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Abstract: Data assimilation (DA) integrates observational data with numerical weather predictions
to enhance weather forecast accuracy. This study evaluates three regional background error (BE)
covariance statistics for numerical weather prediction (NWP) via a variational data assimilation (VAR)
scheme. The best practices in DA are highlighted, as well as the impact of BE covariance calculation
in DA procedures by employing the Weather Research and Forecasting (WRF) model. Forecasts
initialized at different intervals were used to compute distinct regional background error statistics
utilizing three control variable (CV) methodologies over a span of 20 days. These statistics are used
by the three-dimensional VAR DA process of WRF DA software, producing analysis fields that lead
to forecasts for a distinct convective supercell event during the summer of 2019 over northern Greece.
This high-impact convective event underscores the importance of selecting appropriate BE over
complex terrain areas. The results emphasize the significance of BE usage in DA, proposing the
optimal DA approach for simulations of convective systems.

Keywords: background error statistics; convection; data assimilation; numerical weather prediction;
supercell; surface observations

1. Introduction

Several methods are widely used for the objective of state estimation based on the
weighted combination of different sources of information. The process of data assimilation
(DA) refines forecasts by incorporating atmospheric observations and estimated errors
in both observations and forecasts [1,2]. This leads to an optimal estimate of the initial
state for numerical weather prediction (NWP) models, achieved through the combination
of available information sources, including prior model forecasts and observations while
considering uncertainties [3]. To enhance the accuracy of forecasts, DA methodologies can
play a pivotal role by combining the limited observations with the model’s first guess while
accommodating uncertainties inherent in each information source.

The three-dimensional variational data assimilation (3D-VAR) DA systems include
the Gridpoint Statistical Interpolation (GSI) developed by the National Centers for Envi-
ronmental Prediction (NCEP), the Variational Analysis System by the European Centre for
Medium-Range Weather Forecasts (ECMWF), and the Local Ensemble Transform Kalman
Filter (LETKF) by the University of Maryland. In this spectrum, the WRF VAR system has
a significant influence due to its versatile control variable (CV) options.

Optimal blending of observations with atmospheric model data results in an improved
model initial state. This is particularly significant considering the relatively small amount
of observations compared to the degrees of freedom of a forecast model’s initial state [4].
The incorporation of surface observations into NWP models has demonstrated the potential
to improve the model’s performance. Previous studies have aimed to refine simulations of
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weather parameters by assimilating both direct and modeled surface observations, includ-
ing temperature, water vapor, mixing ratio, and wind [5]. Additionally, assimilating data
such as 2 m potential temperature, 2 m dew point temperature, and 10 m wind observations
have been explored for determining planetary boundary layer (PBL) profiles [6]. European
Center for Medium-Range Weather Forecasts (ECMWF) pioneered the direct assimilation of
high-resolution satellite data, including microwave radiance affected by precipitation [7-10].
Furthermore, studies have shown the possible improvement in rainfall forecasts from NWP
models by assimilating radar reflectivity [11-13] or radar-derived precipitation data [14,15].
However, it is crucial to validate remote sensing data against ground truth [16]. Surface
observations offer a valuable resource for simulating mesoscale weather phenomena [17].
Notably, observations alone are inadequate for estimating background errors (BE) due to
their scattered grid.

The effectiveness of the 3D-VAR DA systems relies on their operational mechanisms;
part of them is the role of BE within variational schemes. In VAR schemes, BE provides
information to balance the influence of the observations on the model forecasts in space
and intensity. The accuracy of the DA solution depends highly on the representation of the
observation error, which describes uncertainties in the numerical model forecasts prior to
new observation incorporation.

Estimation of BE varies depending on the chosen methodology [18]. One prevalent
approach involves deriving BE covariances from innovation vectors, which are dispari-
ties between observed values and corresponding background state equivalents [19]. This
method operates with the assumption of known spatial structures of observation errors
and considers dynamic balance assumptions between variables. Another common practice
is using statistics of forecast differences as approximations for forecast error covariances,
often referred to as the “NMC method” [20]. Alternatively, the use of time-averaged co-
variances of an extended Kalman filter has been explored, although this demands more
computational resources [21]. Variants of Kalman filter-based techniques, such as the
reduced rank Kalman filter and ensemble Kalman filter, offer means to attain synoptically
dependent background error characteristics [22]. Additionally, the maximum likelihood
theory employs a covariance model fit to innovation vectors [23]. Notably, the WRF model
is frequently employed to calculate BE and perform DA experiments using model forecasts
initialized at different times. Accurate estimation of BE is essential for the success of DA,
as it ensures appropriate weighting to background information, implicitly considering
observations [24]. Additionally, BEs are spatially correlated, enabling the propagation of
observational information in three dimensions. Moreover, these BEs for various meteoro-
logical variables demonstrate correlation, allowing multivariate adjustments that reflect
atmospheric balance [25,26].

The utility of the WRF model is connected with the accuracy of initial and boundary
conditions. The BEs are tied to the choice of control variables, which inherently influence
the assimilation and, consequently, the prediction processes. For this reason, the latest
version of the WRF model and WRF VAR is employed in the present study. As part of our
methodological analysis, we employ detailed meteorological observations, only surface
observations at this stage as a first attempt, which are processed, assimilated, and tested
under various configurations, primarily focusing on three different control variable (CV)
options under WRF DA, introducing differences in thermodynamic correlations of BE
estimation. By comparing the outcomes from multiple 3D-VAR DA runs, the relative
advantages and limitations of each CV choice are indicated, particularly at the near-surface
layers, where the forecast differences are more evident due to the use of only surface
observations. These CV options provide frameworks for atmospheric model state variable
analysis, and their choice can influence the accuracy of model predictions at various spatial
scales. The diverse nature of these CV options underlines the flexibility of the WRF VAR
system, catering to various meteorological scenarios and scales. While each option has its
strengths, their selection based on specific requirements can play a critical role in optimizing
weather forecasts.
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In an attempt to examine the aspect of different BE outcomes, a high-impact convective
case, with characteristics of a supercell system, was selected that affected northern Greece.
As far as the predictability of such phenomena, global models struggled to forecast this
event accurately. On the other hand, mesoscale models, which are crucial for NWP, rely
on global models for initial conditions. Analyzing control variable (CV) options” impact
on model predictions, especially in complex meteorological scenarios such as the present
study, allows us to assess their accuracy and efficacy, particularly for extreme events
like supercells.

With the increasing frequency and intensity of extreme weather events [27-31], it
is necessary to refine our meteorological models for more precise forecasts. The main
goal is not just to understand the behavior of this specific event but also to distill insights
that could enhance the operational reliability of the application of the WRF system in
future events. The goal of this investigation is dual: firstly, to discern these variations, and
secondly, to strive for the optimization of initial conditions in NWP results. This study aims
mainly at exploring the effects of CVs in producing and assessing the different scales of
the meteorological phenomena present in such a complex case study and hence providing
the best initial conditions using at first only surface observations rather than reproducing
or modeling the exact weather event in a model environment. It specifically highlights
the best practice regarding the usage of CVs in extreme weather events where convective
phenomena are present, especially considering areas with complex terrain, such as Greece.
As a further outcome, it is to provide suggestions for introducing a best practice for future
data assimilation of multi-site and multi-level observations, such as radar data, in order to
reproduce the event having a more complete observational dataset.

The paper is structured as follows: Section 2 provides an overview of BE and 3D-
VAR data assimilation background necessary for the purposes of this paper. In Section 3,
the meteorological test case is presented. Section 4 presents a concise description of the
methodology and experiment design. The results of the DA experiments are analyzed and
evaluated in Section 5, and the findings are summarized in the concluding Section 6.

2. Data Assimilation and Background Error Theory

The 3D-VARDA approach is a technique used in NWP to improve the accuracy of
weather forecasts. It uses a mathematical optimization scheme called variational data
assimilation (VAR). The technique uses observational data to interact with numerical
weather model forecasts, producing a best estimate and, hence, a more accurate analysis of
the initial weather conditions as initial conditions to NWP. VAR schemes play an important
role in the initialization of NWP forecasts by providing high-resolution information on the
horizontal and vertical components of the atmosphere, especially in areas where there is no
adequate observation coverage or in areas that suffer from terrain complexity.

2.1. The 3D-VARDA Approach

The WREF-3D-VAR system developed by Barker et al. [32] is used in this study in
tandem with the WRF model for assimilating surface observations. In mathematical terms,
the 3D-VAR method can be represented as a minimization problem, where the objective
function is the sum of the squared differences between the observations and the model’s
background state plus a regularization term that accounts for the background errors. The
cost function J is defined as the sum of the background error variance and the observation
error variance. The minimization is performed over the atmospheric state, called state
vector x. The performance of the DA system largely depends on the plausibility of the BE
covariance. The J cost function can be defined as:

1

1) =Jo oo = 5 (x—x) B (x—x) 4 2y ~HO)'R 'y ~HG9) ()
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where xP is the background state vector, B is the BE covariance matrix, y is the observation
vector, H is the observation operator, and R is the observation error covariance matrix [33].

The direct calculation of the background term J;, for a numerical weather model with
typically 107 degrees of freedom is not possible because the requirement increases the
computational cost significantly. To reduce the computational cost, J;, is calculated in terms
of control variable vectors, defined via the relation X’ = Uv, where x’ denotes the analysis
increment, x’ = x — xP. Using the incremental formulation [32,34] and the control variable
transform, Equation (1) can be rewritten as:

1 1
J=Jo+Jo = 3v'v+ 5 (y —HUv) R (y' —HUV) )
where y/ =y — H(x) is the innovation vector [33]. The transformation matrix U is defined
in such a way that the BE matrix can be represented as UU'. In the WRF 3D-VAR system,
the control variable vector is implemented in three steps: a horizontal transform, Uy, a
vertical transform, Uy, and a parameter transform, Up: x' = Uv = UyUy Upv[32].

2.2. Background Error Disciplines

Using control variables for background error covariances, it is necessary to generate
specific, domain-dependent BE. The input data needed for the calculation of BE are WRF
forecasts, which are used to generate model perturbations and were used as a proxy for
estimates of forecast error. For the NMC method, the model perturbations are differences
between forecasts (e.g., T + 24 minus T + 12 is typical for regional applications) valid at
the same time. Climatological estimates of BE may then be obtained by averaging these
forecast differences over a period of time (e.g., one month).

The background error covariances estimated are not directly used in a VAR DA
system. In the WRF VAR system, a control variable transform x’ = Uv is used to model
background errors, where v represents the control variable vector and x’ stands for the
analysis increment vector. Finally, U is used to map the transform of control variables
from control space to analysis space. The control variable X' = Uv is implemented through
a series of operations x’ = U,Uy Upv [32]. The control variables aim to convert the BE
covariance matrix into blockdiagonal form. The WRF VAR system provides the balance
relations between the new set of variables using regression relations. After the “balanced
part” of analysis variables is estimated, the “unbalanced part” is determined by subtracting
the former from the full fields. Hence, while some fields are analyzed in full, for some other
variables, the unbalanced parts are included in the analysis system.

The horizontal transform U}, is to model the auto-correlation of control variables using
recursive filters [35,36] in WRF 3D-VAR. The horizontal correlations are assumed to be
homogeneous (i.e., not dependent on geographic position) and isotropic for each control
variable. There are two free parameters associated with each variable for the recursive
filter: the number of applications and its correlation length. The correlation length scale
is estimated for each variable and vertical mode using the NMC method’s accumulated
forecast difference data processed as a function of gridpoint separation [32]. A tuning
factor is applied to the length scale in order to reflect the actual correlation length scales in
a domain.

The vertical transform Uy is performed via an empirical orthogonal function (EOF)
decomposition of the vertical component of background error on model levels. The analysis
increments are projected onto the eigenvector space, and the eigenvalues specify the relative
weights of increments in the calculation of the cost function.

The physical variable transform U, involves balance transform and conversion of
control variables to analysis variable increments. The parameter transformation Uy, is
applied so that the errors in the control variables are not correlated with each other.
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Commonly used options are CV3, CV5, CV6, and CV7, available in WRF DA. A
default CV3 BE file is provided with the WRF DA source code as a generic option with
no domain dependence. Domain-dependent options CV5, CV6, and CV7 utilize different
control variables. CV5 option utilizes streamfunction (1), unbalanced velocity potential
(Xu), unbalanced temperature (t,), pseudo-relative humidity (rhs), and unbalanced surface
pressure (psy). CV6 option is similar to CV5, but it has six extra correlation coefficients
in the definition of the balanced part of analysis control variables, as well as the moisture
control variables is the unbalanced portion of the pseudo-relative humidity (rhs ). CV7
option uses a different set of control variables, which are u, v, temperature, pseudo-relative
humidity (rhs), and surface pressure (ps). Table 1 outlines the specific atmospheric CV
associated with each configuration option.

Table 1. Control variable configurations across different options.

CV Option Control Variables
Cv3 WY, Xu, tu, 9, PSu
CV5 U, Xu, tu, ths, psu
CVeé Y, Xu, tu, ths,u, psu
Ccv7 u, v, t, rhg, ps

The BE estimation for a specific domain consists of five stages generated via the
NMC method [20]. The first step is the calculation of standard perturbations from forecast
differences as x’ = XT2 — xT1, where xT2 and xT1 are forecast difference times (24 and 12 h
for this regional case study). The second step is to remove the time and bin mean values
for each variable and level, ending with zero-mean fields. The third step is a regression
analysis between the control variables, depending on the configuration between CV5, CV6,
and CV7, returning the unbalanced components of each field calculated. The fourth step is
to calculate the vertical component of the control variables, and finally, the fifth step is the
calculation of horizontal correlations for the control variables using recursive filters.

The option CV5 [32] uses the stream function and unbalanced velocity potential as
primary control variables. Its approach primarily revolves around independent variables,
ensuring that each component (e.g., temperature, surface pressure) is treated separately
without substantial inter-variable influences. In this option, the analysis variables consist of
the full fields corresponding to stream function and relative humidity and the unbalanced
parts corresponding to the other variables included in the analysis. In the CV5 option,
temperature and surface pressure are not related to each other nor to the moisture variable.
The relative humidity field is not influenced by any of the model variables like temperature
or wind. The statistical balance transform is defined by:

P I 0 00O P
X Cp I 000 Xu
t | = Cy 01 00 ty 3)
ps Cps,l]) 0 0I O PSu
rh 0 0 0 01 rh

where 1 is the identity matrix, and C, v,, Cty and Cps, stand for statistical regression
matrices between ¥, t, ps, and 1.

The option CV6 [37] offers a more complex view of atmospheric dynamics compared to
CV5. It introduces six additional correlation coefficients, adding to a multivariate analysis,
especially in moisture dynamics. The key distinction lies in how variables like temperature
and wind can influence moisture increments, creating a more intertwined representation
of atmospheric processes, which serve as a multivariate background error configuration.
These six additional correlation coefficients refer to the balanced part of the analysis of the
control variables. Adding this implementation, moisture analysis is multivariate in the
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sense that temperature and wind may lead to moisture increments and vice versa [37]. The
CV6 option has the following balance relations:

P I 0 0 0 0 P
X Cy v I 0 0 0 Xu
t | = Ciy Cix I 0 0 ty (4)
ps Cpsw Cpsx 0 I 0 ||psu
rh Crh,x]) Crh,x Crh,t Crh,ps I rh

Additional correlation coefficients connect model variables in more ways than are
available in the CV5 option. For example, the balanced parts of temperature and surface
pressure are now also correlated with the unbalanced velocity potential. Hence, tempera-
ture and surface pressure are influenced by the divergent component of wind in the CV6
option, unlike in the CV5 option.

Option CV7 [38] uses u, v, t, ps, and rh (pseudo-relative humidity) as control variables,
developed in WRF VAR, representing a specialized approach tailored for mesoscale and
convective-scale DA. Instead of leveraging stream functions or potential functions, CV7
directly taps into wind components and relative humidity as its control variables. The
analysis variables of u-wind (u), v-wind (v), and specific humidity (q) can be obtained by a
transform as follows:

u Cop Cux 0 0 O P

v Gy Gyx 00 0 X

t | = 0 0 I 0 O t ®)
ps 0 0 o1 O ps

q 0 0 0 0 Cgm rh

where Cy, ,, Cyu x, Cy g, Cy,x, and Cg,rh map variables \, X, t, ps, and rh to analyze variables
u, v, t, ps, and q. Temperature and pressure are required to obtain Cq .

No multivariate correlations between control variables are taken into consideration in
the CV7 option [39]. Using u-wind and v-wind as control variables in WRFDA [38] were
studied in detail for high-resolution DA [39]. Their results [38,39] indicate that the use of u-
wind and v-wind as control variables is able to further increase precipitation forecast skills
compared to the use of stream function and velocity potential at convective-scale forecasts.

3. Case Study Overview

During July of 2019, a supercell was formed over the northern Balkans during the
passage of a cold front (Figure 1a). Convection promoted the transition of a local-based
thunderstorm to a supercell, which affected the Chalkidiki area (Figure 1b), causing many
human injuries and deaths as well as severe damage to the local society. Complex terrain,
along with the sea interaction from the Thermaikos Gulf, added to this extreme convective
event with great hazards. The global models failed to produce accurate initial conditions for
regional models that predicted very low precipitation amounts. Implementing WRF-ARW
with the selection of 3D-VAR schemes and especially by analyzing how different control
variable options influence model predictions for severe meteorological phenomena may
improve the forecast operational accuracy of regional models.

The location, motion, and intensity of the weather event under consideration are
also shown by the available Thessaloniki radar data, which showed the maximum dBz
quantities [40,41] moving toward the Chalkidiki area, where values over 50 and locally up
to 60 dBz were measured (Figure 1b). This cold front passage was very intense, leading to
deep cloud formation that exceeded the tropospheric layer.
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Thessaloniki Area Radar - Maximum dBz values 60 dBz
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Figure 1. (a) Surface pressure chart analysis of Europe for 09.07.2019 12:00 UTC, (b) Chalkidiki area
and Thessaloniki radar maximum dBz for 10.07.2019 at 18:47 UTC.

As NWPs for global as well mesoscale weather predictions were not accurate, as far
as the location and intensity of the event are concerned (not shown), an investigation
regarding data assimilation as a means of improving the event’s forecast is the focus of
this paper.

4. Experimental Setup and Data Sources

In this section, the configuration details of the WRF model are discussed, followed
by the description of the datasets used, including their sources and their relevance to
our analysis.

4.1. WRF Model Setup

The regional Advanced Research (ARW-WRF) model version 4.3 [42] is employed,
which is a non-hydrostatic, mesoscale meteorological model with advanced dynamics,
physics, and numerical schemes. The numerical DA experiments in this study are con-
ducted using the Advanced Research WRF model version 4.3 VAR DA system (WRFVar).
The WRF VAR has both 3D-VAR and 4D-VAR capabilities; the 4D-VAR component is
developed as an extension of the previous WRF 3D-VAR system [32], which is not used in
this study.

4.2. Geographic Description and Area Details

Significant meteorological activity is observed in the Mediterranean and especially in
the Balkans, a region of Europe with intense and damaging weather events such as heavy
rainfall, heavy thunderstorms, and convective supercells. As a result, the impact on the
coastal communities in the region is major, causing widespread damage, flooding, and
disruption to transportation and other essential services. The experimental design consists
of a single domain covering South Europe, including the Mediterranean Sea (Figure 2),
which has 620 x 440 horizontal mesh grids with 9 km spacing and 60 vertical levels up to
50 hPa. The projection method is Lambert. In the model integration, the coordinates of the
central point are 42.894° N and 18.025° E. The spatial scale of this case’s supercell had a
frontal line that extended in a range of 210 km to 250 km, with a core diameter of 70 km,
showing that a 9 km grid size is sufficient to resolve it.
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Figure 2. Domain used for WRF simulations.

4.3. Parametrization Schemes in WRF

The WRF model provides options for different physical parameterizations, including
microphysics, cumulus physics, surface physics, planetary boundary layer physics, and
radiation physics. The model’s performance is highly dependent on the parameterization
schemes, which might be suitable for one storm event but inappropriate for others.

For this reason, the parameterization schemes remained fixed for the convective sim-
ulations that were analyzed. More specifically, the main physics packages used in this
study include the WRF Single-Moment 6-class microphysical parameterization, the Rapid
Radiative Transfer Model (RRTM) shortwave and longwave radiation scheme, Mellor—
Yamada-Janjic (MY]) planetary boundary layer scheme, Tiedtke scheme for cumulus pa-
rameterization, and Monin-Obukhov-based surface layer (Eta similarity), as part of studies
for convective weather conditions as well as complex terrain configurations [43].

4.4. Sources and Types of Observations

The observations used in this first attempt to apply and assess DA schemes for amelio-
rating the forecasts of such complex cases included only GTS METAR observations data
during the month of July 2019. The surface data assimilated in this study are obtained from
HNMS archives, which contain measurements of pressure, geopotential height, tempera-
ture, dew point temperature, wind direction, and speed from fixed land stations. A total of
312 multi-national observation stations have been gathered (Figure 3). The availability of
the data at each time frame determines the specific time slots in which the corresponding
observations are accessible. Observations that fall within a window of +30 min to —29 min
relative to each hour are considered valid for assimilation. This approach creates hourly
sets of observations. Satellite radiances, as well as other indirect observations, are not
used in this study. The observation preprocessing module (OBSPROC) of WRF VAR is
implemented for data sorting, quality control, and observational error assignment [32].
The data are initially downloaded in ASCII format and cannot be assimilated directly
into WRFDA. A conversion from ASCII to LITLE_R format was performed in order to be
ingested into the WRF VAR system. Estimated precipitation was also used from integrated
multi-satellite retrievals for GPM (IMERG) [44] at a grid spacing of 0.1 degrees to evaluate
the total precipitation. Finally, lightning data from the network of the Hellenic National
Meteorological Service (HNMS) were used to show the impact and intensity of this frontal
activity (not shown).
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Figure 3. Surface observations used in the Europe area for DA.

4.5. Initial Conditions for Model Runs

Gridded analyses and forecast data were obtained from the operational archive of
the deterministic model from the European Centre for Medium-Range Weather Forecasts
(ECMWEF) in order to use the initial and boundary conditions necessary to run the WRE.
The data were retrieved in the region extending from 20° N to 62° N and from 30° W
to 65° E. The ECMWF deterministic forecast system is an atmosphere-only, full-physics,
hydrostatic model, and its output is disseminated on a 0.1° lat. x 0.1° long. grid. The
analysis fields were available at 3-h intervals from 00 UTC 1.07.2018 to 00 UTC 20.07.2018
and from 00 UTC 10.07.2019 to 00 UTC 12.07.2019. The data were retrieved on the surface
level and on the pressure levels of 1000, 950, 925, 850, 800, 700, 600, 500, 400, 300, 250, 200,
150, and 100 hPa.

5. Results

In this section, the steps of model applications and the corresponding DA efforts are
outlined. An initial run is performed to establish a baseline configuration. Following this,
the process and significance of modeling the BE covariance, commonly known as the B
matrix, is explained, followed by the techniques and datasets utilized in our DA phase.
The outcomes and deviations observed post DA are evaluated, as well as the impact and
improvements over the initial runs.

5.1. Initial Run

An initial run for a period of two days was performed, which will serve as initial
conditions for a warm start after data assimilation. The run is from 10.07.2019 00:00 UTC
to 12.07.2019 00:00 UTC. Trying to overcome spin-up issues, the forecast of 06:00 UTC
of 10.07.2019 was selected for DA purposes as a warm start, and the assimilated initial
conditions are used for the runs of WREF after the DA of surface observation, performed
for CV5, CV6, and CV7 configurations, starting from 10.07.2019 06:00 UTC to 12.07.2019
00:00 UTC.

5.2. Background Error Covariance Analysis

The BE covariance in 3D-VAR experiments is static and prescribed by the NMC
method [20]. It assumes homogeneous and isotropic correlations for a set of independent
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control variables derived from the forecast differences. In this study, the CV5, CV6, and
CV7 options are used.

For the evaluation of BE, a 20-day period starting from 1.07.2018 to 20.07.2018 was
selected. Forecasts of 12 h and 24 h WRF-ARW outputs, initialized both at 00:00 and at
12:00 UTC, were used. Thus, 40 pairs of perturbations are available to generate WRF-ARW
BE. The test case examined refers to July of 2019, but the statistics refer to a year prior to the
test case, based on the assumption that at the time when the event occurred, no statistical
data were available. Thus, a climatological approach is to use the previous year’s data.

The reliability of DA significantly hinges on the accurate representation of the BE
covariance B. Analyzing the eigenvectors corresponding to each configuration provides an
enriched understanding of the role that various atmospheric variables play in influencing
the overall error statistics.

For the CV5 configuration, the eigenstructure of the BE was analyzed across the five
eigenvectors for each variable. As seen in Figure 4a, the y axis represents the levels resolved
by the model, and the x axis has the first five eigenvalues of each eigenvector. Regarding
relative humidity (rh) at the first eigenvector, large-scale error structures associated become
evident, exhibiting broad spatial structures across the model domain, potentially pointing
to persistent atmospheric circulations or model biases. The values of streamfunction (1)
in the first eigenvector reveal the interconnected nature of dynamic and thermodynamic
processes in the atmosphere. Analyzing the rest of them, the atmospheric dynamics
manifest in more complex patterns, indicating the intricate variability of streamfunction.
The temperature (t,) pattern suggests a growth in the lower levels, while the rh pattern
suggests an interaction up to the intermediate levels. However, studying the rest of the
eigenvectors, the relation grows more intricate, emphasizing the dynamic influence of
temperature on the atmospheric structure.
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Figure 4. Five eigenvectors for (a) CV5 (), Xy, ty, and rh variables), (b) CV6 (, Xy, ty, and rhy

variables), and (c¢) CV7 (u, v, t, and rh variables).

For the CV6 configuration (Figure 4b), the eigenstructure was again dissected across
the first five modes. The oscillatory patterns in rh grow more pronounced, suggesting
a rich interplay at intermediate scales. The patterns in 1 and x are the same as the CV5
configuration. The values of t,, highlight a dynamic equilibrium between temperature and
other constituents, pivotal for the determination of moisture levels and circulation patterns.

For the CV7 configuration (Figure 4c), the patterns in rh are the same as the CV5 config-
uration. The temperature patterns in CV7 also suggest variabilities like CV6 configuration.
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5.3. Background Error Length Scales Analysis

A configuration overview regarding the control variable options follows; option
CV5 consistently leans toward broader, synoptic scales across all the variables. This
configuration is likely to be more relevant for large-scale weather events and phenomena,
having a representation in the broader, synoptic scales. CV6, on the other hand, has
been consistent in its representation of more localized mesoscale processes. It would be
instrumental in understanding and predicting more localized weather events, especially
in complex terrains or regions with significant land—sea interactions or convective events.
CV7 is a transitional configuration and leans toward microscale phenomena, whereas its
behavior is between synoptic-scale and mesoscale phenomena. The above length scales are
derived from the BE covariance matrices for each CV configuration.

Analyzing 1 variable (available for CV5 and CV6 options), the length scales for
CV5 start at broader values and tend to decrease steadily across levels, indicating a more
synoptic behavior and representation. CV6 has generally smaller length scales compared
to CV5, implying a more mesoscale and localized behavior.

Analyzing the x variable (available for CV5 and CV6), the CV5 configuration exhibits
larger spatial correlations with length scales showcasing steady declines across levels,
reflecting the broader scales. For the CV6 configuration, as with 1, a more localized
behavior is displayed, with smaller length scales across levels.

Regarding the t variable (temperature for all configurations: CV5, CV6, and CV7)
(Figure 5), for the CV5 configuration, we encounter larger length scales to start with,
gradually reducing across levels. This suggests broader spatial correlations in the beginning.
CV6 exhibits smaller length scales throughout compared to CV5, showcasing its typical
mesoscale behavior. CV7 displays a transitional behavior between CV5 and CV6, so we
might expect length scales somewhere in between the two, striking a balance between
synoptic and mesoscale characteristics. However, if CV7 leans more toward microscale
representations, the length scales might be smaller than both CV5 and CVé.
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variables), and (c) CV7 (t, variable). Blue lines: ), red: x,, magenta: rh and green: t,.

Finally, for the rh variable (relative humidity), CV5 and CV7 options have the same
length scales, while CV6 exhibits similar patterns.

Incorporating these insights can greatly optimize model utilization for specific weather
prediction needs. For broader weather patterns, CV5 would be the most suitable. For more
localized predictions, CV6 seems to be the most appropriate. Depending on the wind
accuracy necessity, CV7 could be used for both mesoscale or synoptic area simulations,
where the wind is the most important variable for assimilation.

5.4. Data Assimilation Using CV5, CV6, and CV7

DA of surface observation was performed for CV5, CV6, and CV7 BE. The variance
scale parameter is carefully tuned to 3.0 rather than the default value of 1.0 to provide the
best performance of the 3D-VAR among various experiments tested (not shown; this also
improves the performance of 4D-VAR as compared to the default) [3].
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As stated in Section 5.1, the initial conditions for DA and the new runs refer to
06:00 UTC of 10.07.2019. Three DA processes were performed for the three different BE
configurations previously examined, using the same set of observations, as stated in 4.4.
The process of DA for each control variable option is shown in Figure 6.

Minimization Process

2900 ——CV5
——CV6
2800 ——CV7
2700
2600
2500
c
Re]
E’ 2400
5
o
G 2300
2200
2100
2000
1900
o o
0 5 10 15

Iterations

Figure 6. Cost function convergence analysis. A comparative plot showcasing the cost function
J values across different iterations for each of the CVs. The figure illustrates the efficiency of the
minimization process within the DA for CV5, CV6, and CV7, highlighting the relative convergence
patterns and the optimization dynamics of each CV.

The minimization of the cost function, as assessed using the conjugate gradient (CG)
method, was performed across three different CV configurations: CV5, CV6, and CV7. All
three configurations started from an identical cost function value of 2923.71. The initial
gradients were different, with CV5, CV6, and CV7 showing initial gradients of 60.35,
55.10, and 87.87, respectively. This indicates that the CV7 setup had the steepest gradient,
implying the most substantial deviation from the minimum.

CV5 took 12 iterations to converge to a cost function of 2379.51, showing a reduction of
544.2 from its initial value. CV6 converged in 10 iterations to a value of 2462.67, a decrease
of 461.04. CV7 required the most iterations (16) to converge to a cost function of 1841.01,
marking a significant reduction of 1082.7. As iterations progress, the gradient values for all
configurations diminish. CV7 demonstrated the largest initial gradient, but it also showed
the steepest decline, highlighting rapid convergence, especially in the first few iterations.
For all configurations, the step sizes were not uniform, fluctuating based on the gradient
magnitude and the curvature of the cost function.

Among the configurations, CV5 and CV6 required fewer iterations compared to CV7.
However, CV7 achieved a more substantial reduction in the cost function value despite the
necessity of more iterations. CV7 converged to the lowest cost function value of the three,
indicating a better fit for the given problem.

The final ]/ (total number of observations) value for CV7 is also the lowest, suggesting
that, on average, the misfit between observations and the model field is the smallest for
CV7. However, CV7 required a few more iterations to converge compared to CV5 and CV6.
The selection of the best option should consider other factors as well, such as computational
efficiency and the physical interpretation of the results.

Table 2 details the computed outcomes of the objective function J for various CV config-
urations, namely CV5, CV6, and CV7. The final value of ] is segmented into observational
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(Jo) and background (J,) components. CV7 stands out with the lowest overall value of J,
whereas CV6 stands out with the lowest value of Jy,.

Table 2. Evaluation of objective functions across different CV options.

CV Option Final Value of J Final Value of J, Final Value of J;,
CV5 2379.51 2146.56 232.95
CVé6 2462.67 2279.39 183.29
cv7 1841.01 1418.01 423.01

The calculation of the background term J;, as well as the calculation of the observation
term J,, based on J(v) = Jj, + Jo (Equation (2)), shows that CV6 has the lowest value of J,,
followed by CV5 and then CV7. Having as criteria the J}, value and not the | value, CV6
exhibited the best performance based on the results. The contribution of Jo in the final J
value of CV6 is the biggest compared to CV5 and CV7, and this serves as observations that
are well fitted to the analysis field much more efficiently than the other two CVs.

5.5. Runs and Analysis Post Data Assimilation

Three sets of new forecasts were available after the DA process. As the starting time
was 06:00 UTC of 10.07.2019, the simulation of the WRF-ARW was performed for 42 h up
to 00:00 UTC of 12.7.2019. The original run, which started at 00:00 UTC of 10.07.2019, will
be referred to as ORIG, RCVS5 for the run after CV5 option BE DA, RCV6 for the run after
CV6 option BE DA, and RCV7 for the run after CV7 option BE DA.

Discrepancies are evident among these forecasts, necessitating detailed evaluation.
This enhancement is sought through the exclusive use of one kind of observation (surface
METAR), thereby enabling an assessment of the control variables. Given the sole reliance
on surface observations, the contrasts among ORIG, RCV5, RCV6, and RCV7 manifest close
to the surface of the model. This justifies the emphasis on near-surface and surface-layer
discrepancies in our presentation.

In order to evaluate the results, a simple linear regression analysis between the surface
observations and the CV results was performed, and the corresponding R?, slope, and
RMSE values were calculated. In particular, the verification was between the observational
data and forecasts for each ORIG, RCV5, RCV6, and RCV7. Table 3 illustrates the results for
specific humidity parameters in periods with sufficient data available. The dates presented
in Tables 3-5 were chosen in order to have sufficient data samples for verification, as
there were collection issues of archives where intermediate hours were faulty. The linear
regression between the observations and the forecasts over the entire set of observations
for the whole domain indicated that CV6 configuration forecasts (RCV6 run) had the best
fit, as the higher values of the slope. Table 4 further supports this outcome, showing the
RCV6 runs to have the lowest RMSE among most of the runs.

Table 3. Slope of regression between IMERG data vs. different runs.

Slope
ORIG RCV5 RCVe6 RCV7
10.07.2019 09:00 UTC 0.574596407 0.579820502 0.591004545 0.580909283
10.07.2019 12:00 UTC 0.528259375 0.530443518 0.536777983 0.530303622
10.07.2019 15:00 UTC 0.541017141 0.545911233 0.547654013 0.547349451
11.07.2019 00:00 UTC 0.763604456 0.764116932 0.770858861 0.765469658
11.07.2019 18:00 UTC 0.617027986 0.618871979 0.61865578 0.61854543
11.07.2019 21:00 UTC 0.722005614 0.72469613 0.72496216 0.723679649
12.07.2019 00:00 UTC 0.755929304 0.757677061 0.756957918 0.758342565
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Table 4. RMSE of regression between IMERG data vs. different runs.

RMSE (103 g x kg™)

ORIG RCV5 RCV6 RCV7
10.07.2019 09:00 UTC 2.939403097 2.906229779 2.790401193 2.901062785
10.07.2019 12:00 UTC 2.99862999 2.978911749 2.931584172 2.976548541
10.07.2019 15:00 UTC 2.415220807 2.371456968 2.389589067 2.374596434
11.07.2019 00:00 UTC 2.396224849 2.38678574 2.358999465 2.389230651
11.07.2019 18:00 UTC 3.151521169 3.144182149 3.142446493 3.13495034
11.07.2019 21:00 UTC 2.623882552 2.612348846 2.619757037 2.613839418
12.07.2019 00:00 UTC 2.34083961 2.348286227 2.341523816 2.339594189
Table 5. IMERG observations versus runs.
24 h Total Precipitation

cv ORIG RCV5 RCV6 RCV7

Slope 0.2326 0.2316 0.2488 0.2337

RMSE (mm) 9.0845 9.0700 9.1989 9.4180

R-square 0.3093 0.3044 0.3469 0.2917

CV6 configuration has a direct effect on representing humidity correlation, and this
makes it the best configuration among these three for convective phenomena simulations.
It is also noticeable that the ORIG run had the worst score compared with runs in which

data assimilation was

performed.

The above results are further supported when comparing IMERG and forecasted 24 h
precipitation in an area that affected Greece the most, encompassing the Balkans (Figure 7
Area A). The scattered diagrams between IMERG and forecast (not shown) indicate that
there are both overestimation and underestimation of the observation. However, applying
a simple regression analysis on these data, it is indicated that the slope and the R-square
for RCV6 are the largest among the runs, and the RMSE has a minimum value for RCV5

(Table 5).
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Trying to support the result of the more accurate convective role of CV6 configuration,
an area near Chalkidiki was selected to narrow down the results (Figure 7—Area B). The
same comparison was made between IMERG and forecasted 24 h precipitation, as shown
in Table 6, where the slope and the R-square of RCV6 are the biggest, and the RMSE has
the lowest value among the runs as well.

Table 6. IMERG observations versus CV and original run (small).

24 h Total Precipitation

cv ORIG RCV5 RCVe6 RCV7
Slope 0.2822 0.2629 0.2988 0.277

RMSE (mm) 15.5242 16.0893 15.3334 16.5668
R-square 0.1100 0.0088 0.2337 0.0598

It is evident across all model outputs that the IMERG data (Figure 8a) showcased
higher precipitation values compared to the runs ORIG, RCV5, RCV6, and RCV7. This
visual comparative analysis offers insights into how the assimilation of surface observations
under different CV configurations affects model outcomes as well as the mathematical
approach. Among all model runs, ORIG consistently demonstrated the least intensity of
precipitation over the Chalkidiki area (Figure 8b). This suggests the possibility that the
initial conditions in ORIG might not capture certain atmospheric features or mechanisms
driving precipitation over the region. The RCV5 run visualized in Figure 8c reveals an in-
crease in precipitation intensity over Chalkidiki compared to ORIG. However, this increase
remains notably subdued when compared to the IMERG data and the other assimilation
runs. The CV5 assimilation seems to have added some fidelity to the model over ORIG
but is not as aggressive as CV6 in its precipitation forecast. Figure 8d, showcasing the CV6
BE DA scenario, presents the most intense precipitation forecast over Chalkidiki among
all runs. The amplification suggests that the assimilation of data in the CV6 scenario has a
pronounced effect on the model’s prediction of mesoscale convective systems or similar
rain-producing mechanisms over the region. The RCV7 run, illustrated in Figure 8e, while
showcasing a significant increase in precipitation, especially in the northern regions of
Greece, places its intensity somewhere between CV5 and CV6 for the Chalkidiki area.
This spatial variation indicates that CV7 may be capturing different atmospheric dynam-
ics or processes that are more influential toward the northern parts of Greece as a local
phenomenon due to wind direction increments.

In summary, while all model runs after the assimilation of surface observations (RCV5,
RCV6, and RCV7) produced higher precipitation values than ORIG, they all remained
conservative when compared to IMERG estimates, which serve as a reference for precipi-
tation patterns in areas where rain gauge data are not available. This suggests that while
DA can enhance the model’s accuracy, there is still a discrepancy between model forecasts
and observed data, hinting at other influencing factors and the need for the inclusion of
additional observational datasets. As stated before, the scope of this study is to underline
the best practice regarding convection and probably capturing supercell intensity, such
as this test case studied, especially when orography evidently plays a crucial role in fore-
casting regarding complex terrain. The findings underscore the value of DA in refining
NWP model outputs. However, they also emphasize the necessity for continuous model
evaluation and adjustment to better align with observational data.
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Figure 8. The 24 h accumulated precipitation during 10.07.2019 06:00 UTC to 11.07.2019 06:00 UTC
covering Greece (a) as estimated by the IMERG dataset, (b) forecasted by the original model (ORIG)
without DA, (c) forecast post DA in the CV5 BE DA scenario, (d) forecast post DA in the CV6 BE DA
scenario, and (e) forecast post DA in the CV7 BE DA setup.

6. Conclusions

In this study, surface data assimilation (DA) is implemented in WRF DA 3D-VAR and
applied to a 9 km model configuration. We studied three control variable configurations,
namely CV5, CV6, and CV7, to incorporate climatological background errors (Bes) utilizing
the NMC method in WRF VAR. The DA fields were evaluated with a focus on understand-
ing the impact of BE on convective weather evolution under complex terrain. Utilizing
the WRF model, different BEs were calculated and compared to show their effects on the
resulting weather forecasts.

The CVs were tested for simulating the convective weather conditions in a super-
cell case over a complex terrain configuration, a study which, to the knowledge of the
authors, is the first time to be performed over Greece. In this way, insights are gained in
their usage regarding the resolving space scales. The results suggest that the representa-
tion of BE plays a pivotal role in VAR DA. Specifically, the WRF runs demonstrate how
different BE can influence weather evolution. It is clear that BE covariance calculation
greatly influences the reliability of DA processes and, hence, the NWPs by influencing
processes at different scales, such as cloud formation, vertical convective motions, and
overall precipitation dynamics, especially regarding convection. Our findings illustrate
that the CV6 configuration is a suitable approach for data assimilation regarding supercell
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thunderstorm forecasting, accommodating local-scale effects induced by orography as well
as mesoscale characteristics.

Directly comparing the WRF runs of ORIG (no DA), RCV5, RCV6, and RCV7, it was
evident that the latter three, post-DA runs, showcased an overall improvement in forecast
accuracy over the Chalkidiki area regarding precipitation amounts. Among these, CV6
emerged as the standout, making the configuration CV6 an optimal choice for weather
prediction in scenarios where localized phenomena develop, such as convective weather
events. Configuration for CV6 had the minimum value of J,, and the produced run, namely
RCV6 forecasts, were enriched with the most rain gauge values while notably influencing
the weather evolution, having the biggest amount of precipitation over the Chalkidiki
region, and the highest score in the forecasts when validated to surface observations of
humidity among RCV5, RCV7, and ORIG runs. Such an alignment of CV6 with localized
mesoscale processes suggests that the representation of BE, especially those closely adhering
to ground observations, can considerably affect the accuracy of NWP and DA mechanisms.
This indicates that when our BE aligns closely with observations, our weather forecasting
accuracy improves significantly, as shown by the minimization of the J;, term of Equation
(2). Hence, CV6 seems to perform better in resolving the necessary scales associated with
the extreme and complex convective event, producing more accurate precipitation forecasts,
although only METAR observations were taken into account in the DA.

This study emphasizes how the selection of background error (BE) can notably improve
humidity parameters, which are critical for convection phenomena. This fine tuning in data
assimilation provides new insights into the significance of control variable configurations
for enhancing the reliability of weather forecasting. The horizontal length scale was
analyzed in order to describe to what extent the horizontal background covariance can
spread the observation information. Given the limited availability of quality data in
certain regions for DA, BE reliability is highly important. Furthermore, BE reliability
becomes crucial, especially where the orography is quite complex and peculiarities of
locally developed weather phenomena at any time in the year are often characterized by
diversity and extremity, such as supercell thunderstorms. This study explores the novelty
of the role of different control variable configurations in weather forecasting within the
context of Greece’s notably complex terrain.

Different BE statistics experiments may be further applied for better fine tuning in
the performance of WRFs’ forecasting ability, as in this study, the primary source of ob-
servational input for DA stemmed from surface METAR observations only. While surface
observations are integral to refining the lower atmospheric layers and boundary conditions
of the model, they have inherent limitations as they provide data on near-ground conditions
and primarily influence the boundary layer conditions in model simulations. While they
can provide valuable insights into atmospheric variables near the ground, they do not offer
a holistic understanding of the entire atmospheric column. Therefore, incorporating upper-
air observations, whether direct or indirect, could offer a more comprehensive depiction of
atmospheric dynamics. Satellite-derived measurements, radiosonde data, and aircraft ob-
servations can provide insights into mid-tropospheric and upper-tropospheric conditions.

Having a more diverse observation dataset has the potential to improve forecasting
skills using observations that are not only surface based but in the upper atmosphere layers
as well. Radar data assimilation emerges as a promising solution for future research, as
radar data offer high-resolution, three-dimensional insights into precipitation structures
and dynamics. Integrating radar-derived observations could drastically enhance the accu-
racy of precipitation forecasts, especially for localized and intense meteorological events,
influencing cloud dynamics and precipitation by diversifying the observational datasets
integrated into the model—spanning from the surface to the upper atmosphere—where
lies the potential for substantially improved and more accurate NWP outputs. Successful
modeling of the BE covariance matrix is a prerequisite for further development of the NWP
system in any regional NWP with DA.
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