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Abstract: Precipitation concentration indices have become a popular tool for analyzing the structure
of daily precipitation amounts. Among the existing indices, the concentration index (CI) is widely
used. In calculating the CI, an important aspect is adjusting the Lorenz curve based on the observed
precipitation data. Usually, the fit has been carried out with equations of the type y = axebx. However,
in some research work, it has been observed that sometimes, the fit obtained only partially describes
the behavior of the data. Thus, this work evaluated an alternative functional form to fit the Lorenz
curve. For this, daily precipitation data from 44 climatological stations in Mexico were used to assess
two equations for adjusting the Lorenz curve. Once the fit was made, the goodness of fit was evaluated
to determine which of the functional forms best described the behavior of the data. Results showed
that the two functional forms produced similar results for low precipitation concentrations. However,
when the concentration increased, the alternative functional form generated results following the
behavior of the observations. Thus, it is recommended to use the alternative functional form to avoid
overestimations of the concentration of daily precipitation in areas where it is known that a high
concentration occurs.

Keywords: daily precipitation amount; precipitation concentration; concentration indices; concentration
methods

1. Introduction

In recent years, precipitation concentration analysis has become popular worldwide [1–7].
Some of the popularity of concentration indices is because they can be used to explore
risks related to extreme precipitation events such as drought, floods, and soil erosion [5,8,9]
and because of their utility in analyzing the statistical characteristics of precipitation [1,10].
Special attention has been paid to these indices in recent years due to projections that sug-
gest regime changes in precipitation and extreme weather events, which are predicted to
increase in the future [11]. The first studies on precipitation concentration were made
by Oliver [12] and continued by De Luis et al. [13] using monthly data. Afterward,
Martin-Vide [10] proposed a concentration index (CI) based on daily data. This index
modeled precipitation accumulation using exponential distributions to approximate a
Lorenz curve. This index has been applied worldwide to analyze the concentration of
precipitation [4,14–17]. In his index, Martin-Vide [10] used the normalized rainfall curves
proposed by Riehl [18] and Olascoaga [19] to approximate a Lorenz curve. Based on the
Lorenz curve concept, the proposed index allows the analysis of the relevance of the days
with the most significant rainfall amount. The Lorenz curve can be considered a function
that relates precipitation accumulation to the accumulation of events [20]. Usually, in most
of the research, the precipitation concentration is studied according to the methodology
proposed by Martin-Vide [10], using a functional form for approximating the Lorenz curve,
such as Equation (1). This kind of equation was proposed by Riehl [18] and Olascoaga [19].
Furthermore, Martin-Vide [10] shows an alternative functional form for approximating
the Lorenz curve (Equation (2)), but he did not use it in his research. Equation (2) was
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proposed by Ananthakrishnan and Soman [21] at the end of the 1980s but was used in only
a few studies. The difference with this equation is that it considers the boundary condition
that states that when x = 100, y fits the limit of 100 [22,23].

A recent research work conducted by Lu et al. [1], using Equation (1), found surprising
results because they obtained the same CI value in several cases. However, they noted
significant differences between stations with the same CI when plotting the empirical data
used to approximate the Lorenz curves versus the fitted curve using Equation (1). In their
graph, they noticed, in some cases, that the obtained curve did not fit the data correctly. To
deal with this problem, Lu et al. [1] proposed new indices to explore the information of
the Lorenz curves. In this manner, they proposed six additional indices to characterize the
Lorenz curve effectively. Nevertheless, before making additional calculations, it is necessary
to check the goodness of fit of Equation (1) and of additional functional forms that can
improve the fitting process. This is because, to date, most of the research conducted using
the concentration index has been focused on its spatial and temporal behavior [4,14–17],
but none of this research has been focused on the evaluation of the performance of the
functional form used to approximate the Lorenz curve, which is the base for calculating the
concentration index. Thus, the objective of this research was to evaluate the performance of
Equations (1) and (2) in approximating the Lorenz curve and, therefore, to evaluate and
compare the values of the CI obtained according to the two functional forms.

2. Materials and Methods

The daily precipitation concentration index was evaluated based on a daily precipi-
tation time series from 1960 to 2010 obtained from Mexico’s Meteorological Service [24].
Only forty-four climatological stations were selected for this study because they had fifty
years of records with less than 10% missing data and were considered homogeneous. The
homogeneity of the time series was verified according to Wang et al. [25] using the package
RHtests_dlyPrcp in statistical software R version 4.2.1 [26].

To test the performance of the alternative functional form for the Lorenz curve fitting,
time series of different climate regimes across Mexico were included. Also, the calculations
were performed under different time-aggregation scales. First, the calculation was made
using the annual data of the fifty years of each time series. Then, the calculations were
made using only the rainy-season data (May to October) to test if precipitation during this
period significantly affected the concentration index. Finally, calculations were made at
the seasonal level. According to Mexico’s climate, in this study, the precipitation recorded
through March, April, and May was considered spring precipitation, and that recorded
during June, July, and August as summer precipitation. Precipitation from September
to November was considered autumn precipitation; from December to February, the
precipitation corresponded to winter. The location of climatological stations and Mexico’s
annual precipitation distribution are shown in Figure 1. Low rainfall quantities characterize
the northwest of Mexico because this region is located in the subtropical high-pressure
belt and is affected by the cold current of California, which favors a dry climate [27]. On
the other hand, the southeast of Mexico has the highest rainfall, associated with tropical
cyclones from the Gulf of Mexico and the Pacific Ocean and the intertropical convergence
zone observed during the summer [27,28].
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The calculation of the concentration index was based on the methodology proposed by
Martin-Vide [10]. The cumulative frequencies of rainy days and precipitation were used to
fit Equations (1) and (2) to approximate the Lorenz curve. Equation (1) has conventionally
been used in research that analyzes precipitation concentration using daily precipitation
data. However, it has shown problems in fitting the upper limit of the Lorenz curve. On
the other hand, Equation (2) has shown better fitting, although it has been used only in a
few studies in the 1980s in India. Therefore, it was considered that it required additional
study to confirm its performance.

y = axebx (1)

where a and b are regression constants;

y = xe[−b(100−x)c ] (2)

where b and c are regression constants
According to Ananthakrishnan and Soman [21], the constants a and b in Equation (1)

are not independent and can be related as

a = e(−100b) (3)

In such a manner, the fitting process based on the substitution of Equation (3) in
Equation (1) now depends only on one parameter, the constant b, with which Equation (1)
can now be written as

y = xe[−b(100−x)] (4)

The above equation represents an alternative way to approximate the Lorenz curve.
However, Ananthakrishnan and Soman [21] mention that Equation (4) provided good
results for precipitation data with moderate values of the variation coefficient. However,
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Equation (4) produced large deviations from observations when the variation coefficient
was significant. To improve the goodness of fit, Ananthakrishnan and Soman [21] proposed
introducing a second regression constant in 4, which produces Equation (2).

After the equation fitting, the area between the equality line and the Lorenz curve was
computed as follows:

A = 5000−
∫ 100

0
axebxdx (5)

A = 5000−
∫ 100

0
xe[−b(100−x)c ]dx (6)

Finally, the concentration index was calculated as follows:

CI =
A

5000
(7)

Two statistical measures were computed to evaluate the functional forms’ performance
fitting: the determination coefficient (R2), which indicates the proportion of the variance
in the response variable that the predictor variable can explain, and the root mean square
error (RMSE), which indicates how far apart, on average, the predicted values are from the
observed values. The model fitted the data better with higher R2 values and with lower
RMSE values.

R2 = 1− ∑n
i=1(yi − ŷ)2

∑n
i=1(yi − y)2 (8)

RMSE =

√√√√ n

∑
i=1

(yi − ŷ)2

n
(9)

where yi are the observed data, ŷ are the predicted values of y, y is the mean value of the
observed data, and n is the number of observations.

The relationship between the concentration index obtained according to the
two functional forms was evaluated using Pearson’s correlation coefficient. Statistics
and graphs were made through the R statistical package [26] and maps using QGIS
version 3.4 [29].

3. Results

The results of estimating the goodness of fit of the three functions used to approximate
the Lorenz curve are presented in Figures 2 and 3. Figure 2 shows the evaluation results
based on the determination coefficient R2. The evaluation was carried out on an annual
scale (a) and on rainy-season (b), spring (c), summer (d), autumn (e), and winter (f) scales.
Figure 2 shows good results for the three functions evaluated at all analysis scales. The
average value of R2 for Equation (2) was 0.9983 ± 0.0014, while for Equation (1), the
average R2 was 0.9942 ± 0.0052. Finally, in the modified Equation (4), the average was
0.9952 ± 0.0040. According to the above results, the fits obtained from the three equations
could be considered reasonable, since, according to the coefficient of determination R2,
the percentage of variability that the independent variable could explain was greater than
99%. In these results, Equation (2) stands out, since, with it, the highest R2 values were
obtained; in addition, in the adjustments with this equation, the least dispersion was
observed compared with other equations evaluated.
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ter scale. 

Figure 2. Distribution of the determination coefficient for the fitting of Equation (1) (M-V),
Equation (2) (A & S), and Equation (4) (M-V lim.). (a) Shows results at the annual scale, (b) the
rainy-season scale, (c) the spring scale, (d) the summer scale, (e) the autumn scale, and (f) the
winter scale.
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Figure 3. Distribution of the root mean square error obtained from the fitting of Equation (1)
(M-V), Equation (2) (A & S), and Equation (4) (M-V lim.). (a) Shows results at the annual scale,
(b) the rainy-season scale, (c) the spring scale, (d) the summer scale, (e) the autumn scale, and (f) the
winter scale.
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The results of the root mean square error (RMSE) shown in Figure 3 support the
results observed in previous results with R2, where it was observed that Equation (2)
showed a better fit. The average values of the fits for the different analysis scales show
that the average RMSE for Equation (2) was 0.5183 ± 0.2721, while for Equation (1) it
was 1.8784 ± 0.5710 and for Equation (4), 2.9389 ± 1.055. On the other hand, the results
obtained from the RMSE suggest a hierarchical classification of the goodness of fit of the
three functional forms used in all analysis scales. In this classification, the best performance
was obtained for the functional form proposed by Ananthakrishnan and Soman [21],
followed by the functional form used originally by Martin-Vide [10], and thirdly, the
functional form modified from Equation (1).

Examples of the fits obtained with Equations (1), (2) and (4) are shown in Figure 4. In
this figure, (a) and (b) correspond to the most similar and least similar fits obtained using
the full-year data. Examples (c) and (d) correspond to the adjustments made considering
only the rainy-season data, (e) and (f) using the precipitation data recorded during the
spring, (g) and (h) using the summer data, (i) and (j) the autumn data, and finally, (k) and (l)
the winter data. The best adjustments with all the equations used occurred in the analysis
scales where there was higher precipitation, i.e., annual, rainy-season, summer, and autumn
scales. In comparison, the opposite behavior occurred in the analysis scales where less
precipitation was recorded, such as in the case of spring and winter.
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Figure 4. Comparison of the fitted curves obtained with Equation (1) (M-V fit), Equation (2) (A & S fit),
and Equation (4) (M-V mod fit) versus empirical data for the best and worst fit at the annual scale
(a,b), the rainy-season scale (c,d), the spring scale (e,f), the summer scale (g,h), the autumn scale (i,j),
and the winter scale (k,l).

On the other hand, in the case of the less similar fits, in most cases, a lower degree of
curvature was observed in the fit made with the modified version of Equation (1). Com-
pared with the original equation, the degree of curvature was higher than that presented
by the precipitation data used for the adjustment. In Figure 4, it is generally observed that
the fit obtained from Equation (2) is the one that best fits the observed precipitation data, in
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addition to the fact that, in all cases, the equation fits perfectly to the limits, which is not
fulfilled in all cases when the adjustment is made with Equation (1).

The distribution of the concentration index values computed according to
Equation (1) (Figure 5) shows values between 0.502 and 0.745 at the annual scale, 0.495 and
0.794 for the rainy season, 0.474 and 0.793 for spring, 0.450 and 0.752 for summer, 0.502 and
0.743 for autumn, and 0.495 and 0.760 for winter. On the other hand, CI values obtained
according to the fitting of 2 were observed between 0.478 and 0.701 at the annual scale,
0.472 and 0.734 for the rainy season, 0.450 and 0.752 for spring, 0.468 and 0.768 for summer,
0.480 and 0.683 for autumn, and 0.474 and 0.707 for winter. As observed in Figure 5,
CI values obtained with Equation (2) were lower than those calculated according to
Equation (1) in all the studied timescales. Furthermore, the results could be linearly
related according to the behavior observed in the distribution of the values of the index
calculated with the two methodologies.
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The results for the analysis of the linear correlation between the CI computed according
to Equations (1) and (2) showed a high association degree between the CI values calculated
based on the two methodologies mentioned above. Figure 6 shows the results of the
regression analysis. The determination coefficient (R2) indicates, in all the scales, that the
CI values of Equation (2) could be reliably approximated from the CI values of Equation (1)
because the models obtained could explain, between 0.967 and 0.993, the variation in the
CI calculated with Equation (2), based on their relationship with the CI values obtained
with Equation (1). The slope values for the models shown in Figure 6 show that CI values
obtained with Equation (2) were in proportion to the CI values computed from Equation (1)
from 0.868 to 0.933. The higher proportionality factor was observed for the spring (Figure 6c)
and winter (Figure 6f).
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The spatial distribution of the concentration index calculated under the two method-
ologies on an annual scale is shown in Figure 7. This figure shows that the highest con-
centration values occurred in two well-defined zones, regardless of the methodology used
to calculate the concentration index. The first zone corresponded to the northwest part of
Mexico, where values between 0.623 and 0.745 were observed, according to the results of
Equation (1), and values between 0.567 and 0.701 according to the results of Equation (2). In
both cases, these were the values of the higher concentration index. The second area identi-
fied with a high precipitation concentration was in the southeastern part of Mexico. In this
area, concentration values between 0.619 and 0.682 were observed, according to the results
of Equation (1), and values between 0.559 and 0.631 for the CI were calculated based on
Equation (2). The rest of the country presented CI values that can be considered moderate.

An essential difference between the two methodologies can be found in the northwest
zone, since, in this zone, the highest value of the concentration index calculated with
Equation (1) was located at the south of the Baja California peninsula (latitude 23◦30′). In
contrast, according to the results of Equation (2), the highest value was located within the
continental territory. On the other hand, the spatial distribution of the concentration index
for the two methodologies used showed a pattern like that observed in Figure 7 when
analyzed for the rest of the analysis time scales.
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Table 1 presents the constants obtained by fitting the equations that approximate the
Lorenz curve according to the precipitation data observed at the meteorological stations at
the annual analysis scale and the corresponding concentration indices. Also, it shows the
percentage of precipitation obtained with the adjusted equations when the percentage of
events was 100%, according to Equation (1). In the case of Equation (2), this percentage
was not included because, in this equation, the boundary condition was imposed that
when x = 100, the image also takes that value. According to the results of the percentage
of precipitation when 100% of the rain events have occurred (Equation (1)), a value of
100% was reached in none of the adjusted equations. This behavior was also observed for
the other analysis scales, as seen in Table 2, where the summary of the descriptive statistics
for this variable is presented. According to this table, it is observed that the adjustments
made on some time scales need to be taken with caution, as is the case with the analysis
scales at the spring and summer levels because, with these analysis scales, it was observed
that the percentage of precipitation that the fitted equations predicted for 100% of the
events could be up to 78.5 and 86.8%, respectively, although measures of central tendency
showed values between 96 and 98%. However, the dispersion observed during spring
shows that, with that time scale, the analyses must be conducted carefully to avoid errors
in their interpretation.

Table 1. Constant values for the equations fitted to approximate the Lorenz curve, CI values,
and percentage of precipitation accumulated by 100% of the events according to the fitting with
Equation (1).

Weather Station a (MV) b (MV) CI (MV) % Precip (MV) b (A & S) c (A & S) CI (A & S)

1011 0.0429 0.0313 0.565 98.0 0.0519 0.8395 0.547
1017 0.0148 0.0420 0.641 98.6 0.0722 0.8039 0.609
1019 0.0144 0.0422 0.644 97.9 0.0697 0.8268 0.621
1027 0.0721 0.0261 0.516 97.9 0.0521 0.7796 0.488
2038 0.0084 0.0474 0.678 96.6 0.0941 0.7495 0.636
3012 0.0211 0.0383 0.623 97.1 0.0731 0.7763 0.586
3030 0.0017 0.0633 0.745 95.8 0.1370 0.6756 0.677
3036 0.0075 0.0485 0.684 96.4 0.1143 0.6771 0.624
3049 0.0030 0.0577 0.722 96.9 0.1177 0.6943 0.649
3058 0.0216 0.0381 0.619 97.6 0.0718 0.7723 0.577
3074 0.0086 0.0471 0.680 95.4 0.1018 0.7271 0.638
7141 0.0155 0.0414 0.640 97.7 0.0723 0.8057 0.612
8202 0.0042 0.0544 0.706 97.8 0.0908 0.8053 0.676

11001 0.0562 0.0286 0.539 98.5 0.0538 0.7878 0.506
11015 0.0237 0.0372 0.613 97.5 0.0613 0.8339 0.591
11036 0.0365 0.0330 0.576 98.6 0.0593 0.7957 0.543
11096 0.0379 0.0325 0.575 98.0 0.0581 0.8064 0.548
12046 0.0802 0.0251 0.502 98.6 0.0465 0.8033 0.478
14016 0.0299 0.0349 0.594 98.1 0.0602 0.8167 0.569
14038 0.0334 0.0338 0.585 98.3 0.0531 0.8531 0.567
14080 0.0406 0.0319 0.568 98.6 0.0519 0.8394 0.547
14156 0.0517 0.0295 0.547 98.4 0.0560 0.7856 0.515
15089 0.0366 0.0330 0.576 98.7 0.0558 0.8206 0.549
16007 0.0177 0.0402 0.631 98.2 0.0737 0.7810 0.594
17001 0.0739 0.0259 0.512 98.3 0.0520 0.7742 0.482
17019 0.0572 0.0285 0.536 98.8 0.0495 0.8176 0.511
18001 0.0184 0.0397 0.629 97.7 0.0666 0.8245 0.606
18002 0.0543 0.0290 0.540 98.9 0.0506 0.8140 0.514
18032 0.0126 0.0436 0.650 98.5 0.0696 0.8301 0.624
20082 0.0144 0.0421 0.646 97.3 0.0939 0.7044 0.591
20118 0.0499 0.0298 0.550 98.4 0.0505 0.8288 0.528
20162 0.0124 0.0437 0.655 97.5 0.0890 0.7391 0.609
25081 0.0195 0.0392 0.623 98.5 0.0669 0.8113 0.594
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Table 1. Cont.

Weather Station a (MV) b (MV) CI (MV) % Precip (MV) b (A & S) c (A & S) CI (A & S)

25115 0.0017 0.0637 0.744 96.5 0.1189 0.7480 0.701
26068 0.0128 0.0433 0.653 97.4 0.0772 0.7974 0.623
26073 0.0201 0.0389 0.622 98.1 0.0806 0.7273 0.567
26093 0.0191 0.0393 0.627 97.7 0.0708 0.7985 0.599
27050 0.0222 0.0378 0.619 97.3 0.0853 0.7030 0.559
29002 0.0492 0.0300 0.550 98.7 0.0536 0.8065 0.523
29032 0.0369 0.0328 0.578 97.9 0.0710 0.7344 0.535
30035 0.0070 0.0494 0.682 98.3 0.0958 0.7389 0.631
30072 0.0393 0.0322 0.571 98.4 0.0666 0.7458 0.527
31031 0.0311 0.0344 0.594 97.3 0.0826 0.6902 0.536
32053 0.0260 0.0363 0.603 98.5 0.0663 0.7898 0.570

Table 2. Summary of the descriptive statistics for the percentage of precipitation accumulated by
100% of the events according to the fitting with Equation (1) at different analysis timescales.

Statistic Annual Scale Rainy Season Spring Summer Autumn Winter

Minimum 95.4 92.8 78.5 86.8 92.7 92.4
1st Q 97.4 97.3 93.5 97.3 96.5 95.0
Median 98.0 98.0 95.7 97.9 97.1 96.0
Mean 97.8 97.7 94.4 97.4 97.0 95.8
3rd Q 98.5 98.5 97.0 98.3 97.8 96.7
Max 98.9 98.9 98.2 98.7 98.5 98.1
Standard
deviation 0.8 1.2 4.1 2.1 1.2 1.3

4. Discussion

The results show that in cases where a strong precipitation concentration occurs,
the fit of the curve approximating the Lorenz curve can be improved using Equation (2),
proposed by Ananthakrishnan and Soman [21]. The results of the goodness of fit of the
three equations used to approximate the Lorenz curve coincide with the results reported
by Ananthakrishnan and Soman [21]. However, the authors did not perform a goodness-
of-fit test. They determined that the fit with their equation was better because when
they evaluated the percentage of rainfall obtained with the fit made with Equation (1) for
100% of the events. However, 100% of accumulated rainfall was not obtained, which they
argue could be considered a physical contradiction. In the same sense, the comparison of
the goodness of fit shows that it is advisable to base it on different metrics to interpret the
results in a better manner.

On the other hand, the difference in the fitting can significantly affect the calculation
of indices related to Equation (1), as is the case of the indices proposed by Lu et al. [1], since
they depend on the adjustment made with Equation (1). Special attention is necessary for
the index defined as θ2 because it could be overestimated as an effect of fitting, which does
not fulfill the limit of the data. This is because when the fitting does not fit the limit, it
could lead to an erroneous interpretation of the precipitation concentration since this index
represents the degree of contribution of the most intense rain.

A relevant aspect of the results is that, if it was necessary to classify the degree of
concentration according to the scale proposed by Núñez-González [30], it was observed that
the values obtained for the index fell equally in the classification categories for moderate
and high concentration in both cases. This is because most of the CI values were higher
than 0.5. On the other hand, the ranges of values observed for the CI calculated with the
two methodologies agreed with the observed results reported in the literature [2,4,15,16,30].
However, if it is required to use the fittings to calculate the percentage of precipitation
caused by 25% of the rainiest days, the index proposed by Lu et al. [1], a common index
used to measure the proportion of extreme events versus the total precipitation, different
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results can be obtained. For example, in the case of the maximum values obtained with the
two equations, a difference of up to 5% could be observed in the percentage of precipitation
accumulated during 25% of the rainiest days. This is an important difference since, when
there are CI values of 0.5, 25% of the rainiest days can contribute about 60% of the annual
rainfall, and when the CI value is around 0.7, 25% of the rainiest days can contribute about
80% of the annual rainfall [30].

However, the main problems would be observed in cases where the fitted curves
showed higher RMSE values. In cases where the values are small, it can be considered that
the indices calculated with the two methodologies are very similar, as has already been
recognized by Ananthakrishnan and Soman [21]. Notwithstanding the differences observed,
according to the linear correlation analysis, a correction could be made to the index obtained
with the methodology followed in Martin-Vide [10] to have values that better fit the
empirical data. These results do not have to detract from the work of Martin-Vide [10],
however, since outside of the approximation of the Lorenz curve with Equation (1), its main
contribution is the definition of the concentration index, since in previous research carried
out in the 1950s [18,19] and 1980s [21], only the concept of normalized rainfall curves had
been worked on. The definition of a concentration index had yet to be proposed.

The spatial distribution of CI values obtained with the two methodologies coincides
with that indicated by Núñez-González [2]. However, this study shows the results cal-
culated interannually at the annual and summer scales. The distribution of the highest
concentration index values followed the zoning of precipitation in Mexico [31]. This zon-
ing is based on the position of the Tropic of Cancer (latitude 23◦27′); towards the North
of said tropic, the observed precipitation is lower. In contrast, towards the south, the
highest precipitation is recorded. The above coincides with what has been pointed out
by Méndez et al. [28]. The northern zone is related to the subtropical high-pressure belt,
which, combined with the cold currents of California, favors a dry climate. On the other
hand, in the southern region, the precipitation is related to tropical cyclones and the in-
tertropical convergence zone, which is observed during the summer [27]. High values of
the CI for both dry and humid regions have also been reported in the past by Monjo and
Martin-Vide [14].

On the other hand, the observed values of the constants a and b, from the fitting
with Equation (1), coincide with what was reported in the literature [1,10,19,30,32], while
constants b and c of Equation (2) coincide with those reported by Ananthakrishnan and
Soman [21]. Of these constants, the constant c plays an essential role in determining the
similarity of results between the two methodologies studied. The constant c takes the value
of 1, and Equation (2) becomes Equation (4), a modified version of Equation (1). In this
way, it is expected that in the cases where the constant c takes the highest values, the values
calculated for the CI with the two methodologies are more like those where the lowest
values of the constant mentioned above are observed.

A limitation of this study was related to the low quantity of climatological stations
included in the study. Although Mexico has a vast meteorological observation network, in
most of the records, there is a lot of missing data, which complicated their inclusion in the
research. However, although the results were obtained from data from 44 meteorological
stations, promising results were observed for using alternative functional forms to approxi-
mate the Lorenz curve, which may better fit the observed data. A better fit of the Lorenz
curve allows a more reliable estimate of the precipitation concentration index, which can
be related to extreme precipitation events and droughts.

5. Conclusions

In recent years, the concentration index has become a popular tool to analyze the
structure of daily precipitation. An essential step in the calculation of the concentration
index, according to the methodology proposed by Martin-Vide [10], consists in the fitting
of a function to approximate the Lorenz curve based on daily precipitation data. Usually,
this fitting has been carried out using Equation (1); however, in some research work, it has
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been recognized that the fitting with this equation, in some cases, only partially describes
the behavior of precipitation data. The results of this study provide evidence in favor
of that, based on the goodness of fit test, especially in cases where a high concentration
of precipitation was recognized. Also, the results show that the approximation of the
Lorez curve with Equation (2) improved the fitting. However, using Equation (2) in the
calculation of the concentration index produced CI values lower than those obtained
based on Equation (1). The difference found in the concentration index values could
generate overestimations of up to 5% in accordance with the observed results. These
results do not have to detract from the work of Martin-Vide [10], since outside of the
approximation of the Lorenz curve with Equation (1), its main contribution is the definition
of the concentration index, since, in previous research carried out in the 1950s [18,19], and
1980s [21], only the concept of normalized rainfall curves had been worked on, but not
the definition of a concentration index. On the other hand, according to the correlation
analysis, Equations (1) and (2) are not independent because they are linearly correlated,
allowing the corrected CI value to be determined if the regression equation is known. The
constant c obtained in the fitting of Equation (2) can be considered as an indicator of the
similarity between the two equations because, when this constant approximates the value
of 1, it becomes Equation (4), which is a modified version of Equation (1). The spatial
behavior of the concentration index does not change significantly, as can be observed in the
maps shown in Figure 7. The behavior coincides with what has been pointed out before
for the same region. According to the research mentioned above, it is recommended to
use the alternative functional form to avoid overestimations of the concentration of daily
precipitation in areas where it is known that a high concentration occurs. The results
obtained, based on data from 44 meteorological stations, are promising for the use of
alternative functional forms to approximate the Lorenz curve and, thus, have a better fit to
the observed data. A better fit of the Lorenz curve allows a more reliable estimate of the
precipitation concentration index.
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