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Abstract: We discuss how the projection of geophysical equations of motion onto an exponential
grid allows the determination of realistic values of parameters at a moderate cost. This allows us
to perform many simulations over a wide range of parameters, thereby leading to general scaling
laws of transport efficiency that can then be used to parametrize the turbulent transport in general
climate models for Earth or other planets. We illustrate this process using the equation describing
heat transport in a dry atmosphere to obtain the scaling laws for the onset of convection as a function
of rotation. We confirm the theoretical scaling of the critical Rayleigh number, Rac ∼ E−4/3, over a
wide range of parameters. We have also demonstrated the existence of two regimes of convection:
one laminar regime extending near the convection onset, and one turbulent regime occurring as soon
as the vertical Reynolds number reaches a value of 104. We derive general scaling laws for these two
regimes, both for the transport of heat and the dissipation of kinetic energy, and values of anisotropy
and temperature fluctuations.
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1. Foreword by B. Dubrulle

I met Jack in 1999, when I came to the MMM division of NCAR for a one-year
sabbatical. I had been attracted there by Jack’s reputation from conversations with Annick
Pouquet, Uriel Frisch, and Maurice Meneguzzi. Being a theoretician of turbulence interested
in geophysical applications, I then knew that I would find in Jack a very good interlocutor
and benefit greatly from his physical insights, his broad knowledge about turbulence and
geophysical flows, and his open mind. I met Jack regularly during my stay, and we spoke
about all sorts of topics. It was after a discussion with them that I started to investigate
Rayleigh–Bénard flows and heat transfer properties—I published two papers on this topic
that year. About Jack, I keep the memory of a true “gentleman of science”, very kind to
junior scientists (as I still was at that time), with a great sense of humor and an immense
knowledge that he was keen to share. It is certainly thanks to Jack that I jumped into the
modeling of geophysical flows, and I will always be grateful to him for this.

2. Introduction

Ultra-high Reynolds number flows are ubiquitous in geosciences due to small vis-
cosities, large dimensions or velocity. They are described by the Navier–Stokes equations
(NSEs). A natural control parameter of the NSEs is the Reynolds number Re = LU/ν,
built using the viscosity ν and characteristic length L and velocity U. Classical turbulent
flows are thought to be described by NSEs, with Re� 1. In 1941, Kolmogorov [K41] used
such equations to predict the shape of the energy spectrum E(k) derived from the Fourier
transform of the velocity correlation function for isotropic and homogeneous turbulence
stirred at a constant rate ε. He found that it should scale like E(k) ∼ ε2/3k−5/3 in the range
1/L � k � ν−3/4ε1/4, where k is the wavenumber. This prediction was verified in 1962
on data from a turbulent flow in Seymour Narrows [1] and appears to be one of the most
robust laws of turbulence [2,3], being independent of the boundaries or the stirring process.
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At large wavenumbers, viscous processes take over, and the spectrum decays very fast,
so that the energy contained in wavenumbers greater than kd = ν−3/4ε1/4 is negligible.
The overall behavior of E(k) can be used to infer the typical number of dynamically active
modes as N = (kdL)3. In geophysical flows, such a number can be quite large; for exam-
ple, for the atmosphere, L = 103 km (the size of the large typhoons or cyclones), while
k−1

d is smaller than 10 mm, resulting in kdL > 108. Direct numerical simulations of the
Navier–Stokes equations for such flows are thus impossible, as the total computational cost
of reading-in/writing-out and coupling all these modes exceeds the capability of current
most powerful computers by many orders of magnitude.

If one wishes to simulate ultra-large Reynolds numbers like the atmosphere, one
has no other way out than to empirically decimate modes via a clever selection of grid
points or modes. Simulating viscous flows with just as many scales as needed to “get the
physics right” has been and still is the holy grail of all researchers in the computational
fluid community. If a well-established theory of turbulence was available, including a deep
understanding of all interactions between scales, the quest would probably be over by
now. In the absence of such a complete theory, we need empirical yet clever strategies for
mode number reduction. Jack Herring worked many years on such an issue, using, e.g.,
two-point closure (see, e.g., ref. [4]).

Nowadays, the most popular approach is to use a large Eddy simulation strategy,
in which only large scales are simulated. Present climate models have a grid size of 10 km,
allowing the handling of data volumes in 2 CPU seconds per time step. However, there is
no free lunch; the price to pay for such a mode reduction is the addition of a (sometime very
large) damping to avoid accumulation of energy at the smallest simulated scale. In LES-
type climate simulations, the damping is the same as if the atmosphere was made of peanut
butter and the ocean of honey, so that no fluctuations can develop. This is problematic to
capture possible bifurcations, such as those observed in von Karman flows [5].

In this paper, we consider another class of model in which mode reduction is achieved
by keeping modes following a geometric progression. Such an approximation leaves
out a lot of possible interactions, as we shall see. However, it allows for reaching very
small scales with a very small number of modes. In the atmosphere, for example, only
27 modes are necessary to go from k0 = 1/L to 108/L by a geometrical progression of step
2 (38 with a step being the golden number). This means that we can perform a “resolved”
3D simulation of an atmospheric flow with less than 2× 104 modes (respectively, less
than 6× 104), corresponding to the number of modes involved in an LES simulation at
a resolution of 37 km. The corresponding models correspond to fluid dynamics on log-
lattices, the properties of which were detailed in [6]. For example, they respect the classical
and basic properties of the Navier–Stokes equation, such as the constancy of the energy flux
in the inertial range. Given the potential of such models to describe ultra-high Reynolds
number flow at a low price, we investigate here further properties of such models with
respect to one important open problem of atmospheric flows, which was dear to Jack,
namely the influence of rotation on convection.

3. Log-Lattice Framework

Consider a velocity field that obeys the Navier–Stokes equation (NSE), with viscos-
ity ν and forcing. Its Fourier transform, denoted u(t, k), is a complex field that obeys
the equation:

ik juj = 0,

∂tui + ik jui ∗ uj = −iki p− νk2ui + fi,

u(k, t) = u∗(−k, t).

(1)

where ∗ denotes the traditional convolution product, that involves coupling of modes
u(t, p) and u(t, q) for each k, such that ki = pi + qi for any ith component. The (constant)
density has been set to 1 for convenience, and thus disappears in front of the pressure term
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in Equation (1). The convolution sum is computed directly, but is less costly than a fast
Fourier transform because only a limited amount of local interactions are kept [6].

In traditional spectral simulations of the NSE, the wavenumbers are discretized on
a linear grid, and can be written as k = (m1, . . . , m3) with mi ∈ Z3. The convolution
is ensured by the condition m = n + q for any (m, n, q) ∈ Z3, this allows for a lot of
interactions between Fourier modes.

In the log-lattice framework, we now impose that the wavenumbers follow a geometric
progression:

k = (λm1 , . . . , λm3), (2)

with mi ∈ Z3, where λ is a parameter yet to be defined. It is imposed by the condition that
the convolution product appearing in Equation (1) has some non-zero solution, which is
only possible if the equation:

λm = λp + λq, (3)

has some solutions for any m, p, q ∈ Z3. As discussed in [6], Equation (3) can only be
achieved provided λ takes some specific values, among which λ = 2, λ ≡ φ = (1 +√

5)/2 ≈ 1.618, the golden mean and λ ≡ σ =≈ 1.325 (the plastic number (σ is defined
as the common real root to σ3 − σ− 1 = 0 and σ5 − σ4 − 1 = 0)). Different values of λ
correspond to different numbers of coupling between modes; they become more and more
numerous and less and less local as λ → 1 [6]. In this sense, log-lattices can be seen as
a special case of the sparse Fourier model [7], the REWA model [8], or fractal decimated
models [9,10], in which the non-linear interactions of the NSE are projectively decreased
randomly or in a scale-invariant manner.

The choice of λ is fixed by several considerations: larger values of λ are cheaper, both
in computation time and in memory. However, lower values of λ give rise to more interac-
tions, and thus more fluctuations, which is more realistic for simulating a turbulent flow.
As discussed in [11], the case λ = 2 should be avoided when simulating incompressible
dynamics because it lacks backscatter. On the other hand, ref. [12] checked whether the
scaling law properties, such as the spectral slope or blow-up exponent, do not depend
on the value of λ. Therefore, we work below with λ = φ, which is the best compromise
between all constraints.

3.1. Energy Spectra

It is possible to write the mean energy that measures the scaling properties of the
mode at kn = λn as:

Em(n) =< ||u(k)||2 >Sn , (4)

where the average is taken over wavenumbers in the shell delimited by spheres with radii
λn−1 and λn. Specifically:

< ||u(k)||2 >Sn ,=
1

Nk
∑

λn−1≤||k||<λn

d

∑
α=1
|uα(k)|2, (5)

where d is the space dimension and Nk ∼ (log(k))d−1 is the number of wavenumbers in
the shell Sn.

From this quantity, one can define a pseudo-energy spectrum as:

E(k) =
λ−n

λ− 1
< ||u(k)||2 >Sn , (6)

Examples of such a spectrum in d = 3 are shown in Figure 1 for λ = 2. One sees that
it is self-similar and displays a very clear k−5/3 law. This spectrum has been obtained by
simulating Equation (1) with 203 modes, which can easily be performed on a PC. Due to
the exponential spacing, it enables reaching resolutions and inertial ranges even larger than
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those achieved by oceanic measurements, a performance which is out-of-reach of DNS
simulations of the NSE. This shows the importance of FDLL in geophysics.

Figure 1. Renormalized energy spectrum E(k)/ε2/3η5/3 as a function of the renormalized wavenum-
ber kη for simulation of the Navier–Stokes equation on a 203 log-lattice (black dotted line) and for a
turbulent flow in Seymour Narrows (Ocean) (blue squares). The black dashed line corresponds to
E(k) ∼ k−5/3. This figure was drawn by the authors using data extracted from the published graph
shown in [1].

3.2. Generalizations

Equations (1)–(3) define the Navier–Stokes equation on a log-lattice. By extension, any
equation of fluid dynamics on s log-lattice can be defined by performing the following two
steps [6]: (i) Write the equation in the Fourier-space. (ii) Replace any convolution product
by the convolution on a log-lattice. This construction guarantees that the resulting equation
obeys all the conservation laws and symmetries of the original equations [6].

3.3. Limitations of Log-Lattices

Computations on log-lattices involve a number of limitations. First, due to the local
nature of the convolution in Fourier space, log-lattices are unable to describe the so-
called “non-local” interactions that are involved, for example, in the shearing of small
eddies by large eddies [13]. This may explain why log-lattice simulations do not display
intermittency for the structure functions [14]. Due to their sparsity, log-lattices cannot
describe dispersive wave resonances, like inertial or gravity waves. This means that they
cannot capture dissipative phenomena induced by these waves, and that they can only
capture the dissipation due to small-scale turbulent eddies. Finally, due to the spectral
nature of the construction, it may appear that the log-lattice framework is only appropriate
for homogeneous flows, i.e., far from boundaries. In a recent work, ref. [15] have, however,
shown that the extension to flow with boundaries is possible via lattice symmetrization
around the boundary and careful treatment of the resulting discontinuity. Despite the high
relevance of this situation for geophysical flows, we here concentrate on the simpler case
of homogenous flows, and show how log-lattice simulations enable the recovery of some
well-known features of homogeneous rotating convections.



Atmosphere 2023, 14, 1690 5 of 19

4. Homogeneous Rotating Convections on Log-Lattices
4.1. Definitions

We now consider a rotating homogeneous fluid, with coefficient of thermal dilation
α, viscosity ν and diffusivity κ, subject to a temperature gradient ∆T over a length H and
vertical gravity g. Its dynamics are given by the HRB set of wequations [11,16–18],

∂tu + u · ∇u +
1
ρ0

∇p + 2Ω× u =ν∇2u + αgθ~z− f u, (7)

∂tθ + u ·∇θ =κ∇2θ + uz
∆T
H
− f θ, (8)

∇ · u =0, (9)

where u is the velocity, θ is the temperature deviation from the equilibrium profile (where
θ = 0), which means by definition that T = −∆Tz/H + θ, Ω is the rotation vector, ρ0 is the
(constant) reference density, p is the pressure and f is a (Rayleigh) friction term, accounting
for the friction at the boundary layer that cannot be resolved by the present framework.
We will assume below that this friction is concentrated only on a large scale. As proven
in [11], this friction is mandatory to allow the system to reach well-defined stationary states.
Indeed, for periodic boundary conditions, exponential instabilities can grow because there
is no wall to stop them. They are characterized by the accumulation of energy on a large
scale. Introducing a large scale friction allows damping of the inverse cascade and avoids
the concentration of energy on the large scale. This set of equations has to be completed
with boundary conditions. In this paper, we consider periodic boundary conditions and
focus on the case when the rotation is aligned with the z-axis, Ω = Ωez.

4.2. Non-Dimensional Numbers

We can use five independent non-dimensional numbers to characterize the system:

• The Rayleigh number Ra = αgH3∆T/(νκ), which characterizes the forcing by the
temperature gradient.

• The Prandtl number Pr = ν/κ, which is the ratio of the fluid viscosity to its thermal
diffusivity.

• The Nusselt number Nu = JH/κ∆T that characterizes the mean total heat flux is the
z direction is J = ∂z < uzθ > −κ∆T.

• The Ekman number E = ν/(2ΩH2), measuring the importance of the rotation with
respect to the diffusive process.

• The Rossby number Ro =
√

αg∆T/(2Ω
√

H), measuring the importance of the rota-
tion with respect to buoyancy. In terms of other variables, we have Ro = E

√
Ra/(

√
Pr).

• The friction coefficient F = f
√

H/
√

αg∆T, which provides the intensity of the
Rayleigh damping.

4.3. Equations on Log-Lattice

The regimes we want to explore are very turbulent regimes where the viscosity and
diffusivity do not play any role anymore. Therefore, it is natural to adimensionalize the
equation in terms of “inertial quantities”, i.e., using the vertical width H as a unit of length,
the free fall velocity U =

√
αg∆TH as a unit of velocity, and ∆T as a unit of temperature.

Then, to define the Rotating Homogeneous Rayleigh–Benard (RHRB) equations on
log-lattices, we take the Fourier transform of Equation (7) that can be written in non-
dimensional form as (with the Einstein convention on summed repeated indices):
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ik juj = 0, (10)

∂tui + ik jui ∗ uj = − iki p + θδi3 − Fuiδk≈kmin

−
√

Pr
Ra

k2ui −
1

Ro
εi3kuk

(11)

∂tθ + ik jθ ∗ uj = uz −
k2θ√
Ra Pr

− Fθδk≈kmin , (12)

u(k, t) = u∗(−k, t), (13)

θ(k, t) = θ∗(−k, t). (14)

where the Dirac δk≈kmin filters out the small scales.
In these equations, the convolution product is taken over the log-lattice, see Equation (3).

4.4. Convection Onset

Convection is an instability, so it sets-up at a certain critical value of the parameter Rac.
Detailed computation of this parameter is performed in [19] for the case F = 0. In a nutshell,
we assume that we are very near the threshold, so that deviations from the “equilibrium
state” u = θ = 0 are small. This will allow us to neglect all non-linear terms in Equation (14).
Then, we look for solutions behaving as:

u(k, t) = (u(k), v(k), w(k))eσt,

p(k, t) = p(k)eσt,

θ(k, t) = θ(k)eσt,

(15)

where σ is the growth rate of the instability; if σ has a negative real part, then all perturbation
decay, while instability develops when the real part of σ > 0. Plugging this decomposition
into Equation (14) and neglecting non-linear terms, we get:

ikxu + ikyv + ikzw = 0,

σu− v
Ro

= −ikx p−
√

Pr
Ra

k2u,

σv +
u

Ro
= −iky p−

√
Pr
Ra

k2v,

σw = −ikz p−
√

Pr
Ra

k2w + θ,

σθ = w− 1√
Ra Pr

k2θ.

(16)

This represents a linear, homogeneous system of equations in the variable (u, v, w, p, θ).
If we want this system to have other solutions than (0, 0, 0, 0, 0), we must impose the
determinant of the system to be zero, which provides us with an expression linking σ, k
and the parameters of the system. Taking Pr = 1 for simplicity (the general case leads to
the same conclusions with different prefactors), we get:

σ2 + 2k2 Ra−1/2 σ +
k4

Ra
+ (1 + µ2)−1(

µ2

Ro2 − 1) = 0, (17)

where µ2 = k2
z/(k2

x + k2
y). This is a second order equation for σ, there are therefore two

solutions. Since the prefactor of σ is positive, it means that the sum of the two solutions is
negative. To ensure that there exists at least one solution with a positive real part, we must
then ensure that the product of the solution, given by a term independent of σ, is negative.
To study the consequences of this condition, we consider two limiting cases.



Atmosphere 2023, 14, 1690 7 of 19

Onset at Zero Rotation

We first consider the case with no rotation, Ro→ ∞. Then, the condition for instability

is (1+µ2)k4

Ra − 1 < 0. Since (1+ µ2)k4 is at a minimum when kmin = (2π, 2π, 2π), where kmin

is the minimal wavenumber, this is achieved whenever Ra > 3
2 k4

min. In our simulations,
kmin ∼ 2π

√
3; this gives Rac ∼ 2.1× 104.

4.5. Onset at Large Rotation

In the limit of large rotation, Ro → 0 and the condition for instability now reads
k4

Ra + (1 + µ2)−1( µ2

Ro2 − 1) < 0. Introducing α = k4/ Ra, we may further simplify the
condition by noting that at the instability threshold, µ is close to 1, and k2

z � k2
x + k2

y ∼
Ra. The condition for instability then becomes Ra3/2 > 4π2 E−2 1

(1−α)
√

α
. The instability

criterion is given by the condition that there exists at least α such that the equality is
satisfied, i.e., when the minimum of the right-hand side of the condition of instability is
achieved. This is true for α = 1/3, resulting in Ra3/2 > 4π2 E−2 3

√
3

2 , giving a critical
Rayleigh number

Rac = (6π2
√

3)2/3 E−4/3 ≈ 22 E−4/3 . (18)

We note that this equation is similar to Equation (184) on p. 106 of [19]. This means
that the larger the rotation (the smaller E), the more difficult it is to achieve convection;
rotation stabilizes the flow.

4.6. Phenomenology When F = 0

In the case when F = 0, there are a number of simple physical arguments that provide
the scaling laws relation between non-dimensional numbers.

4.6.1. Non-Rotating Case

We first consider the non-rotating case, E = ∞. In this case, the phenomenology of
homogeneous convection distinguishes three regimes for the behavior of the heat flux as a
function of the forcing [11,16]:

(I): When Ra ≤ Rac, we are in the laminar case. The fluid is at rest, < uzθ >= 0, and the
heat flux is only piloted by the Fourier law, so that J = κ∆T/H and Nu = 1.

(II): Above the critical threshold for instability, when Ra >∼ Rac, convection sets in,
< uzθ > starts becoming positive, and we have Nu ∼ (Ra−Rac)χ, where χ is an
exponent characterizing the (super)-critical transition to convection.

(III): When Ra � Rac, the turbulence becomes fully developed, and we are entering an
“ultimate” regime (also called the Spiegel regime), in which the heat flux does not depend
on the viscosity or the diffusivity any more. In that case, we have Nu ∼ (Ra Pr)1/2 [20–22]
and Re ∼ (Ra / Pr)1/2 [23].

This regime is very difficult to observe in DNSs because of the need for high resolution
to be able to cope with Ra � Rac. In the atmosphere, Ra is typically of the order of
Ra ∼ 1018−22, so we expect the atmosphere to be in this ultimate regime.

Note that in the case where boundaries are present, there is the possibility of an inter-
mediate regime (the Malkus regime), where the heat flux is piloted by the boundary layers
and Nu ∼ Raγ, γ ∼ 1/3. This regime is frequently observed in laboratory experiments,
but it does not apply to homogeneous turbulence because of the absence of boundaries.

4.6.2. Rotating Case

Let us consider the case with rotation. As shown by many studies, the rotation has a
stabilizing influence on the flow, so that the threshold for instability now increases with
increasing rotation. Detailed studies show that Rac ∼ E−4/3 [24]. In addition, the rotation
modifies the structure of the convective cells, which become aligned with the vertical axis
in the case of strong rotation. This profoundly changes the heat transfer. To account for this
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effect, ref. [25] suggests performing the same phenomenology as in the non-rotating case,
using Ra E4/3 instead of Ra. The two turbulent regimes in the presence of rotation are now:

(R1) A rotating Malkus regime in the presence of boundaries, where the heat flux is
independent of the height of the cell and in which Nu ∼ Ra3 E4. This regime cannot be
present in HRB equations.

(R2) A rotating ultimate regime, also called a geostrophic turbulent (GT) regime, at
Reynolds numbers larger than the threshold for onset of turbulence in the boundary layers,
or when boundaries do not limit the heat flux, like in HRB equations. This regime is then
found by stating that the relation between Nu and Ra E4/3 and Pr should be such that the
energy flux J is independent of κ and ν, resulting in [25].

Nu ∼ Ra3/2 E2 Pr−1/2 . (19)

An interesting property of the geostrophic turbulent regime is that it can be expressed
as a universal law, independent of the rotation and the Prandtl number, using the “turbulent”
coordinates [25]:

Nu∗ =
Nu E

Pr
,

Ra∗ =
Ra E2

Pr
.

(20)

In this case, the relation (19) becomes:

Nu∗ ∼ Ra3/2
∗ . (21)

In this regime, we further have Re ∼ Ra E2 / Pr [23].

4.6.3. Log-Lattice Simulation Details

To simulate these equations, we can perform log-lattice simulations. The minimum
wave vector of the grid is set to k1D

min = 2π to match a simulation on a box of size L̃ = 1.
Note that the absence of wavenumbers (k = 0) in our simulation means that we will
not be able to capture large-scale vertical structures that are often observed in rotating
turbulence. However, as shown below, this does not seem to affect the scaling laws of
the transport of heat and momentum that we observe. The grid size N (such that the
maximum wavenumber in the x, y or z direction is proportional to λN) is then set to reach
the dissipative scale for both velocity and temperature. We have verified that the size of
the grid for 3D simulations (N ≥ 13) does not affect the mean value of the observables
Nu, Re, . . . , which are already converged for grids of size N ≥ 6. However, the tail of the
pdfs does depend on N. Another 3D simulation set at N = 20 (not shown here, both vs. Ra
and Pr) displays the same scaling laws as the N = 13 case, confirming this analysis.

5. Results
5.1. Non-Rotating Case

As reference, we have performed simulations without rotation for various Ra values
up to 1025 at Pr = 1 and Pr = 0.7 and for F = 1. Note that present direct numerical
simulations for these Prandtl numbers are limited to Ra ≈ 1015 [26]. The resulting heat
transfer, Nu, as a function of the Rayleigh number Ra is shown in Figure 2. In that case, we
observe that the convection starts as Rac = 6× 105, which is larger than the value predicted
by the linear theory at F = 0, and those observed in previous log-lattice simulations [11].
This means that friction stabilizes the convection in the non-rotating regime. In addition,
we observe a near onset regime Nu ∼ (Ra−Rac)3/2, which then turns into an asymptotic
regime, where Nu ∼

√
Ra. This regime itself splits in two distinct regimes, characterized

by the same scaling law Nu ∼ Ra1/2, but with a very different amplitude: (i) a laminar
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regime, characterized by low fluctuations of the heat transfer. This laminar regime is well
fitted by an empirical law

Nu = A(Ra−Rac)
3/2/(Ra / Rat +1), (22)

where A = 7, Rac = 5× 105 is the critical number for convection onset, and Rat = 5× 106

is the transition number from near-onset to the asymptotic regime. This laminar regime
is followed by (ii) a turbulent regime, with much larger fluctuations. The typical time
behavior of the heat transfer in the two regimes is displayed in Figure 3, which showcases
both regimes. The laminar regime is stable up to Ra ≈ 1012, and unstable above; if we
wait long enough, the solution jumps from the laminar regime to the turbulent regime,
as illustrated in Figure 3. Looking at Nu as a function of time in this regime in Figure 3,
we observe that the simulation first follows a rather long evolution along the laminar
regime, before suddenly transitioning towards the turbulent regime as instability develops,
increasing its energy by several orders of magnitude in the process.

Figure 2. Non-dimensional heat transfer Nu vs. Rayleigh number Ra in 3D for Pr = 0.7 (circle) and
Pr = 1 (squares). The dotted line corresponds to the empirical law: Nu = 7(Ra−Rac)3/2/(Ra / Rat +1),
with Rac = 6 × 105 and Rat = 5 × 106 that connects the near-convection onset regime to the
asymptotic law Nu ∼ 20

√
Ra for large Ra, corresponding to asymptotic non-rotating ultimate regime

scaling. This regime is itself split into a laminar regime (open symbols) and a turbulent regime
(filled symbols).

Figure 3. Non-dimensional heat transfer Nu versus time t for Ra = 3.46× 1011. The flow starts in a
laminar regime, then abruptly transitions to a turbulent regime.
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5.2. Rotating Case
Parameter Space and Critical Rayleigh Number

We turn now to the case with rotation. Figure 4 shows the parameter space we have
explored, with E ranging from 10−9 to 10−1 and Ra up to 1014. In this range of parameters,
we observe typically three types of behaviors: (i) Conductive behaviors, where both the
velocity and temperature fluctuations are zero and Nu = 1. These cases are shown as
white symbols in Figure 4. (ii) Transitional regimes, where the velocity and temperature
fluctuations are decaying very slowly but steadily along with Nu over the time of the
simulation, so that asymptotically, they are likely to converge to the conductive limit.
The typical timescale to reach this limit increases as E decays and Ra increases. To save
computational time, we stopped the simulation before reaching the limit for E ≥ 10−6,
but have reported these points as yellow points in Figure 4. (iii) Convective regimes, where
both the velocity and RMS velocities reach a stationary state; these points are reported
as black points in Figure 4. This representation allows for a clear view of the stabilizing
influence of rotation on the convection threshold. In the asymptotic regime of large rotation,
E � 1, such an influence is very well described by the prediction of the linear theory at
F = 0, Equation (18), which is reported as a red line in the diagram. This means that,
as rotation increases, the friction becomes less important in the dynamics.

Figure 4. Parameter space covered by our log-lattice simulations at Pr = 0.7. The color of the symbols
indicates the three possible regimes: conductive (white), transitional (yellow), and convective (black).
The red line is the theoretical asymptotic prediction given by Equation (18). The magenta line is the
theoretical convection threshold in the absence of rotation Ra = 6× 105. The green line has equation
Ra = 0.06E−2 and delineates regions of the parameter space where the turbulence is influenced by
rotation (below the line) or not influenced by rotation (above the line), as diagnosed by the behavior
of the kinetic energy dissipation, see Figure 5. The geostrophic turbulent regime is observed in
between the red and the green line.
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log 10(E)

Figure 5. Non-dimensional energy dissipation εu = ν < (∇u)2 > H/U3 = Ra Nu Pr−2 /(Ra Pr)3/2

vs. vertical Rossby number Roz in 3D for Pr = 0.7 for rotating HRB simulations on log-lattices.
The symbols are colored according to their Ekman number, E. The open symbols trace the laminar
regime, while the filled symbols trace the turbulent regime. The rotation-dominated regimes are
highlighted by a black (respectively, white) square for the laminar (respectively, turbulent) regime.
The black (respectively, red) dotted line corresponds to εu ∼ Roz (respectively, εu ∼ Ro1/2

z ), while the
black (respectively, red) dashed line corresponds to εu = 3.7 (respectively, εu = 1).

5.3. Influence of Friction

To elucidate this observation, we computed the ratio of the kinetic energy dissipated by
friction, FU2, to the kinetic energy dissipated by in the flow by viscous processes, εu. This
is reported in Figure 6. We indeed observe two regimes: one at a low value of Ra < 1011,
where the friction dominates the dissipation, and one at a larger Ra > 1011, where the
friction is negligible. We will see below that this induces two different regimes termed
“laminar” and “turbulent” regimes. In addition, we observe that as the rotation becomes
larger, the influence of friction decreases.

5.3.1. Laminar vs. Turbulent Regime

Figure 7 reports the heat transport Nu as a function of Rayleigh number, Ra, and the
Ekman number, E. One can see that larger Ekman numbers correspond to a smaller heat
transport at a given Ra. However, rotation does not suppress the existence of a laminar
to turbulent transition, which is already present in the non-rotating case. Like in the non-
rotating case, it occurs when the vertical Reynolds number exceeds urms

z L/ν = Rec = 104,
corresponding to Ra ∼ 1012, with a bi-stability occurring around Ra = 1011, see Figure 8.
This critical value separates two different scaling regimes: one such that Re ∼ Ra1/2,
and one such that Re ∼ Ra.
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Figure 6. Ratio of the kinetic energy dissipated by friction, FU2, to the kinetic energy dissipated by
viscous processes, εu, as a function of the Rayleigh number, Ra, and the Ekman number E. The points
are color-coded by log 10(E). The friction dominates for low-rotation and for Ra < 1011.

log 10(E)

Figure 7. Non-dimensional heat transfer Nu vs. Rayleigh number Ra in 3D for Pr = 0.7 for rotating
HRB simulations on log-lattices. The symbols are colored according to their Ekman number E.
The stars traces the conductive regime. The open symbols trace the laminar regime, while the filled
symbols trace the turbulent regime. The rotation-dominated regimes are highlighted by a black
(respectively, white) square for the laminar (respectively, turbulent) regime. The black dashed line
is Nu = 20

√
Ra, corresponding to asymptotic non-rotating ultimate regime scaling. The red dotted

line is Nu ∼ Ra3/2, corresponding to the geostrophic turbulent regime, see Figure 9 for an exact
representation of the corresponding scaling law.



Atmosphere 2023, 14, 1690 13 of 19

log 10(E)

Figure 8. Vertical Reynolds number Re =
√
< u2

z >H/ν as a function of Rayleigh number Ra in 3D
for Pr = 0.7 for rotating HRB simulations on log-lattices. The symbols are colored according to their
Ekman number, E. The open symbols trace the laminar regime, while the filled symbols trace the
turbulent regime. The rotation-dominated regimes are highlighted by a black (respectively, white)
square for the laminar (respectively, turbulent) regime. The black (respectively, red) dashed line
follows the equation y ∼ x1/2 (respectively, y ∼ x1).

log 10(E)

Figure 9. Universal law governing the heat transfer in the turbulent regime Nu E as a function
of Ra E2 in 3D for Pr = 0.7 for rotating HRB simulations on log-lattices. The symbols are colored
according to their Ekman number E. The symbols tagged by a white square trace the rotation-
dominated regime, while the filled symbols trace the rotation-independent regime. The black dotted
(respectively, dashed) line follows the equation y ∼ x3/2 (respectively, y ∼ x1/2).
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5.3.2. Influence of Rotation and Onset of Rotation-Dominated Regimes

The influence of rotation on turbulence is well documented (see, e.g., ref. [27,28]),
and is characterized by a decrease in the efficiency of the transport properties with respect
to the non-rotating case. For the case of heat transport, this is already clear from Figure 7,
as already discussed. In the case of the turbulent kinetic energy dissipation ν < (∇u)2 >, it
is known that the decrease is proportional to the vertical Rossby number, Roz = uz/2HΩ,
when Roz goes to zero [28]. We indeed observe this effect in our simulations, as illustrated
in Figure 5, where the non-dimensional turbulent kinetic energy dissipation εu = ν <
(∇u)2 > H/U3 is shown as a function of the vertical Rossby number. We see that in both
the laminar and turbulent regimes, the energy dissipation indeed decreases for sufficiently
low vertical Rossby numbers. In the turbulent regime, the decrease is indeed proportional
to Roz, indicated by the black dotted line. In the laminar regime, however, the decrease is
milder, following Ro1/2

z . In the turbulent case, the rotation-dominated regime starts below
Roz ∼ 0.1, while in the laminar case, it starts at Roz ∼ 0.03. We can use this change in
regime to tag the simulations that are or are not influenced by the rotation. We denote
them below by a white dot inside a filled symbol for the turbulent regime, and a black
dot inside an open symbol for the laminar regime. Reporting this in Figures 7 and 8, we
see that this regime corresponds to a lower heat transport and a smaller vertical Reynolds
number, in agreement with the general findings that rotation impedes heat transport and
vertical velocities. Note that the vertical Rossby number scales similar to the global Rossby
number, following Roz ∼ Ra1/2 E in both the laminar and turbulent regimes, see Figure 10.

log 10(E)

Figure 10. Vertical Rossby number Roz vs. “turbulent” Rayleigh number Ra E2 in 3D for Pr = 0.7
for rotating HRB simulations on log-lattices. The symbols are colored according to their Ekman
number E. The open symbols trace the laminar regime, while the filled symbols trace the turbulent
regime. The rotation-dominated regimes are tagged by a black (respectively, white) square for the
laminar (respectively, turbulent) regime. The black (respectively, red) dashed line follows 0.4 Ra1/2 E
(respectively, 0.04 Ra1/2 E).
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5.3.3. Temperature Fluctuation and Anisotropy

Another interesting indicator of the influence of rotation on convection is given by the
behavior of the temperature fluctuations, displayed in Figure 11. In the laminar case, they
plateau at a low value (less than 0.01) as Ra increases, showing that the dynamics are indeed
laminar. The rotation even tends to decrease the size of the fluctuations. In the laminar
case, the temperature fluctuations increase with Ra, showing that convection is increasingly
vigorous; even so, large rotations tend to somehow impede the development of excessively
large fluctuations. The rotation also influences the anisotropy of the turbulence, as seen in
Figure 12. Both in the laminar and turbulent cases, the anisotropy is well above 1/2, which
would correspond to a situation where the kinetic energy is split evenly between motions
along and perpendicular to the rotation axis. Due to the special nature of our projection, we
cannot obtain a meaningful representation of what this result means in the physical space.
It might, however, be interpreted as the influence of strong up (respectively, down)-drafts
that are observed in direct numerical simulations to carry the heat from the bottom to the
top (respectively, the cold fluid from the top to the bottom). The values we obtain here for
the anisotropy are much larger to what are usually observed in simulations or experiments
of RB convection with boundaries, but they are compatible with observations of radiative
convection [29] or convection with no-slip boundary conditions [25], which have observed
the formation of extremely extended plumes extending towards the whole bulk of the flow.
The decrease in anisotropy observed at decreasing E values may be connected with the
stabilizing influence of rotation, which impedes vertical fluctuations [27].

log 10(E)

Figure 11. Temperature fluctuations θrms =
√
< θ2 > vs. Rayleigh number Ra in 3D for Pr = 0.7

for rotating HRB simulations on log-lattices. The symbols are colored according to their Ekman
number E. The open symbols trace the laminar regime, while the filled symbols trace the turbulent
regime. The rotation-dominated regimes are highlighted by a black (respectively, white) square for
the laminar (respectively, turbulent) regime.
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log 10(E)

Figure 12. Velocity anisotropy
√
< u2

z >/
√
< u2 > vs. Rayleigh number Ra in 3D for Pr = 0.7 for

rotating HRB simulations on log-lattices. The symbols are colored according to their Ekman number
E. The open symbols trace the laminar regime, while the filled symbols trace the turbulent regime.
The rotation-dominated regimes are highlighted by a black (respectively, white) square for the laminar
(respectively, turbulent) regime.

5.3.4. Laminar and Turbulent Scaling Laws and GT Regimes

The laminar regime starts from the convection onset. It is therefore likely that it is
influenced by near-onset dynamics. A natural idea is then to try to see whether it also
follows the near-onset scaling law of the non-rotating case, Equation (22), albeit with Rac
being replaced by its rotating value (22 E−4/3) and Rat being replaced by B E−4/3, where the
constant B needs to be determined. With this hypothesis, we then find that in the laminar
regime, Nu E2/3 should be a function of Ra E4/3, where the function satisfies Equation (22),
with A = 7, Rac = 22, and Rat = 5× 102, see Figure 13. The turbulent regime corresponds
to large Reynolds numbers, in which viscosity and diffusivity should not play a role any
more. It is then natural to represent them in the turbulent variables Nu E and Ra E2 (where
we have omitted the Pr dependence, since it a constant in all our data sets), which is shown
in Figure 9. This representation indeed collapses the data with two different scaling laws:
one with exponent 3/2 for regimes influenced by rotation—this is the GT regime—and one
with exponent 1/2 corresponding to the turbulent regime not influenced by rotation. The
precise location in the parameter space where the GT regime occurs can be computed using
the fit of the vertical Rossby number as a function of Ra E2, see Figure 10. The condition
Roz < 0.1 then translates into the condition Ra ≤ 0.06E−2, which is the green line in
Figure 4. The GT regime is then found to be in-between the blue and the green lines, which
is the region where we concentrate additional numerical simulations.
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log 10(E)

Figure 13. Universal law governing the heat transfer in the laminar regime Nu E2/3 as a function
of Ra E4/3 in 3D for Pr = 0.7 for rotating HRB simulations on log-lattices. The symbols are colored
according to their Ekman number E. The open symbols containing by a black square trace the
rotation-dominated regime, while the open symbols trace the rotation-independent regime. The red
dotted line follows Equation (22), with A = 7, Rac = 22 and Rat = 5× 102.

6. Discussion

We have shown that the projection of geophysical equations of motion allow for the
determination of realistic values of parameters at a moderate cost. This allows us to perform
many simulations over a wide range of parameters, thereby leading to general scaling
laws of transport efficiency that can then be used to parametrize the turbulent transport
in general climate models for Earth or other planets. We have illustrated this process
using the equation describing the heat transport in a dry atmosphere to obtain the scaling
laws for the onset of convection as a function of rotation, and confirmed the theoretical
result of Rac ∼ E−4/3 over a wide range of parameters. We have also demonstrated the
existence of two regimes of convection: one laminar regime extending near the convection
onset and one turbulent regime occurring as soon as the vertical Reynolds number reaches
a value of 104. We have derived general scaling laws for these two regimes, both for
the transport of heat and the dissipation of kinetic energy, and values of the anisotropy
and temperature fluctuations. The set-up we have used here is far from being able to
reproduce the full complexity of the atmosphere, as it models the friction at the bottom with
a simple law, and ignores moisture dynamics. We plan to include these features in future
work. Finally, it is not clear how the projection of dynamics onto log-lattices influences the
results we are deriving. It is quite remarkable that the procedure is able to capture scaling
laws, as we recover here some results already obtained in experiments [29] and numerical
simulations [25] of convection without boundary layers, albeit with different prefactors.
This of course has some important implications when translating these scaling laws as
parametrizations in models. However, if we believe that the scaling laws themselves are
robust, it only takes comparisons with a few direct numerical simulations to recalibrate the
constants and turn our laws into useful parametrizations.
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