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Abstract: The stochastic nature of environmental factors that govern the behavior of fire, such as wind
and fuel, exposes wildfire modeling to a degree of uncertainty. In order to produce more realistic
wildfire predictions, it is, therefore, necessary to incorporate these uncertainties within wildfire
models in a way that reflects the influence of environmental stochasticity on wildfire propagation.
Otherwise, the risks of the potential danger of a given wildfire may be under-represented. Specifically,
environmental stochasticity in the form of wind variability results in considerable uncertainty in the
output of fire spread models. Here, we consider two stochastic wind models and their implementation
in the SPARK fire simulator framework to capture the environmental uncertainty related to wind
variability. The results are compared with the output from purely deterministic wildfire spread
models and are discussed in the context of the potential ramifications for wildfire risk management.

Keywords: wildfire spread predictions; stochastic wind models; level set; SPARK

1. Introduction

Wildland fires are a naturally occurring phenomenon, the impacts of which can be
exacerbated or ameliorated by human actions. Fire plays an essential role in many ecosys-
tems, but when not adequately managed, it can have disastrous impacts on natural systems
and human lives and assets. Indeed, many of the wildland fires that have occurred around
the world over the last two decades constitute significant natural disasters, particularly in
regions such as southeastern Australia and western North America [1–3]. Anthropogenic
climate change is also affecting fire occurrence and severity around the globe and is a likely
driver of the increase in the frequency of very large and destructive wildland fires that
have been observed [4–6]. The Black Summer fires that occurred during 2019–2020 over
southeastern Australia serve as a particularly telling example. These fires burnt over the
course of several months and directly caused 33 deaths, including 26 civilians and seven
firefighters [7]. Extensive smoke from the fires resulted in almost 450 additional deaths due
to smoke inhalation and affected around 80% of the population [8,9]. It is further estimated
that in excess of one billion animals perished in the fires [10].

Wildfire management, which encompasses risk assessment and decision-making, eco-
logical considerations, strategic fuel management, and fire suppression (direct or indirect),
has an important role to play in mitigating wildfire impact. It requires considerable re-
sources, which need to be deployed in a cost-effective manner. Wildfire spread prediction is
critical in supporting decision-making related to the deployment of resources, suppression
tactics, the issuance of public evacuation orders, and other aspects of wildfire management
and emergency response.

Mathematical models of wildfire spread have been developed to predict fire behavior
since the 1940s [11]. There are different types of fire behavior models, including empirical
and semi-empirical models, such as artificial intelligent (AI) models, which are based on
experiments and historical data, and physics-based models that are based on physical and
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mathematical relationships between inputs and the rate of fire spread [12]. Because of their
computational simplicity, empirical models are usually preferred [13] in most operational
systems, and for this reason, empirical models are used in this study for developing the
rate of fire spread.

Two-dimensional empirical and semi-empirical fire propagation models were estab-
lished based on an anisotropic Huygens principle [14]. These models typically require
weather inputs such as wind, temperature, relative humidity, and the moisture content
of the fuel, as well as fuel and topographic conditions. Fire propagation is particularly
sensitive to variations in wind speed and direction [15]. The rate of fire propagation is
approximately proportional to the square of wind speed (when >3 km h−1) [16]. This effect
can be further increased under certain conditions, such as when fuel moisture content is
low. As such, spatial and temporal variations in wind inputs can have significant impacts
on the propagation of a fire [17,18]. Spatio-temporal variation in the wind field, along with
variations in the other driving factors, can cause a considerable range of uncertainty in the
prediction of fire spread, so much so that it is considered routine for actual fire spread to
differ from the predicted fire spread by a factor of ±30% [19]. Therefore, the inclusion of
wind models that account for the intrinsic uncertainty of the wind field and understanding
how they might influence the output of operational fire propagation models represent
important aspects of effective fire risk management [20,21].

In order to better accommodate the influence of the spatial and temporal variability of
weather-related factors in fire spread prediction, modelers have pursued various probabilis-
tic approaches. In one approach, which is here referred to as the “deterministic ensemble”
approach, weather inputs are repeatedly sampled from a particular probability distribution.
Each of the sampled input datasets is then applied in a deterministic fire-spread model,
providing an ensemble of possible fire-spread outcomes. In the most basic implementations
of the deterministic ensemble approach, fire weather inputs are sampled from standard
probability distributions, such as the uniform distribution (e.g., FireDS [22]) or the normal
distribution (e.g., SPARK [23]), whereas in more sophisticated implementations, the forecast
and historical data are combined to produce a more faithful statistical characterization
of weather inputs at a particular location (e.g., WFDSS [24]). This deterministic ensemble
approach was also applied in the context of one-dimensional rate-of-spread prediction
by [25], who sampled input conditions from a normal distribution but also noted the
potential use of the Weibull distribution for sampling wind speed. Hilton et al. [26] and
Dabrowski et al. [17] incorporated random components in a fire propagation model, which
resulted in a probabilistic technique for predicting wildfire propagation.

Specifically, Hilton et al. [26] added the spatial and temporal variation of environmen-
tal factors, such as combustion condition, wind speed, and wind direction, to the rate of
fire spread prediction based on the level set method. The variation in the elements was
investigated by picking random values for the inputs from a Gaussian distribution with
a prescribed standard deviation. The resultant simulations compared favorably with ob-
served grassland fires, thus highlighting the potential improvements that such an approach
could have in fire propagation modeling. The analyses carried out by [26] demonstrated
that variation in the combustion condition slows the rate of fire growth and creates an
irregular fire front, whereas wind variation produces more rounded flanks and alters the
geometric shape of the fire perimeter for simulations initialized with a straight fire line.
Although this study introduced some randomness to fire spread simulation, the simula-
tions generated roughly symmetrical fire perimeters that did not show any indication of
natural variability of wind over time, nor did it consider ensemble runs to assess the spatial
variability of risk.

Although deterministic ensemble approaches, along with other probabilistic wildfire
spread models, such as [26], account for variability in a wind field and other driving factors,
they do not really acknowledge the inherent stochasticity of the wind vector, nor do they
acknowledge the process-based nature of wind variability [27].
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On the other hand, in other areas of study related to wind modeling, e.g., for wind
energy applications and wind farms, the wind is explicitly treated as a stochastic vari-
able [28]. Indeed, there have been several studies that have treated wind as a stochastic
process. Bivona et al. [27] developed a class of stochastic models for an hourly averaged
wind speed time series using the models of [29]. The proposed stochastic models were then
evaluated for wind speed time series recorded in two regions in Italy over four years, and it
was found that the results captured the wind speed distributions in 96% of cases.

The Ornstein-Uhlenbeck (OU) process, also known as the “First-Order Gauss-Markov
(FOGM) process”, has been frequently utilized for wind modeling, especially in applications
related to wind power generation. Arenas et al. [30] considered the relationship between
mean wind speed and turbulence intensity using the OU process to capture wind speed
variability, and wind magnitude and direction data at altitudes of up to 20 km were
used by Turkoglu et al. [31] to calibrate an OU process model to better inform real-time
guidance strategies in avionics applications. Their results showed that the wind simulations
reasonably imitate the stochastic nature of the wind characteristics. Zarate et al. [32] applied
the continuous format of stochastic differential equations (Wiener process) to generate wind
speed profiles with statistical properties, including mean, variance, and autocorrelation.
These profiles were constructed based on historical wind speed data for a specific location
and were designed to be suitable for power system dynamic studies.

Benth et al. [33] investigated the correlation between electricity prices and wind power
production in wind energy markets. Specifically, they modeled wind speed using the
OU process and calibrated the parameters based on wind observations, with the practical
intention of helping inform business strategy and risk assessment for energy producers.
Loukatou et al. [28] also showed the advantage of a dynamic representation in continuous
time for random wind speed variation through the application of the OU process.

Stochastic process models have also seen some limited use in bushfire modeling
applications. For example, Zazali et al. [34] considered a basic deterministic bushfire
model and incorporated stochasticity in the model by treating wind speed and direction
as Wiener processes. They compared the resulting stochastic model with corresponding
deterministic ensembles and demonstrated that the stochastic model generated a broader
range of possible fire perimeters than the deterministic ensemble approach.

In the present study, we attempt to accommodate the environmental uncertainty that
arises due to temporal variations in the wind vector in a wildfire spread model within the
two-dimensional fire simulation platform SPARK [35], which models fire propagation using
a level set-based approach [26]. We model the wind vector using two different stochastic
processes, namely the Wiener process and the FOGM process, using the wind observations
of Quil et al. [20] to calibrate the required parameters. The stochastic wind models are then
incorporated within the workflow of SPARK.

2. Data and Methodology
2.1. Wind Data

The parameters defining the stochastic process models used in this study were cal-
ibrated using two months of wind observations collected by Quil et al. [36] from a field
site near Canberra Airport (35.28722◦ S, 149.17440◦ E). The data comprised wind speed
|w| and wind direction θ recorded every 5 min by 11 Davis 1 Vantage Pro 2TM Portable
Automatic Weather Stations labeled PAW1–PAW11, which were situated in close proximity
(i.e., within an area of approximately 20 m × 20 m). The data collection period spanned
57 days, from 14 February to 11 April 2014, except for the PAW9 station, the data of which
only covers the period 14–27 February 2014.

Figure 1 shows the variability in the observed wind speed and direction data over
three days in February 2014. The wind speed varies between 0 ms−1 and 8 ms−1 overall
and exhibits a considerable hourly variation of 2–4 ms−1, which highlights the importance
of incorporating the variation of wind in fire simulations.
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In this study, we consider wind speed and direction as stochastic processes. However,
to prevent the generation of negative wind speeds during the simulation process and to
avoid the difficulties of working with circular variables, we work with the components of
the wind vector rather than wind speed and direction. The wind vector components are
defined as follows:

wx = |w| cos(θ), (1)

wy = |w| sin(θ), (2)

where |w| is the wind speed and θ is the wind direction. We adopt the convention that the x-
component points in an easterly direction and the y-component points in a northerly direction.

Figure 1. Hourly variation in wind speed (ms−1) and direction during three days: 14–16 February
2014. The data shown are from station PAW1.

2.2. Stochastic Models

Although the deterministic ensemble approach can potentially capture the uncer-
tainties associated with fire modeling and, therefore, provide information more suited to
risk management, it also has its limitations. Ensemble approaches ideally require a large
number of ensemble members to support predictions that accurately cover the range of
possible fire propagation scenarios. This can be achieved at a considerable computational
expense, even for empirical models that can perform single runs much faster than in real
time. Additionally, the probability distribution for a particular input parameter is not
always known, and determining an appropriate candidate is not a trivial task. For example,
the distribution of wind speed at a particular location may not necessarily fit a standard
probability distribution, such as a normal distribution, and can depend on factors such as
topographic setting [25,37]. Furthermore, the deterministic ensemble methodology fails to
address the spatio-temporal fluctuations in environmental inputs. This approach is unable
to sufficiently capture the dynamic and evolving nature of these inputs, as indicated by
Zazali et al. [34]. Moreover, it does not incorporate the temporal autocorrelation present in
environmental factors, such as the wind factor reported by Loukatou et al. [28].

For example, the Canadian Forest Fire Weather Index System (CFFWIS), which captures
daily weather observations, was developed to represent such temporal auto-dependencies
by a Markov Chain process [38]. In general, a Markov Chain process can be expressed
mathematically as

P{Xn+1 = x|X1 = x1, . . . , Xn = xn} = P{Xn+1 = x|Xn = xn}.

Dabrowski et al. [17] added stochastic noise to wind inputs for the Rothermel model
for rate-of-fire spread. The fire propagation contours were then predicted using a Bayesian
approach, which resulted in promising outcomes in terms of introducing uncertainty into
the SPARK fire simulator.

In the present study, two stochastic processes are considered as candidate models
to estimate the variation in wind vector components over time: the discretized random
walk and the FOGM process. Not only have these stochastic processes attracted attention
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from modelers as a way to simulate environmental factors, but they have also been shown
to produce simulations that are more appropriate to assessing risk when compared to
deterministic predictions, even in areas outside the environmental sciences [39,40].

The random walk process has independent increments that are normally distributed for
0 6 s < t and the random variable Wt, Wt −Ws ∼

√
t− sN (0, 1), where N (0, 1) denotes a

normally distributed random variable with zero mean and unit variance [41]. As another
option for modeling the wind vector, the continuous version of the random walk is the
Wiener process with infinitesimally small time steps, which inherits the same mathematical
description as the random walk process [34].

In the random walk process, the wind vector w(ti) at the current time can be deter-
mined from the previous state w(ti−1). The discretized first-order equation of the random
walk can be represented as the following difference Equation (3) for the x and y components
of the wind vector (wx, wy).

wx(ti) = wx(ti−1) + δx
√

∆tN (0, 1), (3)

wy(ti) = wy(ti−1) + δy
√

∆tN (0, 1),

where δx and δy are the magnitudes of the process noise for the x and y components with a
time step of ∆t, and N (0, 1) is a Gaussian random variable with mean zero and variance 1.

In comparison, the FOGM process is a mean-reverting and stationary process [31].
In this process, the current state wind vector w(ti) can also be deduced from the previous
state w(ti−1), as described by the first-order difference Equation (4) [42],

w(tj) = exp
(
−∆t

τ

)
wx(tj−1) + δ′xN (0, 1), (4)

wy(tj) = exp
(
−∆t

τ

)
wy(tj−1) + δ′yN (0, 1),

where δ′x and δ′y are the magnitude of the FOGM process noise for the x and y components
of the wind vector with a time step of ∆t,N (0, 1) is a Gaussian random variable with mean
zero and variance 1, and τ describes how long the previous wind samples correlate with
the current state of the wind. If τ → ∞, then the process converges to a random walk,
and if τ → 0, the process converges to a Gaussian process [43]. It is also known that the
magnitude of the process noise for the FOGM process is [39],

δ′ = σ

√
1− exp

(
−2∆t

τ

)
. (5)

where σ is the standard deviation of wind inputs.
When compared to the random walk process, the FOGM process generally produces

simulations with less scattering because the variance of the FOGM process is influenced by
the correlation time. In contrast, the random walk process tends to generate more scattered
simulations due to the accumulation of variance from successive random increments,
resulting in an increased dispersion and scattered outcomes over time [44].

In this study, the two stochastic formulations will be calibrated and driven by statistics
based on observed wind data to determine the appropriate values of the process noises.
However, parameters, such as the correlation time in the process, are specifically picked by
the author’s choice, which may not be suitable for a different environmental condition or
even the most optimized option for the modeling.
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3. Data Analysis and Stochastic Wind Simulations

In this section, the primary goal is to harness historical wind data collected at a 5 min
sampling rate to derive reliable estimates of the stochastic process noises to quantify the
variability in the wind. This approach enables the capture of sub-hourly temporal wind
variability, which can then be incorporated into a fire simulation model when the sub-hourly
wind data are not available. The aim is to gain a deeper understanding of the inherent
variability and uncertainty within wind patterns. This understanding is crucial, especially
when simulating scenarios within a fire spread model, where accurately representing the
dynamic nature of wind can significantly impact the reliability of predictions. This becomes
particularly valuable for regions or times with sparse wind observations, allowing us to fill
in the gaps and provide more reliable predictions.

3.1. Stochastic Process Calibration

In this section, the magnitude of each of the stochastic process noise parameters
δx, δy, δ′x, and δ′y in Equations (3) and (4) are calibrated using anemometer data collected
from a field site close to Canberra Airport [36]. The collection period was divided into
hourly blocks, as this reflects operational time frames, i.e., wind conditions are typically
reported on an hourly basis. Hence, the calibration of the process noises of the random
walk and FOGM processes are estimated over every hourly block, and a time step of 5 min
is used as ∆t in both stochastic processes. In order to calculate the magnitude of the
stochastic noises, the point-to-point variance in consecutive wind data (w(ti)− w(ti−1)) is
calculated within each hourly block. For the random walk process, based on Equation (3),
this value is then divided by the square root of the sampling rate of the data, which is 5 min.
Additionally, for the FOGM process, the calculated variance, the sampling rate, and the
correlation time are substituted into Equation (5) to determine the process noise δ′x and δ′y
for each of the wind components.

When considering each of the hourly intervals for each of the 11 anemometers, this
yielded thousands of estimates of the process noises. These were averaged for each weather
station and applied in simulations to model the wind vector components. The mean of the
estimated values for the random walk process noise over all the stations was calculated as
(δx, δy) for the x and y components (0.031, 0.031), and the calculated mean process noise for
the FOGM process is (0.071, 0.065). The calibrated process noise components for all stations
are listed in Tables 1 and 2.

Table 1. Estimated process noises, δx(m(s
√

s)−1) and δ′x(ms−1), for random walk and FOGM pro-
cesses.

Process
Stations

PA
W

1

PA
W

2

PA
W

3

PA
W

4

PA
W

5

PA
W

6

PA
W

7

PA
W

8

PA
W

9

PA
W

10

PA
W

11

Random walk Process 0.033 0.031 0.032 0.029 0.031 0.031 0.028 0.031 0.044 0.031 0.030
FOGM Process 0.071 0.067 0.069 0.063 0.068 0.065 0.061 0.071 0.093 0.067 0.065

Table 2. Estimated process noises, δy(m(s
√

s)−1) and δ′y(ms−1), for random walk and FOGM pro-
cesses.

Process
Stations

PA
W

1

PA
W

2

PA
W

3

PA
W

4

PA
W

5

PA
W

6

PA
W

7

PA
W

8

PA
W

9

PA
W

10

PA
W

11

Random walk Process 0.031 0.029 0.031 0.029 0.032 0.029 0.035 0.031 0.043 0.031 0.029
FOGM Process 0.065 0.064 0.065 0.066 0.069 0.064 0.076 0.066 0.088 0.066 0.063
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3.2. Wind Simulations

After the calibration of the process noise parameters, the stochastic wind models were
implemented to predict the wind vector during a specific period. This prediction needs
to be evaluated by comparing it with the observed wind data. For the evaluation of the
two stochastic process models, the estimated mean process noise, calibrated using data
collected over a two-month period from 11 weather stations and hourly blocks, was applied
to simulate the wind components for each hourly block. While the same mean process noise
was applied to all the hourly blocks, the initial wind observation for each hourly block was
used as the initial value for each simulation. An alternative approach would be to generate
a set of random initial points around the observed initial value, generate a set of simulations
over the selected period, and eventually use the mean of all the simulations. However, due
to the mean-reverting property of the FOGM process, the mean of these simulations would
not be significantly different from a simulation starting from the observed initial value.
Moreover, the standard deviation of the observed data in the particular experiment carried
out here is small enough that an average of such simulated data would be insignificantly
different from a simulation using the actual observed value for both the FOGM and random
walk processes.

The correlation time in the FOGM process was chosen to be 5 h. For the observed wind
data of this study, we evaluated the discrepancy between the observed data and simulated
data when using different correlation times for the FOGM process and discovered that a
correlation time of ∼5 h (for hourly blocks of wind data) gives the closest simulations to
the observations. Sensitivity analyses were also carried out to examine the effect of using
different correlation times, ranging from 5 min to 10 h. These analyses revealed that varying
the correlation time across this range of values had minimal impact on the results.

The resulting predictions for 3 days (14–18 February 2014) can be seen in two sets of
time series in Figures 2 and 3. For each simulation, 1000 realizations were computed. Then,
the mean of all of these realizations was compared to the observations to assess how well
the model fits the recorded wind data.

Figure 2. Time series of wind components x (top) and y (bottom) using random walk simulation
with δx = 0.033 and δy = 0.031 for weather station PAW1. The observed data are depicted by red stars,
the 95% prediction band of the 1000 realizations of the simulation by blue shaded bands, and the
mean of simulation realizations by black dots. A 95% prediction band signifies that around 95% of
predicted data fall within this band, and this is calculated approximately as w̄ + 2 ∗ stdw, where w̄
represents the mean value of predicted wind every hour, and stdw stands for the standard deviation
of predicted values across hourly blocks.
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Figure 2 shows the resultant components of wind velocity predicted by the random
walk process. The 95% prediction bands of the 1000 realizations in blue show where one
expects the simulated data to lie. The black dots give the mean of the 1000 realizations
at each time step. It is clear that the mean prediction (black) is very close to the red stars
representing the wind velocity observations. Similarly, Figure 3 shows the predictions from
the FOGM model. By comparing Figures 2 and 3, it is clear that the variability created by
the random walk model is larger than the FOGM process. This is due to the fact that FOGM

is a mean-reverting process, which is always naturally bounded and maintains the data
around a value, while the prediction band of the random walk simulation tends to cover a
higher scatter. However, the mean of 1000 realizations of both stochastic processes (black
dots in Figures 2 and 3) behave very similarly to the observations of each wind component
and also each other.

An evaluation of both the stochastic wind models was performed for the collected data
from all 11 weather stations, which resulted in very similar outcomes. In general, the results
show that the FOGM process gives smaller uncertainties for wind modeling compared to the
random walk process. The prediction bands of the FOGM process are also much narrower
than the bands of the random walk. This is due to the fact that the different simulations of
the FOGM process are much closer to each other compared to the random walk as a result
of the mean-reverting characteristic of the FOGM process. However, the means of both
stochastic processes exhibit similar behavior and fit very well the observed wind data. This
will be further assessed by validating the stochastic wind models in the next section.

Figure 3. Time series of wind components x (top) and y (bottom) using FOGM simulation with
δx = 0.071 and δy = 0.065 for weather station PAW1. The observed data are depicted by red stars,
the 95% prediction band of the 1000 realizations of simulation by blue shaded bands, and the mean
of simulation realizations by black dots. Note the scale is different from Figure 2.

3.3. Validation of Estimated Noises for Data Collected from Weather Stations

The simulations were evaluated using the root mean square error (RMSE). If ŵi
represents the data predicted using a stochastic process model and wi represents the
observed data, then the RMSE is calculated as

RMSE =

√
n

∑
i=1

(ŵi − wi)2

n
(6)
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where RMSE is calculated for the simulations described in the previous section using both
the random walk and FOGM processes for all 11 weather stations. For every hourly interval,
the corresponding estimated process noise is applied to predict the wind components; then,
the RMSE is calculated for that hourly duration. The average of all calculated RMSE for
all time intervals was then calculated as the RMSE of the predicted data for each weather
station. Additionally, for the sake of the validation of the process noises, the calibrated
process noises from each weather station were implemented to model the data for every
other station, and, again, the RMSE was calculated for each station to understand how valid
these estimated process noises were for different spatial positions. The results are presented
in Figures 4 and 5. From Figures 4 and 5, it can be seen that the RMSE from applying the
process noises estimated from a particular station to other stations is not generally much
different from the RMSE for that particular station. For example, the RMSE of the predicted
x-component at station PAW1 (P1), resulting from the estimated FOGM process noise for the
same station, is about 0.8, whereas using the same process noise for all the other stations
results in a similar range for RMSE. This shows that, for this case study, the estimated
process noise from the data recorded by any particular weather station is similar to all the
other stations. This is as it should be, as all of the weather stations were in close proximity
to each other and so were sampling very similar local wind conditions.

The calculated RMSE for the random walk process (Figure 4) is, in general, slightly
larger than the calculated RMSE for the FOGM process (Figure 5). In these figures, the results
for weather station P9 stand out slightly, and the reason for this is that the duration of data
collection for this station was shorter than for the others, as mentioned in Section 2.1.

The results of the stochastic wind simulations in Figures 2 and 3 and the calculated
RMSE values in Figures 4 and 5 show that the FOGM model produces predictions closer to
the observed data when compared to the Wiener model and considering each and every
realization of the simulations. The reason is that the FOGM process is a mean-reverting
process, so it is naturally bounded and more confined, whereas the Wiener process tends to
fluctuate more widely because of its unrestrained variance.

Figure 4. RMSE validation for 11 weather stations. The random walk process noises were estimated
using the stations listed in the matrix rows, and these were implemented in the simulations for
stations listed in the matrix columns.
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Figure 5. RMSE validation for 11 weather stations. The FOGM process noises were estimated using the
stations listed in the matrix rows, and these were implemented in the simulations for the stations
listed in the matrix columns.

3.4. Comparison of the Stochastic Simulation Distributions

In order to assess the similarity between the distributions of the stochastic wind simu-
lations and the wind observations, Quantile-Quantile (Q-Q) plots are used. Figures 6 and 7
use Q-Q plots to compare 1000 simulated wind data points from two models from real
wind observations. The models include a random walk process for the wind velocity
components (x and y) and a FOGM process. The comparison helps assess how closely the
models’ distributions match the observed data. The simulations are based on estimated
process noises, and all data are taken from PAW1 over a 3-day period (14–18 February 2014).

Figure 6. Q-Q plots of the observed data and 1000 realizations of the simulated data: random walk
process and observation. Different colors represent the randomly generated samples from each
realization of the simulation.

Figure 6 reveals that the random walk simulations exhibit fat tails, indicating greater
variability and possible disparities in the extreme values when compared to the distribu-
tion seen in the wind observations. However, in Figure 8, which depicts the average of
1000 realizations of the random walk simulations, these fat tails are less evident. The mean
of the simulations seems to closely correspond to the distribution of the observed wind
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data. This suggests that the random walk model accurately captures the central tendencies
and general patterns of wind behavior.

Figure 7. Q-Q plots of the observed data and 1000 realizations of the simulated data; FOGM the process
and observation (scales for the FOGM processes are different to make visible the smaller uncertainties
compared to the random walk process). Different colors represent the randomly generated samples
from each realization of the simulation.

Conversely, the average of 1000 realizations from the FOGM process behaves in a
very similar manner to the average of 1000 realizations from the random walk simula-
tion. Additionally, both averages closely align with the wind observations (as shown in
Figures 8 and 9). This indicates that although the FOGM process generally produces less
variation among different simulations and generates values that are nearer to the observed
data compared to the random walk simulation (see Figure 7), the means of the realizations
for both stochastic processes are similar and closely resemble the observed data.

Figure 8. Q-Q plots of the observed data and the mean of 1000 realizations of the simulated data (dots
in blue color): random walk and observation.

It is important to note, however, that obtaining a sufficient number of realizations to
accurately capture the average outcomes can be computationally demanding and time-
intensive. This aspect provides the FOGM process with an advantage over the random
walk process.
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Figure 9. Q-Q plots of the observed data and the mean of 1000 realizations of the simulated data (dots
in blue color): FOGM process and observation.

4. Fire Simulation

Normally, in rate-of-fire spread simulations, the fire perimeter in two-dimensional
space can be modeled based on an elliptic Huygen principle [14]. We employ such a model
here, with shape parameters f , g, and h, as depicted in Figure 10.

Figure 10. Dimensions of elliptical fire spread model.

The model describes a fire moving with a speed determined by the wind, which is
related to the length-to-breadth ratio, RLB, of the elliptic stencil [45]. The spread of the
elliptical fire in this model can be described as a normal flow, with the speed given by
Robert et al. [42]:

F = g(n̂ · ŵ) +
√

h2 + ( f 2 − h2)(n̂ · ŵ)2,

where n̂ is the unit normal vector to the fire perimeter, and ŵ is the wind direction vec-
tor, and

f =
0.5(1 + R−1

HB)

RLB
, g = 0.5(1 + R−1

HB), h = g− R−1
HB,

with the head-to-back fire rate-of-spread ratio, RHB, given by

RHB =
RLB +

√
R2

LB − 1

RLB −
√

R2
LB − 1

.

In order to implement the calibrated stochastic wind models in a fire spread model,
the SPARK fire spread simulator is used. In this framework, the elliptical fire model can
be applied, as well as other deterministic models where the growth of the fire front can
be calculated by tracking the distance between the points on the front and the points in
a specific domain using the level set method [46]. The level set method uses the signed
distance Φ as the level set function of a closed curve, which is the fire perimeter; if a point
is inside the curve, the signed distance function is negative (Φ < 0); if it is outside the
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curve, the function is positive (Φ > 0); otherwise, the function is zero, which means that
the point is located on the boundary of the curve (Φ = 0). The zero-level set at each time
step represents the new fire front at that time step. In other words, the SPARK framework is
able to track the outward evolution of the fire front, with the speed, s, at each point on the
fire boundary given using the following equation for the level set function:

∂Φ
∂t

= −s|∇Φ|.

Wind is an important factor in the SPARK framework. The fire simulator tracks the
direction of fire growth with respect to the wind vector, which can potentially change
the direction and the wind speed of the fire, which affects the dimensional parameters of
the elliptical stencil via the length-to-breath ratio (stronger winds correspond to a larger
length-to-breadth ratio).

In order to integrate the newly introduced stochastic wind model into the SPARK

solver and adjust the wind components stochastically, the stochastic wind models have
been integrated into the level set solver. Subsequently, the SPARK solver gains access to and
utilizes these models within the advection model. This facilitates the dynamic and stochastic
modification of the advect-x and advect-y components, ensuring that the variability of
the wind is adequately accounted for during the simulation. The script demonstrates
how to pass the random walk wind model to the solver. Figure 11 displays a comparison
between the deterministic fire spread model without the implemented stochastic wind
models and the fire model with the implemented FOGM wind model, which updates both
wind vector components at each time step. The natural variability of wind components
throughout the fire simulation is clearly noticeable.

Figure 11. On the left: a deterministic fire spread model with a contour interval of 10 units of time
and constant wind along the x-axis. On the right: a single realisation of the fire spread model with
stochasticity implemented in Spark.

config = {
‘‘resolution’’: 1.0,
‘‘advectionScript’’: ’’’

advect_x = sqrt(dt)*0.03*randomNormal(0,1);
advect_y = sqrt(dt)*0.03*randomNormal(0,1);’’’
... #buildScript and initialisations if it is needed

}
solver = LevelSet()
solver.init(json.dumps(config), v, inputVariables = variables)
...

The stochastic nature of the wind models presented in this study gives variability
in the results of the fire spread simulations, so every realization of the same simulation
represents a different fire front. In order to visualize the different possibilities of stochastic
wind models, each of the simulations was run 1000 times. The fire spread simulations
are executed using various integrated wind models, including ensemble-deterministic,
the FOGM process, and the random walk process; the estimated statistics from the PAW

stations are utilized, as shown in Table 3. Besides applying probabilistic approaches to
capture the intrinsic uncertainty in wildfire spread, probability maps [22] can be useful
aids in visualizing the possible scenarios of burnt and unburnt regions. The fire spread
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simulations in SPARK, coupled with the different stochastic wind models, are visualized by
burn probability maps displayed in Figure 12. Darker colors show the locations that have
higher burn probability scores in comparison with the lighter colors, which are less likely
to burn.

Figure 12. Burn probability maps of fire simulations in SPARK. Left: deterministic ensemble method,
with 1000 realizations (the wind components are normally distributed, and the mean and standard
deviations are given in Table 3). Middle: stochastic wind model using the random walk process model
with calibrated process noises, 0.03, for the wind vector components. Right: stochastic wind model
using the FOGM process model with calibrated process noises, 0.06, for the wind vector components.
Each simulation represents the propagation of a red circle with an ignition point at (1, 1) over 100 units
of time, with a contour interval of 10 units of time.

Table 3. The estimated statistics, including the mean and standard deviation for the wind data and
the average noises for both processes across all the different PAW weather stations.

“PAW”s Statistics wx wy

Mean ms−1 ≈0.5 ≈0.2

Standard deviation ms−1 ≈2 ≈2

“FOGM” process noise ms−1 ≈0.06 ≈0.06

“Random walk” process noise m(s
√

s)−1 ≈0.03 ≈0.03

Figure 12 shows three different fire scenarios simulated by different probabilistic wind
models, including a deterministic ensemble (with distributed inputs generated by a normal
distribution, with estimated mean and variance from the observed data), the random
walk process, and the FOGM process. In general, the stochastic approaches present a
smaller range of uncertainty related to the wind vector; the regions with darker colors
and the higher burn probabilities are larger for boththe random walk and FOGM processes
when compared to the ensemble simulation on the left side of Figure 12. Additionally,
the implemented FOGM process in the fire simulation shows less uncertainty compared to
the random walk simulation, as would be expected from previous observations.

5. Discussion

Incorporating time series derived from stochastic wind velocity simulations has the
potential to extend the capability of bushfire modeling to capture the intrinsic stochastic
variation of fire propagation. Both stochastic wind models considered here supported
this capability, even though they exhibited slightly different results. The resulting fire
simulations provide more useful and well-informed predictions compared to the determin-
istic ensemble simulations in terms of risk assessment. The time series of the ensemble
of the random walk model follows the observed variability in the wind components over
time with a broader band for the prediction compared to the time series of the ensemble
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FOGM prediction. Although the distribution of every realization might not fit the observed
values very well in Figures 6 and 7, the average of the different realizations gives predic-
tions that are very close to the wind observations in Figures 8 and 9. The fat-tailed Q-Q

plots for the random walk simulations confirm this observation. The random walk model
is able to introduce uncertainty into the wind factor for fire spread simulation, with a
narrower uncertainty band for the probability of burning compared to the deterministic
ensemble model.

On the other hand, the individual realizations of the ensemble FOGM model produce
very similar wind predictions to the wind observations, which can be observed in the
time series of the simulations, as well as the resultant thin tail Q-Q plots. Even though
the individual realizations of the random walk model sometimes produce simulations
less similar to the observed data than the FOGM model, the average of all the ensemble
members from both models shows similar outcomes that represent the observed data
very well (shown in Figures 8 and 9). Implementing the FOGM wind model in SPARK

exhibits an even narrower band of uncertainty in the burned probability map compared to
the fire spread models for both the implemented random walk wind prediction and the
deterministic ensemble.

The information conveyed from different burn probability maps has the potential
to better inform the decision-making of fire management personnel, as they provide an
estimate of the relative likelihood of different regions being burnt in a particular fire event.
Implementing the deterministic and stochastic wind models with different associated levels
of uncertainty provides insights into the different levels of risk that apply in various forecast
scenarios. These insights can then assist expert fire behavior analysts in making predictions
about likely fire progression and the associated decisions related to resource allocation or
public evacuation. Future work will examine how to best capture the intrinsic variability of
real wildfires, as the over-estimation of fire propagation can result in the needless allocation
of resources or public evacuations, whereas the under-estimation of fire propagation can
have far more dire consequences. Overall, it is important to employ models that more
faithfully and accurately account for the processes that underpin the intrinsic variability
of fire spreading and better capture the many uncertainties that make wildfire spread
prediction such a challenging task.

The data used in this study were collected from a particular location characterized as
flat grassland, which may not be representative of more general environments where fires
may burn. The uniqueness of the data originating from multiple stations in close proximity
to the same location is exceptionally rare. As such, the estimated process noises may not
be applicable for other locations that do not match the particular wind characteristics
considered here. Applying stochastic wind models as part of bushfire simulations in
different locations—especially those in complex forested terrain—would require similar
but separate analyses to determine the process noises and the validity of the stochastic wind
models. This would be an essential requirement in extending the model across different
geographical conditions. Nevertheless, the process noise levels estimated in this study can
provide a good indication for realistic noise levels to be used when implementing stochastic
processes to simulate wind data.

6. Conclusions

This study has demonstrated the use of stochastic wind modeling as a supplement to
traditional fire propagation modeling, highlighting the importance of accounting for the
intrinsic uncertainty of environmental processes in improving the accuracy and reliability
of fire propagation models.

We compared the performance of two stochastic models—random walk and FOGM

processes—in predicting the temporal variation of wind vectors using a dataset of hourly
wind observations from a meteorological station located in a wildfire-prone area in Aus-
tralia. We found that the FOGM model outperformed the random walk model in terms of
capturing the temporal correlation of wind vectors and producing more accurate predic-
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tions of wind speed and direction. Furthermore, we used the predicted wind vectors as
inputs to a wildfire spread model to investigate the sensitivity of wildfire behavior to the
accuracy of the wind inputs. We found that even small changes and variability in the wind
direction and speed can lead to significant differences in the predicted wildfire behavior.

In conclusion, this study underscores the significance of integrating stochastic wind
modeling into fire propagation models, showcasing the pivotal role of accounting for
inherent environmental uncertainties. By demonstrating the impact of accurate wind
inputs on wildfire predictions, our findings highlight the critical need for precise and
reliable wind data to improve the overall efficacy of fire spread models and enhance
wildfire management strategies. This study could be significantly expanded and enriched
by incorporating various datasets from diverse situations and regions. While our current
analysis is based on a single dataset of wind data only over two months, we recognize
that the inclusion of longer datasets from different geographical areas and scenarios would
enhance the comprehensiveness of this research. Therefore, we acknowledge the potential
for future research to explore the incorporation of additional datasets.
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