
Citation: Barbosa, H.A. Flash

Drought and Its Characteristics in

Northeastern South America during

2004–2022 Using Satellite-Based

Products. Atmosphere 2023, 14, 1629.

https://doi.org/10.3390/

atmos14111629

Academic Editor: Ognjen Bonacci

Received: 5 September 2023

Revised: 27 October 2023

Accepted: 27 October 2023

Published: 30 October 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Flash Drought and Its Characteristics in Northeastern South
America during 2004–2022 Using Satellite-Based Products
Humberto Alves Barbosa

Laboratório de Análise e Processamento de Imagens de Satélites (LAPIS), Instituto de Ciências Atmosféricas,
A. C. Simões Campus, Universidade Federal de Alagoas, Maceió 57072-900, Brazil;
humberto.barbosa@icat.ufal.br; Tel.: +55-82-9999-3043

Abstract: The term flash drought describes a special category of drought with rapid onset and strong
intensity over the course of days or weeks. To characterize the impact of flash droughts on vegetation
coverage, this study assessed the influence of soil water deficits on vegetation dynamics in the
northeastern South America region by combining time series of vegetation index, rainfall, and soil
moisture based on satellite products at a daily time scale. An 18-year analysis, from 2004 to 2022, of
the Normalized Difference Vegetation Index (NDVI), Standard Precipitation Index (SPI), and surface
soil moisture (SSM) was performed based on three different satellite remote sensing estimates: the
spinning enhanced visible and infrared imager (SEVIRI) and the integrated multi-satellite retrievals
algorithm (IMERG), and the soil moisture and ocean salinity (SMOS). The results revealed that flash
drought events exerted dramatic impacts on terrestrial ecosystems in the study region during the first
two decades of the 2000s, with changes in seasonal and regional vegetation dynamics. Further, the
fixed-threshold values to characterize flash drought events were suggested as the timing when the
water deficit was less than −1.0 units and vegetation index reached the value equal to +0.3 during
five consecutive weeks or more, coupled with soil moisture rates below 40% percentile, leading to
a strong region-wide drought throughout the entire region. Additionally, the results of linear least
squares trend analyses revealed a negative trend in the pentad-SEVIRI radiance for the solar channel
1 within the semiarid ecosystems of the study region (i.e., the Caatinga biome) that was suggested
as a reduction in clouds in the 18 years of the study. Developing combined threshold measures
of flash drought based on satellite remote sensing may lead to an accurate assessment of flash
drought mitigation.

Keywords: flash droughts; SEVIRI; NDVI; soil moisture; SPI

1. Introduction

Global drought events and their duration have increased by 29% since 2000 [1].
Drought refers to a period with anomalies in average moisture conditions during which
limitations in water availability result in negative impacts on multiple fields such as agri-
culture [2], livestock [3], the environment [4], and even the entire ecosystem [5]. It can
happen on a wide range of timescales, from flash droughts on a scale of weeks [6,7] to
multi-year or decadal rainfall deficits [8–11]. Noticeably, the distinction between drought
types is not absolute, as a drought can impact different fields at the same time. Because
of this, drought cannot be distinguished using a single universal definition [6] or directly
measured based on a single variable [7]. It is frequently caused by a combination of the
atmosphere, hydrosphere, and anthropogenic processes [12].

Drought events are both the result of thermodynamical [3] and dynamical processes [13]
through increased radiation, air temperature, and atmospheric drying, which all increase
evaporative demand [14]. It is uncertain how changes in circulation patterns may affect
drought occurrence, length, and intensity [12]. Observed atmospheric drying in recent
decades over land is not well captured in the global climate models [15], with possible
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consequences for drought projections. Overall, atmospheric dynamics is the main factor in
rainfall deficits across the globe [16], but anomalies in moisture transport also contribute to
triggering and intensifying them [17].

Nevertheless, there is limited evidence of circulation changes attributable to green-
house gas forcing that are affecting long-term changes in drought events [12]. In addition
to their causes, drought events are also characterized by multifaceted and multidimen-
sional impacts, such as on soil moisture content [18], vegetation growth conditions [19],
and some hydrological parameters [19]. Drought events are often analyzed using indices,
which are measures of drought severity, duration, and frequency, addressing different
types of drought characteristics [20]. These can range from anomalies in single variables
(e.g., rainfall, soil moisture, runoff, and evapotranspiration) to complex indices combin-
ing different drought aspects that integrate the respective strengths of multiple single
indices [21].

Given difficulties for drought quantification and data constraints for hydrological
variables (e.g., soil moisture, streamflow, groundwater), but also environmental (e.g., forest
growth and mortality, biomass production) and agricultural impacts (i.e., crop failure, yield
reduction), simplified synthetic drought metrics that combine both rainfall and potential
evaporation have been developed. These indices range from the Standardized Precipitation
Evapotranspiration Index (SPI, SPEI; [6,22]), Soil Moisture Volatility Index (SMVI; [23]),
Relative Rate of Dry Down (RRD; [24]), Evaporative Stress Index (ESI; [25]), Evapotran-
spiration (ET) and Potential ET-based: EDDI [26], and Atmospheric Evaporative Demand
(AED)-based: Evaporative Stress Index (ESR; [27]). These indices have the advantage
of being based on meteorological information, which is available worldwide. However,
they also have some limitations in their suitability (e.g., usually they are poor estimation
approaches of the soil moisture variability) [28].

Based on multiple satellite-based datasets, researchers have used the Normalized Dif-
ference Vegetation Index (NDVI) to evaluate vegetation response under drought conditions.
Barbosa et al. [29] adopted the NDVI to identify the drought spatial-temporal patterns in
the northeastern South American region. There are other vegetation-related drought indices
based on the spectral reflectance properties of vegetation, such as the Vegetation indices
Vegetation Drought Response Index (VegDRI; [30]), Standardized Difference Vegetation
Index (SDVI; [31]), Leaf Area Index (LAI; [32]), and Vegetation Condition Index (VCI; [33]),
among others. This implies water stress for vegetation (i.e., the inability to photosynthesize
because the atmosphere is too dry for stomata to open) that provides an effective and
quantitative criterion for vegetation damage estimation [34]. This also explains why, in
semiarid climates, the NDVI is well correlated with rainfall deficits [35] and soil moisture
deficits [36]. Overall, rainfall is generally the main driving factor controlling drought
development. Nevertheless, in most of the world’s regions, rainfall deficits are driven by
dynamic mechanisms recorded on different spatial scales, including synoptic, dominant
hemispheric circulation patterns [37] and global ocean-atmosphere coupled patterns like El
Niño Southern Oscillation (ENSO) [38].

There are several drought studies that can be inconclusive due to a lack of station-based
observations (e.g., [39]). Some key climate variables (e.g., relative humidity, wind speed)
show high uncertainties [40], low spatial coverage [41], and temporal inhomogeneities [42].
Measurements of soil moisture are also limited. Ground-based soil moisture observations
are available in some regions but are still scarce [43]. There are, however, fewer limita-
tions in the availability of satellite-based products for assessing drought impacts across
the globe [44]. Yet, no flash drought signal on vegetation has been found in geostation-
ary satellite-derived estimates in South America, specifically in the northeastern South
America region.

Several satellite-derived NDVI products are available for drought impact evaluation,
and several methods have been developed to assess the reliability of these products for
detecting emerging drought events (e.g., [45]). Considerable efforts to capture the impact
of meteorological drought on vegetation based on NDVI products from sun-synchronous
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satellites have been made [46]. While all these sun-synchronous-derived NDVI products
have their advantages and their limitations, none of them are very well suited for the
occurrence of flash droughts because of inadequate temporal resolution. Instead, here it
was used geostationary-derived NDVI product from the Spinning Enhanced Visible and
infrared imager (SEVIRI) sensor onboard the Meteosat second generation (MSG) satellites,
which has been applied in vegetative-drought impact evaluation at daily and monthly time
scales (see [31] for a review of available MSG-SEVIRI-NDVI product).

Because high-frequency data is of crucial importance to characterize the impact of
flash drought events on vegetation, this study relies on MSG-derived NDVI data at high
resolution as a proxy for soil moisture. However, soil moisture-driven phenological cycles
in northeastern South America’s landscape are partially attributed to the fact that persistent
drought conditions can lead to a gradual decrease in the soil moisture level, resulting in
weaker-than-normal photosynthetic activity [18]. Most importantly, however, a previous
study by Otkin et al. [7,30] shows that flash drought is identified by a sudden decrease
in soil moisture percentile from above 40% to below 20% within a 20-day period. As the
definition of flash drought varies depending on the region being considered, it is unclear
how it changes in the northeastern South American region. Therefore, this study aimed to
evaluate the impact of flash drought events on vegetation response through soil moisture in
northeastern South America during the first two decades of the 2000s. A variety of methods
were applied, including two drought indices and remote sensing techniques, to analyze the
response of its ecosystems to flash drought events.

In the next section, the data are presented, and methods are applied. Section 3 shows
both the spatial and temporal impacts of flash drought events on vegetation dynamics over
the northeastern South America region using varying satellite-based products, discusses
the derived modes of vegetation-rainfall activity, and links these main modes with the
large-scale radiance estimates. And Section 4 ends with conclusions.

2. Datasets and Methods
2.1. Study Area

The northeastern South America region is taken to encompass mainland South Amer-
ica between the parallels 1◦ and 18◦ S and the meridians 35◦ and 47◦ W and spans a total
area of 1.6 million km2 (see Figure 1). It is home to around 53.1 million individuals [47]. It
represents a large geographical area covering a semi-arid climate with low and irregular
rainfall, high temperatures, and high evaporation rates [48]. Within the region, other types
of climates exist, depending on location, relief, and vegetation influences [11].

The climate pattern of the northeastern South America region is characterized by a
transition in rainfall from the dry inland (Caatinga biome; Figure 1) to the humid Atlantic
coast (Mata Atlântica biome). Mean annual rainfall increases steadily from less than
800 mm in the semi-arid interior to 1800 mm at the coast (Figure 2b). The semi-arid area
covers 60% of the region. Within the northeastern South America region, the wettest
season typically occurs from December to April, while the dry season extends from July
to October [49]. The rainfall regime is mainly influenced by the seasonal migration of the
Intertropical Convergence Zone (ITCZ), the El Niño Southern Oscillation (ENSO), and the
Tropical North Atlantic sea surface temperature. Severe droughts happened during El
Niño events in 1983, 1998, and 2016, and due to warm surface waters in the Tropical North
Atlantic between 2012 and 2018 [50].

Vegetation within the northeastern South America region was classified into several
land cover types, including both unmanaged native and managed agricultural vegetation
(Figures 1 and 2a). The four most prevalent land cover types within the northeastern
South America are Caatinga, Cerrado, Atlantic Forest, and Amazon Forest, covering 52.5%,
29.4%, 10.7%, and 7.4% of land area, respectively [30]. The Caatinga ecosystem (Figure 1)
covers 735,000 km2 of northeastern South America region and is characterized by a mosaic
of xerophytic vegetation [49]. The term “Caatinga” (Caa = forest, tinga = white) comes
from the Tupi language and is used synonymously with Steppe Savannah as defined by
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Trochain [50]. Typical Caatinga is composed of woody vegetation with a discontinuous
canopy (three to nine meters). Most Caatinga plants are formed with a fearsome array of
thorns that emerge from microphyllous foliage lost during periodic droughts. The ground
layer is rich in bromeliads, annual herbs, and geophytes. Typical species include Amburana
cearensis, Anadenanthera colubrina, Aspidosperma pyrifolium, Poincianella pyramidalis, and
Cnidoscolus quercifolius [11].
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Figure 1. Location map of the Caatinga biome and its geographic features (topography) within the
northeastern South America region. It covers approximately 735,000 km2 and comprises the following
states: Alagoas (AL), Bahia (BA), Ceará (CE), Maranhão (MA), Paraíba (PB), Piauí (PI), Pernambuco
(PE), Rio Grande do Norte (RN), and Sergipe (SE).

One prominent feature observed in the Caatinga land cover during a prolonged period
of drier-than-normal rainfall conditions is a gradual weakening in vegetative greenness [51].
The vulnerability of the Caatinga to periodic droughts is further exacerbated by high
levels of habitat degradation [29]. Indeed, the biome is one of the most threatened in
the northeastern South America region due to widespread deforestation for farming and
mineral extraction [52]. Despite the fauna and flora of the Caatinga biome region being
clearly adapted to periodic droughts, some scientists believe that they may already be
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operating at their physiological limits [50]. Prolonged and frequent occurrences of droughts
present significant challenges to flora and fauna [53].

Atmosphere 2023, 14, x FOR PEER REVIEW 5 of 24 
 

 

 
Figure 2. Northeastern South American region: (a) its nine states, including the Caatinga biome, 
along with the spatial distribution of temporary and permanent crops in 2006 [29]; (b) Spatial dis-
tribution of average annual rainfall (mm) over the region based on the long-term means from 2004 
to 2022 with data from IMERG. 

Vegetation within the northeastern South America region was classified into several 
land cover types, including both unmanaged native and managed agricultural vegetation 
(Figures 1 and 2a). The four most prevalent land cover types within the northeastern 
South America are Caatinga, Cerrado, Atlantic Forest, and Amazon Forest, covering 
52.5%, 29.4%, 10.7%, and 7.4% of land area, respectively [30]. The Caatinga ecosystem 
(Figure 1) covers 735,000 km2 of northeastern South America region and is characterized 
by a mosaic of xerophytic vegetation [49]. The term “Caatinga” (Caa = forest, tinga = 
white) comes from the Tupi language and is used synonymously with Steppe Savannah 
as defined by Trochain [50]. Typical Caatinga is composed of woody vegetation with a 
discontinuous canopy (three to nine meters). Most Caatinga plants are formed with a 
fearsome array of thorns that emerge from microphyllous foliage lost during periodic 
droughts. The ground layer is rich in bromeliads, annual herbs, and geophytes. Typical 
species include Amburana cearensis, Anadenanthera colubrina, Aspidosperma pyrifolium, 
Poincianella pyramidalis, and Cnidoscolus quercifolius [11]. 

One prominent feature observed in the Caatinga land cover during a prolonged pe-
riod of drier-than-normal rainfall conditions is a gradual weakening in vegetative 
greenness [51]. The vulnerability of the Caatinga to periodic droughts is further exacer-
bated by high levels of habitat degradation [29]. Indeed, the biome is one of the most 
threatened in the northeastern South America region due to widespread deforestation for 
farming and mineral extraction [52]. Despite the fauna and flora of the Caatinga biome 
region being clearly adapted to periodic droughts, some scientists believe that they may 
already be operating at their physiological limits [50]. Prolonged and frequent occur-
rences of droughts present significant challenges to flora and fauna [53]. 

2.2. Datasets 
2.2.1. Meteosat SEVIRI NDVI Data from EUMETCast Service 

Meteosat second generation (MSG) spinning enhanced visible and infrared imager 
(SEVIRI) NDVI-derived pentad NDVI data used in this study are composed of daily 
NDVI data [51,54]. These data are produced by the European Organization for the Ex-
ploitation of Meteorological Satellites in Darmstadt, Germany, which uses the processing 
method originally proposed by Ertürk et al. [55]. They are then uplinked to the SES-6 

Figure 2. Northeastern South American region: (a) its nine states, including the Caatinga biome, along
with the spatial distribution of temporary and permanent crops in 2006 [29]; (b) Spatial distribution
of average annual rainfall (mm) over the region based on the long-term means from 2004 to 2022 with
data from IMERG.

2.2. Datasets
2.2.1. Meteosat SEVIRI NDVI Data from EUMETCast Service

Meteosat second generation (MSG) spinning enhanced visible and infrared imager
(SEVIRI) NDVI-derived pentad NDVI data used in this study are composed of daily NDVI
data [51,54]. These data are produced by the European Organization for the Exploitation of
Meteorological Satellites in Darmstadt, Germany, which uses the processing method origi-
nally proposed by Ertürk et al. [55]. They are then uplinked to the SES-6 communication
satellite in wavelet compressed format. The Laboratório de Análise e Processamento de
Imagens de Satélites (LAPIS) of the Universidade Federal de Alagoas (UFAL) receives and
archives these data in compressed form on drivers accessible through personal computers
on the network (Figure 3).

MSG satellites have measured operationally shortwave and longwave radiation from
the Earth and its atmosphere on eleven instrument channels with a time frequency of
15 min since 2003 [56]. Data from the operational missions of the MSG 1-4 satellites, located
near 0◦ longitude (Gulf of Guinea), were used for the purpose of this study. A pentad data
frequency (i.e., the mean over 5 days) was chosen for the correct sign of the vegetation-
precipitation relationship at a regional scale to provide sufficient statistical significance
with a moderate computational effort [31]. Over the entire study area and 18-year period,
we composited daily SEVIRI NDVI to the monthly one for comparison with the drought
index by computing the average value of daily NDVI within a single month.

18 years of monthly-pentad MSG SEVIRI NDVI were obtained through the LAPIS/
UFAL (https://lapismet.com.br/dados/ accessed on 25 September 2023). The operational
NDVI product derived from the SEVIRI Level 1.5 image data for VIS0.6, VIS0.8, and IR10.8
data is part of an automatic processing approach developed by [31,55]. The original data
were corrected: (1) for all data, (2) atmospheric correction performed, (3) Bidirectional
Reflectance Distribution Function (BRDF), (4) adjacency correction performed, and (5) low
or average aerosol quantities. The MSG SEVIRI NDVI was defined by Barbosa et al. [31].

https://lapismet.com.br/dados/
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Imagens de Satélites (LAPIS: https://www.lapismet.com.br. Accessed on 25 September 2023).

For the MSG images, NDVI was extracted from the single grid cell that encompasses
the northeastern South America boundaries as a mask; a total of 18,399 grid cells were
extracted and resampled as a numerical matrix (number of grid cells versus one column for
each monthly composite). The NDVI time series was denoted as NDVIijk, where i is the
month (i = 1. . .12) or i is the five days (pentad) (i = 1. . .73), j is the year (j = 2004. . .2022),
and k is the grid cells (k = 1. . .18,399), and was transformed to a matrix of monthly NDVI
anomalies (NDVIaijk) with respect to the 2004–2022 base period. NDVIa time series [17]
were then scaled by the standard deviation, as follows:

NDVIaijk =
NDVIijk − NDVIik√

1
(n−1)∑

(
NDVIijk − NDVIik

)2
(1)

The matrix of standardized NDVI anomalies (i.e., SDVI [17,57]) was referred to as the
NDVIa matrix (number of grid cells versus number of months, pentads, or days). Because
spatially complete information at high temporal resolution is of crucial importance to
support the statistical analysis, the choice of SEVIRI-calculated grid size resolution is a
compromise between achieving the highest possible resolution at the daily timescale and
still maintaining regional to local scales to guarantee pixel information in almost all grid
cells. Most importantly, however, a previous study by Barbosa et al. [31] showed that the
SEVIRI NDVI derived from the daily 1.5-data serves as a good proxy for rainfall activity in
the northeastern South America region during the rainy season months.

In the next step, linear least squares trend analysis of visible (0.64 µm) and infrared
thermal (10.8 µm) radiances from the pentad-SEVIRI spectral images was performed
on the 5-daily composite for each pixel (see Figure A1 in Appendix A). The calibrated
and geolocated (level 1.5) radiance is a compressed version of the original data with a
resolution of 3 km under the nominal field of view of Meteosat at 0 degrees longitude, every
15 min for the 2004–2022 period. A few pentads are missing in the level 1.5 dataset, which,

https://www.lapismet.com.br


Atmosphere 2023, 14, 1629 7 of 23

together with the high-resolution resampling, occasionally resulted in pixel cells without
information. Daily 1.5-data for a full scan were only used at 1200 UTC (late morning)
because it leads to near-polar orbiting time that crosses over the equator at approximately
1200 UTC. Only trends with Pearson correlation coefficients significantly different from
zero (at significance level p < 0.05) are considered significant trends.

2.2.2. SMOS Surface Soil Moisture Data

Soil moisture and ocean salinity (SMOS) mission is an L-band passive microwave
satellite dedicated to global surface soil moisture (SSM) measurements [58]. It contains
global daily soil moisture data with a spatial resolution of ~25 km, in 0–5 cm of the soil
layer, in m3/m3, from June 2000 to the present. SSM is a vital index for many applications
concerned with monitoring drought events [22]. For this study, the daily SSM estimates
were extracted from the SMOS-level-3 product provided by the Barcelona Expert Center
(https://bec.icm.csic.es/ accessed on 25 September 2023). These data were averaged
considering their ascending and descending orbits to minimize the effect of radio frequency
interference (RFI) on the retrieved SSM values [59]. The level-3 SSM product is a set of
several algorithms. A short summary of the main features of this product is provided in [59].
The choice of this product was based on its acceptable performance in the identification of
drought when compared to in situ measurements in the study area [60].

2.2.3. Climate Data

For the study area, rainfall and temperature data were extracted from the single grid
cell that encompasses its geographical coverage in the ERA5–Land and IMERG late run
(integrated multi-Satellite retrievals) datasets, respectively. Both datasets were produced
by the ECMWF (European Center for Medium-Range Weather Forecasts) and the Global
Precipitation Mission (GPM) with a spatial resolution of 0.1◦, respectively. The IMERG v6
product provides daily estimations of rainfall from multiple satellite-based observations
and is commonly used in hydrological studies [61]. This version of IMERG was selected
because it has shown a good rainfall representation over the study region, improving on
other satellite and reanalysis products (e.g., [62]). Hence, the final IMERG v6 product is a
gauge-corrected product, but here it was not further corrected with its station data. Since
the meteorological observation network in the study area is sparse and depends on the
availability of archives [50].

The IMERG (version 6 on a half-hour 0.1◦) gridded product was accessed on NASA’s
Goddard Space Flight Center (https://pmm.nasa.gov/data-access/downloads/gpm ac-
cessed on 25 September 2023) [63]. In this study, the IMERG gridded data were averaged
to daily timescales and then to a monthly resolution. This gridded data was averaged
following the same interpolation procedure as the one used in the SEVIRI-derived NDVI
data. Additionally, daily rainfall data from 30 weather stations across the study area were
used as reference data for qualitative assessment. The stations were selected from a set
of rainfall data belonging to the Brazilian Meteorological Institute and available from the
official webpage (https://portal.inmet.gov.br accessed on 25 September 2023). Specifically
for the ERA-gridded product, temperature data were averaged to a monthly resolution and
then used to calculate climatology and anomalies. All the datasets above have a time range
of 2004–2022.

2.3. The Standardized Precipitation Index (SPI)

The SPI, proposed by McKee et al. [64], is an index that monitors drought conditions
by exclusively considering rainfall data. It is commonly used to monitor meteorological
droughts. In this study, the SPI was calculated based on the quarterly scale (SPI-3), because
the NDVI lags rainfall [65]. This lag correction between both variables is related to the
water storage capacity of the soils [49], but this aspect is beyond the scope of this study.
The rainfall time series is initially fit to a gamma distribution, which is then transformed
into a normal distribution using an equal probability transformation [36]. Daily rainfall

https://bec.icm.csic.es/
https://pmm.nasa.gov/data-access/downloads/gpm
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estimates (mm) from the IMERG v6 product over the study area were used over the period
2004–2022 for the construction of the SPI [64]. In general, negative SPI values indicate a dry
period, and positive values indicate a wet period. The SPI-3 time series were structured
in one numerical matrix referred to as the SPI3 matrix, based on Barbosa et al. [51]. The
probability density function for the gamma distribution is given by the expression:

g(x) =
xα−1e−x/β

βαΓ(α)
, f or x > 0 (2)

where α > 0 is the shape parameter, β > 0 is the scale parameter, and x > 0 is the total
accumulated precipitation over a three-month period (called the time scale). Γ(α) represents
the gamma function, which is defined by the integral [66]:

Γ(α) =
∞∫

0

yα−1eydy (3)

The gamma function was evaluated either numerically or using tabulated values
depending on the value of α. A maximum-likelihood estimation based on the method of L
moments was used to estimate parameters α and β [67]. The probability density function,
g(x), is then integrated with respect to x to obtain an expression for the cumulative density
function, G(x), which represents the accumulated rain that has been observed for a given
month and time scale:

G(x) =
x∫

0

g(x) dx =

x∫
0

xα−1e−x/β

βαΓ(α)
dx (4)

Although negligible rainfall amounts are frequent in northeastern South America [68],
G(x) is not defined at x = 0 [69]; therefore, G(x) was calculated following the approach of
Stagge et al. [70]:

po =
np

n + 1
(5)

D(x) = p0 + (1 − p0) G(x), f or x > 0 (6)

D(x) =
np + 1

2(n + 1)
, f or x = 0 (7)

where np refers to the number of zero-rainfall events, n is the sample size, po is the observed
likelihood of zero-rainfall events, and D(x) is the cumulative density function for observed
precipitation. Finally, D(x) is transformed into a normal standardized distribution using a
zero mean and unit variance, from which the SPI drought index using the 3-pentad time
scale (SPI3) was obtained.

2.4. Statiscal Analyses

To understand the regional scale on vegetation response to rainfall extremes on the
magnitude of anomalies in NDVI and SPI3, the statistical analyses over northeastern South
America were computed using the 18-year NDVI rainfall anomalies from 2004 to 2022. The
approach was carried out in four main steps as a response to seasonal and interannual
variations in hydroclimatic conditions across space. The first step involved rearranging the
NDVIat and SPI3t matrices to obtain two matrices that are referred to as NDVIat and SPI3t,
respectively. During the second step, a principal component analysis (PCA) was applied to
the NDVIat and SPI3t matrices. PCA was performed by computing the eigenvectors of the
covariance matrix, while the varimax method was used to provide an orthogonal rotation.

It is important to note that the original PCs were associated with an arbitrary coordi-
nate system. The rotation procedure changes the PCs to another coordinate system that
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yields a better separation of the PCs in the spatial context [51]. Unlike other orthogonal
rotations, the rotation maximizes the sum of the variances of the squared loadings (squared
correlations between variables and PCs) [71]. The number of PCs retained was based on
screen plots for NDVIa and SPI3, which show the variances for each against the number of
PCs (criterion known as the Kaiser’s rule).

The principal component scores for the retained PCs were computed and resulted in
two matrices, which are referred to here as NDVIat and SPI3t scores, respectively. Each
score matrix has a dimension equal to rows × n PCs, where n is the number of retained
PCs. The score matrices were scaled by column during the third step of this approach by
the mean and the standard deviation.

A canonical analysis (CA) was then performed on the NDVIat and SPI3t score matrices.
The k groups used are based on two criteria: (a) minimization of the sum of squares of
distances between each grid cell and the assigned cluster center, and (b) verifying that
the linear correlation coefficient between the centers of clusters is less than 0.36 [72]; if the
algorithm did not converge based on this criterion, then the first relative minimum that was
found was selected [73]. The algorithm of Hartigan and Wong [74] was used to perform
the iterations, and the Euclidean distance was used as the distance measure.

The fourth and final step involved combining the NDVIat scores matrix (216 × n retained
PCs) with the NDVIa clusters defined by the CA (represented by a row × 1 multinomial vec-
tor), which resulted in a matrix that is referred to as NDVIac [column × (n retained PCs + 1)].
A discriminant model that considers the multinomial vector as a factor specifying the class
for each observation and the scores of retained PCs as discriminators was then fit [75]. The
moment method has been used to standardize estimators of the mean and variance. The
clusters with different classifications were re-coded according to discrimination based on
linear discriminant analysis (LDA). The LDA was then applied to the SPI3 score matrix
as well. The final products of this approach were two multinomial vectors containing the
classifications for NDVIa and SPI3 variables at monthly scales.

Overall, eight PCs retained 46 percent of the variance for NDVIa, while eight PCs
retained 80 percent of the variance for SPI3. The clustering based on the k-means method
identified eight similar groups for the NDVIa and SPI3 variables. The LDA-based classifier
improved the CA-based discrimination; e.g., the NDVIa variable has been structured in the
groups N1, N2, N3, N4, N5, N6, N7, and N8, which contain 20, 55, 36, 40, 30, 15, 82, and
104 members, respectively, while the SPI3 variable has been reduced to the groups S1, S2, S3,
S4, S5, S6, S7, and S8, which contain 44, 62, 56, 32, 49, 57, 49, and 33 members, respectively.
Figure 4 shows a flowchart that illustrates the procedure described above.

It should be noted that the order of the identified clusters (N1 to N8) is not related to
the spatial average of the NDVIa or SPI3 in the northeastern South America region; the
order has been defined randomly by the applied algorithms used during the discrimination
process while only considering the similarity between members as a criterion for clustering.
Therefore, these clusters have been reclassified based on the median calculated from
spatially averaged SPI3 and NDVIa values over NE South America (Figures 5 and 6) and
will be referred to as patterns throughout the remainder of this study. The median was
chosen for this purpose as it allows splitting the upper half of the NDVIa or SPI3 time series
averaged over the entire northeastern South America region from the lower half.

This approach has linked the clusters N1, N2, N3, N4, N5, N6, N7, and N8 with the
NDVIa patterns F5, F4, F7, F1, F6, F8, F2, and F3; and the clusters S1, S2, S3, S4, S5, S6,
S7, and S8 with the SPI3 patterns F2, F6, F1, F8, F4, F7, F3, and F5. It is important to note
that this new order provides information concerning the dominant process that is taking
place, e.g., regarding the NDVIa patterns, F1 indicates the occurrence of a widespread
greening over all northeastern South America region (highest median), while F8 indicates
the occurrence of a widespread browning in the entire study area (lowest median). Similarly,
for the SPI3 patterns, F1 indicates the occurrence of widespread wet conditions over the
northeastern South America region (highest median), while F8 indicates the occurrence of
widespread drought conditions over the northeastern South America (lowest median).
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Figure 5. Spatially averaged NDVIa over the entire northeastern South America region grouped
by the NDVI clusters for the period 1982–2012. The labels F1 to F8 located in top-right of each box
indicates the decreasing order each NDVI cluster according to median calculated from spatially
averaged NDVIa over the entire region. Each box shows the median and first and third quartiles,
while the whiskers extend to the last values that are 1.5 times the inter-quartile range above or below
the quartiles. The medians are equal to −0.115, −0.004, −0.554, 0.466, −0.301, −0.547, 0.149, and
0.140 by the clusters N1, N2, N3, N4, N5, N6, N7, and N8, respectively. Circles are outliers.
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3. Results and Discussions
3.1. The Impacts of Flash Drought Events on Vegetation Dynamics

A visual inspection of Figure 7c,d shows the seasonal and interannual variations in
NDVI and SPI-3 indices over the entire northeastern South America region from 2004 to
2022. Regional analysis revealed that drought and wet cycles had considerable impacts
on vegetation dynamics (i.e., here defined as fluctuations in phenology and biomass). The
SPI-3 drought index shows that the study region experienced intensified drought in the
second decade of the 2000s, with 2012 and 2017 among two of the three worst droughts
since 2004 (Figure 7). Annual rainfall was below the 18-year term average during the entire
2012–2017 period. This dry period was broken dramatically by a moderate La Niña event in
2020, with regional average annual rainfall surpassing the 18-year term average by nearly
190 mm. These findings were also supported by a linear least squares trend analysis of
visible (0.64 µm) and infrared thermal (10.8 µm) radiance images from the time series of
pentad-SEVIRI spectral channels revealed a negative trend in measured radiances for the
visible radiances over large areas of the northeastern South America region, which was
suggested as a reduction in clouds in the 18 years of the study. Increased radiative losses are
clearly implicated in this enhanced drying, which enhanced atmospheric evaporative de-
mand, coupled with below-average rainfall in 2012 and 2017 (see Figure A1 in Appendix A).
This could explain vegetation stress or vegetative drought [33,34], mostly in the Caatinga
biome, induced by increased temperature and radiation and amplified by a reduction in
rainfall [50].

Overall, the second decade of the 2000s warm and dry periods spanning the northeast-
ern South America region were characterized by below-average rainfall and anomalously
higher temperatures, representing a drought response to warming. Significant negative
trend (p < 0.05) in annual rainfall of −1307 mm·year−1 and significant positive trend
(>95th percentile) in annual air temperature of 0.762 ◦C·year−1 were identified for the
period 2004–2022 (Figure 7a,b).
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Figure 7. Regional mean changes in annual mean rainfall (mm), annual mean air temperature (◦C),
and the impact of rainfall anomalies on the vegetation greenness response for northeastern South
America region from 2004 to 2022. (a) Annual variability of mean rainfall amount (mm) over the
512 grid cells within study region. (b) Annual variability of mean air temperature (◦C) over the
512 grid cells within study region. (c) Five-day averaged SEVIRI NDVI over the 512 grid cells within
study region from 2004 to 2022. A drought pentad (5-day mean) is defined as when SPI-3 was less
than −1.0, and a wet week is defined as when SPI-3 was greater than 1.0. Mean drought severity,
defined as the mean SPI of drought period (SPI-3 < −1.0). Each pentad SEVIRI NDVI is marked with
a circle from 2004 to 2012. (d) Seasonal variations of SEVIRI NDVI profile during 2009 (wet year; the
solid blue line) and 2012 (drought year; the solid yellow line) for study region for the entire period
2004–2022.

There is ample evidence of differential responses of vegetation phenology to drought
(i.e., SPI-3 < −1) and wet extremes (i.e., SPI-3 > +1) over the northeastern South America
region; growth enhancement in vegetation is strongly controlled by water availability
(Figure 7c). An overall reduced seasonality of vegetation phenology was detected from
2012 to 2017 (Figure 7c). In contrast, a general increase in vegetation seasonality, dominated
by the wetter-than-average periods of 2004–2011 and 2018–2022, was identified. Additional
changes in rainfall not only affect vegetation activity but also decrease vegetation phenology,
as indicated in the shape and magnitude of seasonal NDVI profiles on the regional scale
(Figure 7d).

Yet there is evidence that there is some correspondence between the interannual
variability of rainfall and noticeable seasonal differences in the NDVI extreme profiles.
Over the entire study area and 18-year period, there was a decreasing trend in NDVI of over
17%. The results showed abrupt shifts in vegetation activity between dry and wet rainfall
variations. Periods of drought breaks and the persistence of low vegetation growth were
prominent, particularly after the onset, thus exposing the region to the impacts of flash
droughts. The rapid and sudden responses of ecosystems to droughts have been found in
Australia (e.g., [76]) and other global regions (e.g., [5]). These findings together highlight
the need for models to explicitly consider drought-induced abrupt shifts in vegetation
activity and vegetation dynamics for predicting future ecosystem states, particularly in
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tropical semiarid regions where rainfall is highly variable and vegetation dynamics is
limited by soil moisture.

The drought that affected this study area in 2012 was the most extreme in the period
from 2004 to 2022, as indicated by consecutive negative SPI-3 lasting for 9–10 months
(Figure 7c). Another way to look at the 2012 drought year is by computing soil moisture
derived from remote sensing observations to describe the onset and termination times of
this drought. The duration and interval of the data set processed is presented in Figure 8.
Rapid and dramatic declines in soil moisture resulted from a period of abnormally warm-
dry weather conditions over the northeastern South America region with a peak SPI-3
intensity of −2.50 (Figure 7b). A notable bimodal distribution was observed, with the
dry-wet abrupt transition (i.e., nearly-flat line below the 20th percentile that is equivalent to
NDVI ≈ 0.3). This is shown in Figure 8 for the timing when soil moisture reaches the value
equal to the 20th percentile after drying of soil moisture (i.e., onset time of a drought event)
and the increases in the soil moisture prior to the 20th percentile plus the 20th percentile
amplitude during the wetting-up phase (i.e., the end time of a drought event). Here, the
length of the soil moisture deficit is calculated as the difference between the end time and
onset times of a drought event.
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Figure 8. Time series of 5-day averaged soil moisture in 2012 from SMOS-based SSM (m3/m3) over
northeastern South America region. The pentad is the mean over 5 days of consecutive soil moisture.
The orange and red dashed lines denote the 40th–20th percentile range of soil moisture values.

A more quantitative method to identify the timing, duration, and intensification of
the 2012 drought year can be computed through the rate of intensification using weekly
soil moisture percentiles on the regional analysis [7,77]. This method may not analyze
changes in drought per se, but changes in mean soil moisture can be inferred to be re-
lated to the occurrence of events with high soil moisture deficits. Under conditions of
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critical soil moisture deficits, the threshold adopted here is twofold: (1) soil moisture is less
than the 40th percentile, and (2) the peak drought intensity must fall below the 20th per-
centile. Two relevant flash droughts were identified, which occurred from 4 June to 28 June
(duration = 24 days) and 11 July to 31 October (duration = 114 days). The two flash
drought events were a subset of the 2012 drought year (the SPI = 303 days from Jan-
uary to October). The rate intensification for the short-duration event (24 days) was
relatively lower as compared to the high magnitude resulting from the long-duration event
(114 days). In this analysis, flash droughts represented 46% of all droughts (SPI-3). A
flash drought event was recognized when the absolute value of rate intensification of soil
moisture retreated to the 20th percentile per week. Of the flash drought events over the
2004–2022 period, 88.9% experienced rapid intensification within 4 weeks of drought onset
(Figure 8).

Here, SPI-3 variability is mostly driven by rainfall variability. SPI-3 is not intended
to be a proxy of soil moisture but rather a flexible metric of vegetation water stress. Re-
gardless of the time scale of the SPI-3, a drought event begins when SPI-3 ≤ −1.00 and
persists until SPI-3 > −1.00; the value of −1.00 is the threshold value that differentiates
dry vs. non-dry. In general, the lower the time scale, the higher its capacity to identify
short-term droughts [48]. When the soil moisture content drops from the 40th percentile
to below the 20th percentile are not less than 4 pentads (20 days), the NDVI exhibits
values lower than 0.20. For example, if temperatures are abnormally high, evaporation
increases, drying out soils beyond what would have occurred just from the lack of pre-
cipitation. This is particularly true for flash drought. Vegetation may play a critical
role in flash drought self-intensification under dry conditions because it modulates soil
moisture drying.

Spatial patterns in soil moisture and vegetation conditions are shown in Figures 9 and 10
by the average pentad data of soil moisture content and values of NDVI over the two
sub-seasonal changing periods in the 2012 flash-drought events. The results of the spatial
analysis revealed a differential impact of flash drought events on vegetation dynamics,
primarily over the Caatinga vegetation (highlighted by red areas in Figure 10). The drought
resulted in reduced vegetation dynamics across 88% of the study area, of which 96%
showed surface soil moisture content below 10 (m3/m3). The persistence of low soil
moisture content is still prominent, thus exposing the northeastern South America re-
gion to the strong effects of flash droughts on vegetation dynamics, particularly over the
Caatinga biome.

As shown in the Figures 9 and 10 the values of NDVI are not changing uniformly
over the study area, decreasing dramatically from the northwestern dry interior (where
the vegetation was classified as xerophytic or Caatinga) to the open savanna (the Cerrado
vegetation). Overall, the contrast of NDVI values between the eastern-coastal-forested
areas and the Caatinga has strong spatial variability. Different locations with the same
value of NDVI do not necessarily have the same vegetation greenness. However, regional
changes in NDVI are not only governed by changes in soil moisture but also influenced
by changes in land use (human signal). Yet, NDVI may be increased by irrigation, which
can enhance vegetation activity in the short-medium term but may reduce resilience by
increasing the risk of soil salinization. In much of the study region, flash drought events
were identified if the values of NDVI were less than 0.3 and soil moisture became less than
10 (m3/m3) (i.e., the rate of soil drying). Robust declines in soil moisture occurred over
Caatinga areas where the radiance in the solar measured by Meteosat decreased by about
0.608 W m−2 relative to the 2004–2022 period.
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Figure 9. Regional comparison of (a) averaged soil moisture from 4 June 2012 to 28 June 2012 and
(b) averaged soil moisture from 9 July 2012 to 31 October 2012 for major flash drought events over
the period 2004–2022. Blue line area within the northeastern South America region highlights its
semi-arid domain (Caatinga biome).

An additional and unique finding of this study is that soil moisture may play a role in
drought self-intensification under dry conditions in which vegetation growth is dormant
and leads to higher atmospheric evaporative demand, yet still maintains capability to
contribute to the length of flash droughts [7,30,77]. In addition, a higher soil organic
content normally promotes larger water holding capacity and a capacity to buffer against
water deficits during flash droughts [78]. It further suggests that these mechanisms are not
mutually exclusive and that their relative contributions to land-atmosphere coupling need
to be assessed in future studies.

3.2. Ecogeographic Patterns in Vegetation Dynamics

Regional maps were generated to assess large-scale ecogeographical patterns in vege-
tation growth (monthly averaged NDVI anomalies; see Section 2.4) over the northeastern
South American region (Figure 11). Changes in large-scale clusters of vegetation activity are
difficult to isolate from local scales based on the pixel, thus justifying the use of statistical
methods to capture the spatial and temporal features of gridded-NDVI anomalies. As a
result, within the 2004–2022 period, eight sub-regions (N) were identified based on the
cluster analysis. The regional centroids ranged from −0.55 to 0.47, whose seasonal domains
(F) are defined in Figure 5. The corresponding maximum, median, and minimum area
averaged-NDVI anomalies are shown in Figure 5. The regional response of the NDVI
anomalies varies widely and is also dependent on its ecogeographical environment. The
ecogeographical distribution of these sub-regions can be classified as N4, N7, or N8 (with
positive centroids) for greening vegetation, and the distribution can be classified as N1 to
N3, and N5 or N6 (with negative centroids) for browning vegetation.
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Among the eight sub-regions through multivariate analyses, the sub-region where
the average anomaly of NDVI is greater (cluster centroid) is N4, and it is associated
with the green-up pattern (F1). Nonetheless, it is clear from Figures 5 and 11 that N6 is
characterized by the lowest anomaly of NDVI; it has the brown-down pattern (F8). Visually
comparing variations of the NDVI anomalies (Figure 11) shows that ecogeographical
transition zones between green-up and brown-down environments are identified, which
also exhibit differential responses of ecosystems to humid and drought conditions across
space and among the main land cover types (Caatinga, Cerrado, Atlantic Forest, and
Tropical Rainforest) of the study area. It is apparent that changes in the brown-down areas
were dependent on land cover types, increasing dramatically from the northeastern dry
interior (where the vegetation was classified as xeric scrubland and open thorn forest) to
open shrub woodland. Additionally, these brown-down areas are dominated by Caatinga’s
species, which are highly sensitive to drought variability, land use, soil properties, and
topography. For example, vegetation on loamy soils responded much more to drought
conditions than other soils [11,48,49].

Given that northeastern South America’s ecosystems are affected by rainfall variability
on a sub-regional level, it is natural to consider to what extent this variability can be
attributed to either climatic variability or human-induced environmental change. This
variability was evaluated through a multivariate analysis of the spatial distribution for
NDVI (Figure 11) and SPI-3 (Figure 12) anomalies. The size and magnitude of the different
clustering groups did not differ much between the NDVI and SPI3 data analyses. The
intra-regional variability (F1 and F8 ecogeographic patterns) between NDVI and SPI3
anomalies across extreme humid and drought conditions were very similar, as shown
in Figure 7. However, the spatial distribution was not always the same. All the F2, F3,
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F4, F5, F6, and F7 patterns for the NDVI and SPI3 anomalies were found to considerably
differ among them. This is largely attributed to the fact that an increase in rainfall does
not result in higher green-up because northeastern South America’s ecosystems are also
covered with evergreen species, or, the other way around, a decrease in rainfall does not
result in further brown-down because these ecosystems are already covered with minimal
vegetation growth. The influence of rainfall on the variations of NDVI was low, and perhaps
human factors (land use change and landscape disturbance) have a stronger impact on all
the patterns from F2 to F7.
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according to the median calculated from spatially averaged NDVIa over the entire northeastern South
American region.

Quantitative results from multivariate analysis showed that vegetation activity (the
NDVI signal) across the Caatinga biome was highly sensitive to flash drought events.
Additionally, despite their typically xerophytic characteristics, the plants of Caatinga react
strongly and rapidly to low rainfall [49]. This is largely attributed to its highly drought-
adapted hydraulic architecture and its ability to plug deep soil moisture reserves with its
lengthy root systems [79]. For instance, grassland, xerophytic thorn savanna (shallowly
rooted plants), and shrub woodland (deeply rooted plants) responded differently to drought
conditions. Most of the studies based on the rainfall and NDVI relationship are valid for
woody vegetation, but herbaceous vegetation composition also seems to be responsive
to drought conditions in a similar way [80]. Here, it was also found that the negative
NDVI anomaly pattern identified the influence of flash droughts on Caatinga vegetation
stress because water scarcity can negatively affect vegetation activity, thus corresponding
to NDVI below 0.30. Although based on different methods, this finding agreed well with
a recent study [81] that found that Caatinga vegetation within the study region is highly
sensitive to soil moisture.
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4. Conclusions

To characterize the impact of flash droughts on vegetation coverage, this study as-
sessed the influence of soil water deficits on vegetation dynamics in the northeastern South
America region by combining time series of the vegetation index, rainfall, and soil moisture
based on satellite remote sensing products at a daily time scale. An 18-year analysis, from
2004 to 2022, of the Normalized Difference Vegetation Index (NDVI), Standard Precipitation
Index (SPI), and surface soil moisture (SSM) was performed based on three different satel-
lite remote sensing estimates: the spinning enhanced visible and infrared imager (SEVIRI),
the integrated multi-satellite retrievals algorithm (IMERG), and the soil moisture and ocean
salinity (SMOS).

All analyses revealed that flash drought events exerted dramatic impacts on terrestrial
ecosystems in the northern South America region during the first two decades of the 2000s,
with changes in seasonal and regional vegetation dynamics. The fixed-threshold values
to characterize flash drought events were suggested as the timing when the water deficit
was less than −1.0 units and vegetation index reached a value equal to +0.3 during five
consecutive weeks or more, coupled with soil moisture rates below 40% percentile, leading
to a strong region-wide drought.

Furthermore, the linear least squares trend analysis of visible (0.64 µm) and infrared
thermal (10.8 µm) radiances from the pentad-SEVIRI spectral images revealed a negative
trend in measured radiances for the visible radiances along the entire central area of the
study region, which was suggested as a reduction in clouds in the 18 years of the study.
Radiance at 10.8 µm showed significant (p < 0.05) positive trends in large areas in the
northern part and the coastal areas of the study region. The negative relationship (Pearson
correlation of −0.62) between visible and infrared thermal in the study region’s semi-arid
ecosystem (i.e., the Caatinga biome), where biomass production is determined by the amount
of rainfall, and the opposite in its coast areas, where rainfall is not the limiting factor for
vegetation growth, is consistent with findings of other authors, such as [82]. An alternative
explanation was due to decreases in aerosol concentrations in the study region (e.g., [83]).

Nevertheless, the trend analysis must be considered very carefully since SEVIRI
spectral radiances are affected by considerable uncertainties (e.g., instrumentation change,
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satellite drift, merging techniques) when compared with ground-based observations. And
the uncertainty in the use of proxy-based, reconstructed SPI metrics from IMERG data
also needs to be accounted for. For instance, the NDVI-rainfall relationship depicts a
quasi-linearity without consideration of nonlinear factors (like soil moisture and soil types),
especially in tropical semi-arid areas where soil erosion is highly sensitive to vegetation
cover and drought variability [29].

Considering these results, it would seem advantageous to develop more studies
in which such flash drought analyses form part of investigations of vegetation stress-
dependent soil moisture, mostly in semi-arid tropical regions. In some regions with sparse
data coverage, the SEVIRI NDVI data offers complementary data to in situ measurements
and the opportunity for more spatially homogeneous, albeit shorter temporal coverage
(i.e., subdaily data for NDVI).
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Green slopes show a significant positive trend in visible radiance (0.64 µm) coupled to an increase
in infrared thermal radiance (10.8 µm). Red slopes show a coupling between a decrease in both
radiances. For instance, the northeastern South American region shows a patchy result, with some
areas showing a decrease in visible radiance, although the infrared thermal increases (orange areas in
Figure A1) are probably related to a reduction in clouds in the 18 years of the study.
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