.; Cohan, D.S.; Reed, G.; Parras, J. Assessment of Air Pollution
Impacts and Monitoring Data Limitations of a Spring 2019 Chemical Facility Fire. Environ. Justice 2022, 15, 362–372. [CrossRef]

47. Haryanto, B. Climate Change and Urban Air Pollution Health Impacts in Indonesia. In Climate Change and Air Pollution; Springer:
Cham, Switzerland, 2018; pp. 215–239. [CrossRef]

48. Yue, X.; Unger, N. Fire Air Pollution Reduces Global Terrestrial Productivity. Nat. Commun. 2018, 9, 5413. [CrossRef]
49. Shen, L.; Zhao, T.; Wang, H.; Liu, J.; Bai, Y.; Kong, S.; Zheng, H.; Zhu, Y.; Shu, Z. Importance of Meteorology in Air Pollution Events

during the City Lockdown for COVID-19 in Hubei Province, Central China. Sci. Total Environ. 2021, 754, 142227. [CrossRef]
[PubMed]

50. Bakar, Z.A.; Mohemad, R.; Ahmad, A.; Deris, M.M. A Comparative Study for Outlier Detection Techniques in Data Mining. In
Proceedings of the 2006 IEEE Conference on Cybernetics and Intelligent Systems, Bangkok, Thailand, 7–9 June 2006; pp. 1–6.
[CrossRef]

51. Ottosen, T.-B.; Kumar, P. Outlier Detection and Gap Filling Methodologies for Low-Cost Air Quality Measurements. Environ. Sci.
Process. Impacts 2019, 21, 701–713. [CrossRef] [PubMed]

52. Cheng, Z.; Zou, C.; Dong, J. Outlier Detection Using Isolation Forest and Local Outlier Factor. In Proceedings of the Conference
on Research in Adaptive and Convergent Systems, Chongqing, China, 24–27 September 2019; pp. 161–168. [CrossRef]

53. Wang, J.; Du, P.; Hao, Y.; Ma, X.; Niu, T.; Yang, W. An Innovative Hybrid Model Based on Outlier Detection and Correction
Algorithm and Heuristic Intelligent Optimization Algorithm for Daily Air Quality Index Forecasting. J. Environ. Manag. 2020,
255, 109855. [CrossRef] [PubMed]

54. Elminir, H.K. Dependence of Urban Air Pollutants on Meteorology. Sci. Total Environ. 2005, 350, 225–237. [CrossRef] [PubMed]
55. Tasdemir, Y.; Cindoruk, S.S.; Esen, F. Monitoring of Criteria Air Pollutants in Bursa, Turkey. Environ. Monit. Assess. 2005, 110,

227–241. [CrossRef]
56. de Fatima Andrade, M.; Kumar, P.; de Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.;

de Miranda, R.M.; Albuquerque, T. Air Quality in the Megacity of São Paulo: Evolution over the Last 30 Years and Future
Perspectives. Atmos. Environ. 2017, 159, 66–82. [CrossRef]

57. Xiao, K.; Wang, Y.; Wu, G.; Fu, B.; Zhu, Y. Spatiotemporal Characteristics of Air Pollutants (PM10, PM2.5, SO2, NO2, O3, and CO)
in the Inland Basin City of Chengdu, Southwest China. Atmosphere 2018, 9, 74. [CrossRef]

58. Hoque, M.; Ashraf, Z.; Kabir, H.; Sarker, E.; Nasrin, S. Meteorological Influences on Seasonal Variations of Air Pollutants (SO2,
NO2, O3, CO, PM2.5 and PM10) in the Dhaka Megacity. Am. J. Pure Appl. Biosci. 2020, 2, 15–23. [CrossRef]

59. Qu, L.; Liu, S.; Ma, L.; Zhang, Z.; Du, J.; Zhou, Y.; Meng, F. Evaluating the Meteorological Normalized PM2.5 Trend (2014–2019) in
the “2+26” Region of China Using an Ensemble Learning Technique. Environ. Pollut. 2020, 266, 115346. [CrossRef] [PubMed]

60. Nguyen, G.T.H.; Hoang-Cong, H.; La, L.T. Statistical Analysis for Understanding PM2.5 Air Quality and the Impacts of COVID-19
Social Distancing in Several Provinces and Cities in Vietnam. Water Air Soil Pollut. 2023, 234, 85. [CrossRef] [PubMed]

61. Zhao, X.; Gao, Q.; Sun, M.; Xue, Y.; Ma, R.; Xiao, X.; Ai, B. Statistical Analysis of Spatiotemporal Heterogeneity of the Distribution
of Air Quality and Dominant Air Pollutants and the Effect Factors in Qingdao Urban Zones. Atmosphere 2018, 9, 135. [CrossRef]

https://doi.org/10.3390/ijgi8020099
https://doi.org/10.3390/atmos13081334
https://doi.org/10.1109/ACCESS.2019.2932445
https://doi.org/10.1016/j.atmosenv.2005.03.036
https://doi.org/10.1186/s40413-015-0073-0
https://doi.org/10.1007/s40572-017-0168-6
https://doi.org/10.1016/j.uclim.2017.07.006
https://doi.org/10.1007/s40572-018-0188-x
https://doi.org/10.1016/j.apr.2020.07.029
https://doi.org/10.3390/ijerph17228349
https://doi.org/10.1029/2000JD900309
https://doi.org/10.1089/env.2021.0030
https://doi.org/10.1007/978-3-319-61346-8_14
https://doi.org/10.1038/s41467-018-07921-4
https://doi.org/10.1016/j.scitotenv.2020.142227
https://www.ncbi.nlm.nih.gov/pubmed/32920418
https://doi.org/10.1109/ICCIS.2006.252287
https://doi.org/10.1039/C8EM00593A
https://www.ncbi.nlm.nih.gov/pubmed/30855055
https://doi.org/10.1145/3338840.3355641
https://doi.org/10.1016/j.jenvman.2019.109855
https://www.ncbi.nlm.nih.gov/pubmed/31760301
https://doi.org/10.1016/j.scitotenv.2005.01.043
https://www.ncbi.nlm.nih.gov/pubmed/16227082
https://doi.org/10.1007/s10661-005-7866-5
https://doi.org/10.1016/j.atmosenv.2017.03.051
https://doi.org/10.3390/atmos9020074
https://doi.org/10.34104/ajpab.020.15023
https://doi.org/10.1016/j.envpol.2020.115346
https://www.ncbi.nlm.nih.gov/pubmed/32814274
https://doi.org/10.1007/s11270-023-06113-1
https://www.ncbi.nlm.nih.gov/pubmed/36718235
https://doi.org/10.3390/atmos9040135


Atmosphere 2023, 14, 1774 21 of 21

62. deSouza, P.; Lu, R.; Kinney, P.; Zheng, S. Exposures to Multiple Air Pollutants While Commuting: Evidence from Zhengzhou,
China. Atmos. Environ. 2021, 247, 118168. [CrossRef]

63. Wang, T.; Song, H.; Wang, F.; Zhai, S.; Han, Z.; Wang, D.; Li, X.; Zhao, H.; Ma, R.; Zhang, G. Hysteretic Effects of Meteorological
Conditions and Their Interactions on Particulate Matter in Chinese Cities. J. Clean. Prod. 2020, 274, 122926. [CrossRef]

64. Gao, J.; Wang, K.; Wang, Y.; Liu, S.; Zhu, C.; Hao, J.; Liu, H.; Hua, S.; Tian, H. Temporal-Spatial Characteristics and Source
Apportionment of PM2.5 as Well as Its Associated Chemical Species in the Beijing-Tianjin-Hebei Region of China. Environ. Pollut.
2018, 233, 714–724. [CrossRef]

65. Chang, X.; Wang, S.; Zhao, B.; Xing, J.; Liu, X.; Wei, L.; Song, Y.; Wu, W.; Cai, S.; Zheng, H.; et al. Contributions of Inter-City
and Regional Transport to PM2.5 Concentrations in the Beijing-Tianjin-Hebei Region and Its Implications on Regional Joint Air
Pollution Control. Sci. Total Environ. 2019, 660, 1191–1200. [CrossRef]

66. Alvarez, R.; Weilenmann, M.; Favez, J.-Y. Evidence of Increased Mass Fraction of NO2 within Real-World NOx Emissions of
Modern Light Vehicles—Derived from a Reliable Online Measuring Method. Atmos. Environ. 2008, 42, 4699–4707. [CrossRef]

67. Freedman, B. The ecological effects of pollution, disturbance, and other stresses. In Environmental Ecology; Elsevier: Amsterdam,
The Netherlands, 1995; pp. 1–10. ISBN 978-0-12-266542-4.

68. Zhao, Y.; Mao, P.; Zhou, Y.; Yang, Y.; Zhang, J.; Wang, S.; Dong, Y.; Xie, F.; Yu, Y.; Li, W. Improved Provincial Emission Inventory
and Speciation Profiles of Anthropogenic Non-Methane Volatile Organic Compounds: A Case Study for Jiangsu, China. Atmos.
Chem. Phys. 2017, 17, 7733–7756. [CrossRef]

69. Lee, J.D.; Drysdale, W.S.; Finch, D.P.; Wilde, S.E.; Palmer, P.I. UK Surface NO2 Levels Dropped by 42% during the COVID-19
Lockdown: Impact on Surface O3. Atmos. Chem. Phys. 2020, 20, 15743–15759. [CrossRef]

70. Li, K.; Jacob, D.J.; Liao, H.; Zhu, J.; Shah, V.; Shen, L.; Bates, K.H.; Zhang, Q.; Zhai, S. A Two-Pollutant Strategy for Improving
Ozone and Particulate Air Quality in China. Nat. Geosci. 2019, 12, 906–910. [CrossRef]

71. World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide,
Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; ISBN 92-4-003422-6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.atmosenv.2020.118168
https://doi.org/10.1016/j.jclepro.2020.122926
https://doi.org/10.1016/j.envpol.2017.10.123
https://doi.org/10.1016/j.scitotenv.2018.12.474
https://doi.org/10.1016/j.atmosenv.2008.01.046
https://doi.org/10.5194/acp-17-7733-2017
https://doi.org/10.5194/acp-20-15743-2020
https://doi.org/10.1038/s41561-019-0464-x

	Introduction 
	Materials and Methods 
	Air Pollution Prevention Policies and Regulations 
	Study Area and Air Monitoring Sites 
	Definition of the Time Window 
	Air Pollutant Dataset 
	Reducing the Impacts of Weather and Human Factors on the Dataset 
	Statistical Analysis Methods 

	Results and Discussion 
	Analysis of the Criteria Pollutant Concentrations in the Entire Study Area, Provinces, and Municipalities within a Given Time Window 
	Overall Evaluation Analysis of PM2.5 
	Overall Evaluation Analysis of PM10 
	Overall Evaluation Analysis of CO 
	Overall Evaluation Analysis of SO2 
	Overall Evaluation Analysis of NO2 and O3 

	Reduction in Emissions in the BTH Urban Area during the 2022 Winter Olympics 
	Evaluation of the Daily Average Quality via the Air Pollution Concentration in the Cities Hosting the 2022 Winter Olympics 

	Conclusions 
	References

