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Abstract: Predicting heavy rainfall events associated with Tropical Cyclones (TCs) and atmospheric
disturbances in Thailand remains challenging. This study introduces a novel approach to enhance
forecasting precision by utilizing the coupled Weather Research and Forecasting (WRF) and Regional
Oceanic Model (ROMS), known as WRF-ROMS. We aim to identify the optimal combination of
microphysics (MP) and cumulus (CU) parameterization schemes. Three CU schemes, namely, Betts-
Miller-Janjic (BMJ), Grell 3D Ensemble (G3), and Kain-Fritsch (KF), along with three MP schemes,
namely, Eta (ETA), Purdue Lin (LIN), and WRF Single-moment 3-class (WSM3), are selected for
the sensitivity analysis. Seven instances of heavy (35.1–90.0 mm) to violent (>90.1 mm) rainfall
in Thailand, occurring in 2020 and associated with tropical storms and atmospheric disturbances,
are simulated using all possible combinations of the chosen physics schemes. The simulated rain
intensities are compared against observations from the National Hydroinformatics Data Center.
Performance was assessed using the probability of detection (POD), false alarm ratio (FAR), and
critical success index (CSI) metrics. While the models performed well for light (0.1–10.0 mm) to
moderate (10.1–35.0 mm) rainfall, forecasting heavy rainfall remained challenging. Certain parameter
combinations showed promise, like BMJ and KF with LIN microphysics, but challenges persisted.
Analyzing density distribution of daily rainfall, we found effective parameterizations for different sub-
regions. Our findings emphasize the importance of tailored parameterizations for accurate rainfall
prediction in Thailand. This customization can benefit water resource management, flood control,
and disaster preparedness. Further research should expand datasets, focusing on significant heavy
rainfall events and considering climate factors, for example, the Madden-Julian Oscillation (MJO) for
extended-range forecasts, potentially contributing to sub-seasonal and seasonal (S2S) predictions.

Keywords: heavy rainfall prediction; coupled WRF-ROMS; Thailand; tropical cyclones and atmo-
spheric disturbances

1. Introduction

The precipitation process comprises several critical elements within the Earth’s at-
mosphere. These include the presence of atmospheric water vapor, dynamic conditions
responsible for the ascent and cooling of moist air parcels, and thermal conditions that
dictate whether moisture condenses into either liquid or solid forms. The intricate interplay
of these factors culminates in the formation of clouds and, subsequently, the occurrence of
precipitation. Each of these elements, encompassing the transport of water vapor, dynamic
uplift and cooling, as well as thermal influences, constitutes indispensable components
in the complex mechanism underlying atmospheric precipitation. Of notable significance
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in this process are atmospheric disturbances and tropical storms. These meteorological
phenomena exert a profound influence on the precipitation process, often resulting in
heavy rainfall events. Their impact stems from their unique ability to transport mois-
ture, instigate upward vertical motion, establish convergence zones, interact with local
topography, exhibit prolonged durations, release substantial energy, and thrive under
conditions of atmospheric instability. Notably, tropical storms find their genesis in the
highly energetic conditions prevailing over warm tropical oceans [1]. The warming of
oceanic waters plays a pivotal role in cyclogenesis, as well as the subsequent intensification
of tropical cyclones. This intensification is influenced by various factors, including the
intensity of steering flows, the positioning of cyclonic circulation, atmospheric stability,
and wind shear conditions [2–4].

The Indochina Peninsula (IP) is geographically located in Southeast Asia, making
it prone to tropical storms and typhoons. The region is influenced by the South China
Sea (SCS) and the Bay of Bengal (BoB), recognized as breeding grounds for tropical cy-
clones [5–7]. The SCS exhibits elevated frequencies of tropical storms due to the presence
of low-level cyclonic circulation and their westward propagation toward the BoB. Conse-
quently, this movement significantly affects extreme rainfall events over the IP sub-region
during the late rainy season [8,9]. The IP generally experiences a tropical cyclone sea-
son from May to November, with peak activity concentrated between July and October,
resulting in heavy rainfall, strong winds, and potential flooding. Additionally, heavy
rainfall in the region can be induced by monsoon depressions along the monsoon trough.
The frequency and intensity of tropical storms vary annually, influenced by regional and
global climate patterns, including the El Niño-Southern Oscillation (ENSO), sea surface
temperatures (SST), and atmospheric conditions [10].

Thailand, located centrally within the IP region, has consistently experienced severe
and devastating flooding events on an interannual basis, primarily due to heavy rainfall
associated with atmospheric disturbances. These events have resulted in significant socio-
economic damage. Historical records reveal that catastrophic floods in Thailand have
typically coincided with synoptic conditions, particularly tropical storms, renowned for
their capacity to generate extreme weather, flooding, and storm surge [11–15]. Therefore,
precise prediction of these high-impact weather events is vital for effective preparedness,
early warning systems, and the implementation of disaster management strategies, which
are crucial in mitigating the potential impacts of tropical storms on the region.

In recent decades, dynamic numerical forecast models have significantly advanced,
effectively integrating atmospheric, surface, and subsurface processes, thereby extending
the forecast period for tropical storms and flood events [16–19]. In a previous study, Islam
et al. [16] utilized a dynamical model, specifically the WRF model, to simulate Typhoon
Haiyan, a formidable Category-5 equivalent super typhoon. While the WRF model effec-
tively predicted the typhoon’s trajectory, it encountered challenges in intensity forecasting,
highlighting the need for improvement. Potty et al. [17] focused on evaluating the WRF
model’s forecasting capabilities for typhoons with varying trajectories, showcasing its
proficiency in predicting factors such as landfall timing and mean sea-level pressure. Wu
et al. [18] delved into the complex relationship between typhoons and rainfall patterns
over the SCS, revealing the spatial asymmetry in typhoon-related phenomena and em-
phasizing intricate nonlinear interactions. Sivaprasad et al. [19] assessed the accuracy of
meteorological data derived from the WRF model during Tropical Storm Pabuk’s passage
over the southern SCS. While the model aligned well with buoy data before and after the
storm’s passage, it encountered discrepancies during the storm, emphasizing the chal-
lenge of simulating intense meteorological conditions. These studies collectively provide
valuable insights into typhoon modeling, forecasting, and their interactions with the SCS,
contributing to an improved understanding and prediction of these critical weather events.

Moreover, progress in atmospheric science owes much to improved comprehension
of physical processes, refined parameterizations, advanced data assimilation techniques,
high-resolution observations, enhanced computational capabilities, and international col-
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laboration [20–24]. There is a growing emphasis on elevating the predictive prowess
of numerical weather prediction (NWP) models, especially concerning intricate atmo-
spheric processes such as aerosol dynamics, climate phenomena, seasonal forecasting,
and surface-atmosphere interactions. The prediction of aerosol particle properties, cru-
cial for stakeholders like air quality regulators, aviation, solar energy management, and
climate service providers, presents intricate challenges driven by the complex nature of
aerosol processes and their sensitivity to meteorological conditions, necessitating source
term accuracy, meteorological influence, and aerosol chemistry enhancements. Simul-
taneously, Francisco et al. [21] stressed the significance of seasonal forecasting quality
evaluation, exploration of atmosphere-ocean coupling, and process-based verification to
bolster forecast reliability. This drive for enhanced predictions extends to Portugal, where
Monteiro et al. [22] underscored the importance of surface-atmosphere interactions, empha-
sizing multidimensional observational data integration and national assimilation system
development. Furthermore, Linardakis et al. [23] highlighted the potential of component
concurrency in the era of exascale computing, enabling better scalability and handling
increasing model complexity. Meanwhile, Baklanov et al. [24] shed light on the evolution
of online coupled meteorology-atmospheric chemistry models, recognizing their relevance
for air quality, weather prediction, and climate research, although they present scientific
challenges. In synthesizing these insights, it is clear that improving atmospheric predictions
and climate projections hinges on understanding intricate relationships between meteoro-
logical processes, atmospheric composition, and the computational resources essential for
effective modeling.

However, current dynamic forecast models still have limitations in efficiently pre-
dicting tropical storms and capturing the intricate interplay between complex oceanic
conditions and air-sea interactions that modulate heavy rainfall on a regional scale [25–27].
These models entail complexity and necessitate numerous assumptions regarding cloud
formation and its interaction with the atmosphere. These assumptions are typically encom-
passed within microphysical (MP) and cumulus (CU) parameterization schemes.

In numerical atmospheric models, the CU parameterization scheme plays a vital role in
accounting for sub-grid-scale cloud-radiation interactions, which are intricately connected
to the vertical redistribution of atmospheric heat and moisture tendencies [28,29]. Fur-
thermore, the microphysical (MP) parameterization, which influences the sub-grid- scale
vertical flux of cloud and sedimentation processes of hydrometeors, also plays a crucial role
at the regional level [30,31]. These effects on tropical cyclone intensity, such as moisture
distribution, latent heating, and convection, are critical for improving simulations during
tropical storms in the surrounding areas of Thailand [32–34]. A microphysics scheme can
also provide a better representation of evaporation processes from frozen hydrometeors
and a substantial quantity of liquid hydrometeors, resulting in improved latent heat release
in storms and a correlated increase in precipitation amounts and distribution [35]. The
significance of CU and MP parameterization in simulating tropical storms and regional
rainfall has been highlighted in previous studies [16–19,28–35]. However, it is important to
note that the existing research primarily focuses on specific tropical storm events, resulting
in a limited number of cases and insufficient systematic analyses regarding the temporal
and spatial consistency associated with regional rainfall. Furthermore, a notable limitation
of prior research lies in the exclusive reliance on atmospheric models in isolation. This ap-
proach tends to disregard the pivotal role of air-sea interaction in shaping the characteristics
and behavior of tropical storms. Although atmospheric modeling retains its fundamental
significance, there exists a pressing necessity to complement it with models that encompass
the intricate interplay between the atmosphere and the ocean. This holistic approach is
essential for a more accurate representation of the dynamics and outcomes of the tropical
storm processes [36–38].

Based on the aforementioned considerations, it is crucial to address three key aspects
when improving the model performance. These include incorporating the air-sea interac-
tion process into the simulation, exploring the sensitivity of CU and MP parameterization
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for improved short-term rainfall forecasting during tropical storms, and refining the bound-
ary and physical conditions. Consequently, the objective of this study is to investigate
the relative sensitivities of various CU and MP parameterization schemes in simulating
spatiotemporal variations of rainfall during tropical storm events in Thailand, utilizing
the WRF-ROMS model. Specifically, this paper focuses on simulating heavy rainfall pat-
terns in Thailand during tropical storm events at a high horizontal resolution of 3 km and
examining the forecast skill associated with different CU and MP schemes.

Section 2 provides a detailed description of the model configuration and the design of
sensitivity experiments conducted in this study. Section 3 outlines the methodology for
selecting tropical storm events, the observational data utilized for evaluation, and the veri-
fication methods employed. In Section 4, we evaluate the forecast skill of rainfall in various
regions of Thailand across four distinct rainfall categories and present a comprehensive
discussion of the results. Finally, Section 5 summarizes the main findings derived from
this study.

2. Materials and Methods
2.1. Observed Rainfall Data

For our analysis, we collected daily rainfall data from a comprehensive network of
1234 National Hydroinformatics Data Center (NHC) stations. Figure 1 shows the spatial
distribution of the NHC stations utilized in this study.
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stations being used in this study. The colored dot points represent stations in six sub-regions of
Thailand (i.e., north, central, northeast, west, east, and south).

These stations were distributed across different regions of Thailand, with 213 stations
in the central region, 119 stations in the western region, 49 stations in the eastern region,
188 stations in the northeastern region, 422 stations in the northern region, and 243 stations
in the southern region. The rainfall intensities simulated in this study were compared
to observations obtained from the NHC, which serves as a pivotal repository for hydro-
logical and meteorological data in Thailand. The NHC has emerged as a vital hub for
water resource management, disaster preparedness, and scientific research by establish-
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ing data linkages with over 50 agencies (https://www.thaiwater.net/ (accessed on 27
September 2023)).

2.2. Model Configurations and Experiment Designs
2.2.1. Model Description

In this study, we employed a coupled modeling system, known as the Coupled
Ocean-Atmosphere-Wave-Sediment Transport modeling system (COAWST), that origi-
nally developed at the United States Geological Survey (USGS) [37,38]. In the COAWST,
interactions of different physical processes of the Earth’s components, that is, ocean, at-
mosphere, wave, sediment transport, and sea-ice are integrated into the modeling system.
The coupled modeling system is open source, free of charge, and available online at
https://code.usgs.gov/coawstmodel/COAWST (accessed on 27 September 2023).

The COAWST system utilizes the Regional Ocean Modeling System (ROMS) as a func-
tional modeling framework to estimate the state of the ocean. ROMS is a numerical model
based on a free-surface, terrain-following approach, employing hydrostatic and Boussinesq
approximations [39,40]. It provides a means to simulate the ocean’s behavior and processes.
Concurrently, the Weather Research and Forecasting (WRF) Model is employed to estimate
atmospheric variables. WRF is an advanced mesoscale model based on a non-hydrostatic
atmospheric formulation, utilizing terrain-following vertical coordinates [41]. Widely em-
ployed by the scientific community, the WRF model facilitates diverse research studies and
operational applications, for instance, potential solar and wind energy resources, localized
flood hazards, short-term weather forecasting, and climate studies [42–47]. It is important
to acknowledge that the specific formulations and parameterizations of cumulus schemes
in the WRF model may vary, with different schemes prioritizing specific tendencies. Conse-
quently, researchers and modelers frequently calibrate these schemes using observational
data to enhance their representation of real-world atmospheric processes, particularly when
coupled with oceanic models.

The WRF-ROMS coupling allows for the simulation of interactions between the atmo-
sphere and the ocean, which can be important for understanding weather patterns and
their effects on oceanic processes. This model has been used in a variety of applications,
including forecasting ocean conditions and predicting the impacts of storms on coastal
regions. Torsri et al. [48] conducted an initial research endeavor aimed at evaluating rainfall
simulation in Thailand by comparing coupled and non-coupled approaches. Their find-
ings suggested that incorporating air-sea interaction in the modeling framework yielded
superior results compared to the non-coupled approach. However, the previous study
did not specifically investigate the impacts of different cumulus and microphysics options
within the WRF model. Consequently, the examination of these factors remains a pertinent
challenge that necessitates further investigation.

Note that the modeling system used here is the COAWST version 3.2, which is the
same version being officially routinely operated at the Hydro-Informatics Institute, Ministry
of Higher Education, Science, Research and Innovation, Thailand, since 2016 for the short-
term weather forecast system (7 days in advance). So far, the WRF-ROMS forecasted
results are publicly available online at https://www.thaiwater.net/weather/ (accessed
on 15 October 2023) and also disseminated to stakeholders and researchers that related to
disaster prevention, early warning, and water resource management in Thailand and some
ASEAN countries (https://www.aseanwater.net/ (accessed on 27 September 2023)). This
study focuses on examining synoptic weather systems and rainfall forecasts, with particular
attention given to the influence of air-sea interactions. To facilitate this investigation, the
WRF is coupled with the ROMS. While certain microscale processes (i.e., wave and sediment
components) occurring at scales smaller than the model’s grid cells can be disregarded,
other important components are considered.

https://www.thaiwater.net/
https://code.usgs.gov/coawstmodel/COAWST
https://www.thaiwater.net/weather/
https://www.aseanwater.net/
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2.2.2. Selection of Heavy Rainfall Events

According to the definition given by the Thai Meteorological Department [49], daily
rainfall in the region can be classified into five distinct categories: (1) trace rain (<0.1 mm),
(2) light rain (0.1–10.0 mm), (3) moderate rain (10.1–35.0 mm), (4) heavy rain (35.1–90.0 mm),
and (5) very heavy or violent rain (>90.0 mm). The main objective of this study is to assess
the impacts of CU and MP on the estimation of high-impact weather events, specifically
focusing on heavy (>35.0–90.0 mm/day) and violent rainfall (>90.0 mm/day) categories.
Throughout the paper, we will consistently adhere to the TMD’s definition for our analysis
and discussions.

In 2020, Thailand experienced several instances of heavy rainfall, primarily attributed
to atmospheric disturbances. In this year, the weather condition of Thailand can be at-
tributed to the significant impact of storms. These disturbances included events such as
Sinlaku in August, tropical storm Noul in September, and typhoon Molave in October.
These occurrences resulted in significant rainfall throughout the country, particularly in the
northern regions, leading to severe damage to infrastructure, properties, and agricultural
resources [47]. Apart from atmospheric disturbances, heavy rainfall in Thailand can also be
caused by a low-pressure zone known as the monsoon trough. During the summer mon-
soon season, this trough shifts northward, resulting in heavy rainfall and wet conditions in
the northern parts of Thailand. Conversely, during the winter monsoon season, the trough
shifts southward, leading to drier conditions in the north and increased precipitation in
southern Thailand. Hence, a selection of events that occurred during June to December
in 2020 is a suitable choice for verifying prediction skills with different combinations of
cumulus and microphysics options due to the following reasons: (1) variety of atmospheric
disturbances that exhibited different characteristics and intensities, providing a diverse set
of conditions to evaluate the prediction skill of different cumulus and microphysics options
and (2) significant impact on rainfall by which the selected events resulted in substantial
rainfall across Thailand.

Here, we conducted a case study focusing on seven significant heavy rainfall events
that took place in 2020, each of which was associated with atmospheric disturbances
(i.e., tropical storms, depressions, low pressure, and monsoon troughs). These distur-
bances either moved through or formed within a defined geographical area (0.0–25.0◦N,
90.0◦E–120.0◦E), which is known to potentially impact on the weather conditions of Thai-
land [50]. Table 1 provides detailed information regarding each selected event. Figure 2
draws the spatial distribution of rainfall on the target date alongside its corresponding
synoptic weather chart, which we used to analyze the behavior of each event.

Table 1. Selected heavy rainfall events in Thailand associated with atmospheric disturbed conditions
in the 2020 and experimental designs for model integration with three different lead times (Lead-0, 1,
and 2).

Event
No.

Heay Rainfall Event
(Target Date) *

During Storm
Model Initial Date at 00 UTC

Lead-0
(24 h)

Lead-1
(48 h)

Lead-2
(72 h)

Event 1 14 June TD Nuri 14 June 13 June 12 June
Event 2 1 August TD Sinlaku 1 August 31 July 30 July
Event 3 18 September TS Noul 18 September 17 September 16 September
Event 4 16 October TD 16 October 15 October 14 October
Event 5 12 November sTS Vamco 12 November 11 November 10 November
Event 6 26 November TC Nivar 26 November 25 November 24 November
Event 7 1 December TD 1 December 30 November 29 November

TD: Tropical depression, TS: Tropical storm, sTS: Severe tropical storm, and TC: Tropical cyclone. * The target date
refers to the date when the storm approaches or is in close proximity to Thailand, resulting in significant rainfall.
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Figure 2. Spatial distribution of 24 h accumulated rainfall on the target date along with its associated
synoptic weather chart at 00UTC as summarized in Table 1.

On June 14th (Event 1), Thailand experienced heavy rainfall, particularly in the north-
ern, northeastern, central, and eastern regions, with rain intensity reaching a maximum of
90.0 mm in certain areas. This rainfall event was caused by a tropical depression named
Nuri, which originated in the eastern part of the Philippines and passed through the
upper part of the SCS (Figure 2a). Subsequently, on August 1st, another notable heavy
rainfall event occurred due to Tropical Depression Sinlakul (Event 2). The Sinlakul initially
formed as a tropical depression over the northern SCS on the morning of July 31st. It
further intensified into a tropical storm and gradually moved toward the northern regions
of Vietnam over the following days. Before entering Thailand, Sinlakul weakened and
transitioned into a tropical depression. As Sinlakul traversed through Thailand (on 1st
August), in conjunction with the presence of the monsoon trough over the region, these
combined weather conditions resulted in heavy to violent rainfall, reaching the highest
intensity of about 150.0 mm, primarily in northeastern Thailand (Figure 2b). As a result,
the area experienced widespread flooding, landslides, rapid water surges, forest runoff,
and extensive damage to properties [47].

On September 18th (Event 3), Thailand encountered a notable increase in rainfall,
characterized by heavy to very heavy rainfall in the upper sub-regions (Figure 2c). The
highest recorded intensity of 243.8 mm was observed in Phetchabun Province in the
north [50]. This increase in rainfall was attributed to the impact of a tropical depression that
intensified into a tropical storm (TS) and was internationally named “Noul”. The storm’s
trajectory moved toward northeastern Thailand, passing through the central and eastern
regions and extending into certain areas of the western regions (Figure 2c). As a result,
widespread flooding and flash floods occurred in multiple areas. On October 16th (Event 4),
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a combined effect of a tropical depression (TD) moving westward from the central SCS
toward Vietnam, along with the intensified monsoon trough sweeping across the central,
eastern, and upper regions of southern Thailand. This meteorological phenomenon led to
substantial rainfall in these areas of Thailand, with certain locations experiencing rainfall
exceeding 90.0 mm (Figure 2d).

During the latter months (November to December), corresponding to the winter sea-
son in Thailand when the northeast monsoon prevails, there was a frequent occurrence of
heavy rainfall events in southern Thailand (Events 5 to 7). These events were primarily con-
centrated along the east coast of the south, where heavy to violent rainfall was commonly
observed (refer to Figure 2e–g). These weather patterns were attributed to the formation of
a low-pressure system induced by a tropical storm in the SCS, and occasionally influenced
by a tropical cyclone in the BoB.

To facilitate model integration, we established three distinct initial dates for the study:
the date corresponding to heavy rainfall occurrence (lead-0), the date preceding the event
(lead-1), and the date further preceding the event (lead-2) (refer to Table 1 for specific
information). Subsequently, we conducted model integration and simulation for a period
of 24 h, 48 h, and 72 h for each of the aforementioned lead times to simulate the target date
of each event. In doing this, the diverse range of atmospheric patterns observed in the
selected events provides a solid foundation for evaluating the effectiveness and accuracy of
different cumulus and microphysics parameterizations in predicting and capturing heavy
to violent rainfall patterns across Thailand.

2.2.3. Combinations of CU and MP

It is acknowledged that the estimation of rainfall over a certain region in an atmo-
spheric model is strongly dependent on CU and MP parameterizations. Many studies have
revealed that applying different combinations of cumulus and microphysics options in a
model for a region can yield different results [29–35,51,52]. For instance, Guo et al. [52]
examined the sensitivity of the model’s performance to the choice of MP schemes and eval-
uated the simulations against observed data. They highlighted the performance differences
among three MP parameterization options in simulating various aspects of rainfall patterns
and diurnal variations, which were found to be sensitive to the choice of microphysics
parameterizations.

In this study, we designed, in total, 9 combinations of CU and MP parameterizations
by which three CU schemes, namely, Betts-Miller-Janjic (BMJ), Grell 3D Ensemble (G3),
and Kain-Fritsch (KF) along with three MP schemes, namely, Eta Ferrier (ETA), Purdue Lin
(LIN), and WRF Single-moment 3-class (WSM3), were selected for the sensitivity analysis. It
is important to note that the combination of the BMJ and ETA parameterization is denoted
as the control run (CTRL) in this study. The selection of this particular combination as the
control run is justified by its prior verification in Torsri et al. [48], as well as its ongoing
utilization within the current operational system at the Hydro-Informatics Institute, Thai-
land. Consequently, it serves as a reference (CTRL run) against which other combinations
are compared in our analysis. A summary of combinations is given in Table 2. The seven
instances of heavy to violent rainfall in Thailand (listed in Table 1), occurring during June
to December of 2020 and associated with tropical storms and atmospheric disturbances, are
simulated using all possible combinations of the chosen physics schemes.
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Table 2. Selected heavy rainfall events in Thailand associated with tropical storms and three model
initial date/time runs for model validation.

EXP CU Reference MP Reference

CTRL * BMJ
Janjic [53]

ETA Zhao and Carr [54]
EXP-01 BMJ LIN Chen and Sun [55]
EXP-02 BMJ WSM3 Hong et al. [56]
EXP-03 G3

Grell and Dévényi [57]
ETA

EXP-04 G3 LIN
EXP-05 G3 WSM3
EXP-06 KF

Kain [58]
ETA

EXP-07 KF LIN
EXP-08 KF WSM3

* CTRL: Control run experiment.

The BMJ, G3, and KF schemes are widely used in atmospheric modeling and have been
extensively evaluated and tested in tropical regions [59–62]. The main differences among
these schemes lie in the complexity of the parameterization and the treatment of convective
processes. BMJ is relatively simple, using a relaxed Arakawa-Schubert closure. G3 employs
an ensemble-based approach with multiple convective plumes, while KF operates on a
higher-resolution grid and includes a downdraft parameterization. Overall, while all three
schemes consider the transport of moisture within cumulus convection, they may have
different parameterizations for specific processes such as detrainment, entrainment, and
vertical mixing for the treatment of moisture tendencies (Table 3). The assumptions made
in each scheme affect how moisture tendencies are represented and contribute to the overall
moisture budget within the model grid cell [63].

Table 3. Summary of CU and MP used in this study [63].

CU Scheme Moisture Tendencies Momentum
Tendencies

Shallow
Convection

BMJ - No Yes
G3 Qc, Qi No Yes
KF Qc, Qr, Qi, Qs No Yes
MP Scheme Mass Variables
ETA Qc, Qr, Qs (Qt*)
LIN Qc, Qr, Qi, Qs, Qg
WSM3 Qc, Qr

Qc: cloud, Qi: ice, Qr: mixing ratio for rain, Qs: snow, Qg: graupel; Qt*: total water mixing ratio tendency.

The choice of microphysics is of utmost importance due to its significant impact on
the accurate representation of key atmospheric processes, including water vapor, cloud
droplets, ice particles, rain, and other hydrometeors within the atmosphere. The precise
simulation of these processes is directly linked to the reliability and accuracy of weather
forecasts and simulations. In order to comprehensively evaluate the representation of
interactions between cumulus convection and microphysical processes, it is essential to
consider a diverse range of microphysics options in conjunction with the selected CU
schemes. For this study, we have specifically chosen three MP schemes, namely, ETA, LIN,
and WSM3, to describe the distinct interactions among water vapor, cloud droplets, ice
particles, rain, and other hydrometeors within the atmosphere (refer to Table 3 for details).

In this study, our main objective is to predict heavy rainfall that is linked to atmospheric
disturbances, with a specific emphasis on tropical regions. To achieve this goal, we have
selected certain CU and MP schemes that have previously shown outstanding performance
in situations characterized by tropical atmospheric disturbances and have been previously
validated and found to excel in modeling such conditions [51,52,59–61,64–66]. However,
it is important to note that the effectiveness of a particular combination of CU and MP
options in one region does not guarantee similar performance in another region. Therefore,
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prior to the application of any CU and MP scheme in a specific area of interest, conducting
a sensitivity analysis on the parameterization is essential.

2.2.4. Modeling Domains

In this study, we employed the COAWST version 3.2, specifically activating the cou-
pling between the WRF model and ROMS, to simulate a target selection of seven rainfall
events (refer to Table 1). Our configuration of the WRF model consisted of three nested
domains with respective resolutions of 27 km (D01), 9 km (D02), and 3 km (D03), accom-
panied by 33 vertical levels. The outermost domain encompassed a significant area of
Greater East Asia, encompassing South Asia, Southeast Asia, and East Asia, while the
finest domain covered the entirety of Thailand, as Figure 3a illustrates. The ROMS domain
with a horizontal resolution of 25 km2 and with 15 vertical layers spanned from 70 ◦E to
180 ◦E and 20 ◦S to 35 ◦N, ensuring comprehensive coverage of the influences of SST on
atmospheric processes in the BoB and the SCS (Figure 3b).
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In each of the target date simulations, the WRF model was initialized and driven
with three different model lead times as defined in Table 1. Meteorological information
being used for initialization and driving forces of the WRF model was obtained from the
6-hour Global Forecast System (GFS), developed by the National Centers for Environmental
Prediction (NCEP) and freely available online at https://www.emc.ncep.noaa.gov/em
c/pages/numerical_forecast_systems/gfs.php (accessed on 15 October 2023) [67]. Initial
conditions for the ROMS model, fields of currents, salinity, and temperature are obtained
from the global HYCOM simulation via https://www.hycom.org/dataserver/gofs-3p
t1/analysis (accessed on 15 October 2023) [68]. In this configuration, the ROMS model
exchanges SST with WRF every 3600 s (1 h). Then, the atmospheric model utilizes the
received SST information as a boundary condition and reciprocally sends turbulent heat

https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php
https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php
https://www.hycom.org/dataserver/gofs-3pt1/analysis
https://www.hycom.org/dataserver/gofs-3pt1/analysis
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fluxes to the oceanic model [38]. By adopting this approach, ROMS can provide high-
resolution and dynamically consistent SST updates. Moreover, the heat fluxes transmitted
from WRF to ROMS are based on the SST received from ROMS, ensuring a coherent
treatment of energy and momentum exchange [69].

2.3. Statistical Evaluation Metrics

For statistical metrics, we employed the probability of detection (POD), false alarm
(FAR), and critical success index (CSI), known as the treat score (TS) for model evaluation.
The equations for these metrics are presented below:

POD =
Hits

(Hits + Misses)
, (1)

FAR =
False Alarms

(False Alarms + Hits)
, and (2)

CSI =
Hits

(Hits + Misses + False Alarms)
(3)

where:

• Hits refer to the number of correctly detected events.
• Misses refer to the number of events that were present but went undetected.
• False Alarms refer to the number of incorrect detections or false positives.

The POD is a crucial metric for numerical weather prediction (NWP) by which it can
provide an objective measure of the model’s ability to accurately predict the occurrence of
specific weather phenomena or events. The FAR quantifies the ratio of false alarms to the
total number of events predicted by the model. False alarms occur when the model predicts
an event (such as rain, a storm, or a specific condition) that ultimately does not materialize.
On the other hand, the CSI offers a comprehensive assessment of a model’s support for
decision-making by simultaneously evaluating its success in correctly predicting events
and accounting for prediction errors. Hence, the metrics are particularly important for
high-impact weather events, such as severe storms or heavy rainfall, which can have
significant societal and economic consequences, making their accurate prediction of utmost
importance. Evaluating the evaluation metrics allows forecasters and researchers to assess
the model’s performance in capturing and predicting such high-impact events, which aids
in decision-making and risk mitigation. In our explanation, we will express the statistical
values as a percentage.

To provide a comprehensive evaluation of the model’s performance, by considering
POD along with other metrics, forecasters and researchers can assess not only the model’s
detection capability but also its ability to minimize false alarms and capture the overall
forecast skill. Furthermore, in order to gain a more comprehensive understanding of the
model’s prediction skill, the analysis is divided into six distinct regions of Thailand (see
Figure 3) considering the regional average of the evaluation metrics.

Note that, for model evaluation, a systematic approach is employed. Firstly, observed
and simulated rain intensity data, specifically for heavy and violent categories, are extracted
for each target date. The simulated values are then compared against the corresponding
observed values for the seven selected events. Consequently, the statistical values presented
here represent an overall assessment of the model’s performance across all events rather
than a specific case. To maintain consistency, the observed rainfall data are interpolated to
match the highest horizontal resolution of the model used in the analysis (3 × 3 km2). This
ensures that both observed and simulated datasets undergo identical analysis procedures,
facilitating an objective and unbiased evaluation.
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3. Results
3.1. Probability of Detection (POD) of Rainfall Forecast over Thailand during the Selected Events

Figure 4 shows the POD for rainfall forecasts in Thailand during the selected events.
We categorized the forecasts into four distinct rainfall categories, as defined by the daily
TMD criteria and compared them with the observation with a primary focus on the accurate
prediction of heavy and violent rainfall events.
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In the case of light rain, employing a specific set of BMJ combinations exhibits a higher
POD across all lead-time forecasts, as Figure 4a–c depicts. It is noteworthy that the BMJ
combination, particularly with the more complex MP schemes such as LIN and WSM3,
exhibits a slightly superior POD performance ranging from 10.0 to 20.0% compared to CTRL,
depending on the lead time. On the other hand, the POD values for other combinations
remain comparable to CTRL for the initial lead-time forecast, with a slight decrease of
5–10% as the lead-time forecast increases. In the case of moderate rainfall, the CTRL and a
specific set of G3 combinations demonstrate superior performance, accurately forecasting
the POD at around 45–50%. Conversely, lower skill is observed in other combinations,
particularly in a set of KF combinations.

When it comes to predicting heavy to violent rainfall, the model outperforms the
control run (CTRL, depicted by the red dashed line), particularly in terms of POD. Specif-
ically, the model attains significantly improved accuracy rates of 10% for heavy rainfall
events and an impressive 50% for violent rainfall events when utilizing a combination of
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KF + ETA for heavy rainfall and KF + LIN for violent rainfall. Remarkably, the model
employing the KF combinations with ETA, LIN, and WSM3 consistently demonstrates
similar performance but consistently outperforms the other combinations in all lead-time
predictions. When considering forecasts for violent rainfall, as Figure 4 shows, it is seen
that the combination of BMJ, G3, and KF, coupled with LIN microphysics, consistently
outperforms other combinations. This combination, particularly when paired with KF,
yields the highest POD at approximately 80% for lead-0. For subsequent lead times, the set
of KF combinations consistently exhibits high prediction skill (POD > 60%), while lower
predictions (POD < 30%) are observed in the other combinations.

3.2. False Alarm Ratio (FAR) of Rainfall Forecast over Thailand during the Selected Events

To quantify the frequency of false alarms or inaccurate predictions of rainfall occur-
rence, we calculated the FAR for each rainfall category, as Figure 5 depicts. In general,
the FAR values for the CTRL in predicting light to moderate rainfall are similar to those
obtained from all combinations, with magnitudes ranging from 50% to 70%. Notably, both
the CTRL and other combinations exhibit an increase in FAR as the lead-time forecast
and rain intensity increase (Figure 5a–c). Regarding heavy rainfall, the FAR values for
the CTRL and all combinations are comparable, with the highest FAR reaching 80% at a
lead-time-2. Moreover, it is evident that the FAR is significantly higher in the BMJ combina-
tion set in capturing heavy rainfall compared to the others, while improved predictions of
intense rainfall are observed in the KF scheme combinations, exhibiting lower FAR values,
particularly for longer lead-time forecasts.
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3.3. Critical Success Index (CSI) of Rainfall Forecast over Thailand during the Selected Events

The CSI was calculated to assess the performance of rainfall forecasts and given in
Figure 6. Note that a higher CSI value indicates a more skillful and accurate forecast.
As seen, CTRL and all combinations are comparable in prediction of light rain to heavy
rain categories in all lead-time forecasts (Figure 6a–c). By analyzing the CSI values, it
was observed that the CTRL run and all combinations exhibited comparable performance
in predicting rainfall across the categories of light to heavy rain, regardless of lead-time
forecasts (Figure 6a–c). The CSI values revealed varying levels of success for the rainfall
forecasts during the selected events. Specifically, light rain events demonstrated higher
CSI values, particularly in the set of BMJ combinations (35–40%), followed by the set of
KF combinations (30–35%), indicating a stronger agreement between the forecasted and
observed rainfall occurrences compared to other rainfall categories. However, it is worth
noting that the prediction skill of the CTRL decreased as the intensity of rainfall increased,
particularly for violent rainfall, which exhibited very low skill (CSI < 10%) at higher lead-
time forecasts (Figure 6c). It was also noticed that the model consistently shows better
prediction of heavy to violent rainfall in almost all lead-time forecasts when employing
the KF scheme, specifically in lead-time-1 and lead-time-2. However, the prediction of the
intense rainfall categories was still limited with CSI values less than 20%.
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3.4. Probability Distribution Function (PDF) of Daily Rainfall over Thailand during the
Selected Events

In addition to the previously mentioned validation, there exists a supplementary
interest in expanding our evaluation to encompass the probability distribution function
(PDF) of daily rainfall during the selected extreme events across Thailand. This endeavor is
undertaken with the purpose of understanding the probability distribution of daily rainfall
and conducting a comparative analysis against simulations given by the different CU and
MP combinations, categorized according to the TMD’s daily rainfall classification (Figure 7).
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Based on the selected rainfall events in 2020, the observed intensity distribution of daily
rainfall over Thailand reveals a distinct asymmetry (Figure 7a). As seen, approximately
40% of rain events are associated with trace rain (<0.1 mm), while 20–30% are characterized
by light rain (0.1–10.0 mm). Additionally, 10–15% of rainy days featured moderate rain
(10.1–35.0 mm), and less than 10% are marked by heavy to violent rainfall. When we assess
the agreement between the observed and simulated distributions, it becomes evident that
the combined BMJ + LIN and BMJ + WSM3 display a noteworthy alignment with the
observed PDF across all rainfall categories. In contrast, other combinations of cumulus
and microphysics options tend to exhibit certain discrepancies, specifically overestimation
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(underestimation) for zero or nearly zero (trace to light) rainfall categories. For the moderate
rain, it is worth noting that the observed PDF and the predictions are generally comparable,
except for the G3 combinations, which overestimate the observed rainfall distribution for
the category. Regarding heavy to violent rainfall, our results suggest that most of the
combinations provide relatively accurate estimates for the long tail of extreme rainfall
events. However, the BMJ + WSM3 (a set of KF combinations) slightly underestimate
(overestimate) these events.

Furthermore, we conducted a comprehensive assessment of rainfall intensity distri-
bution during the selected 2020 events across six distinct sub-regions of Thailand: north,
northeast, central, east, west, and the south, as Figure 7b–g shows. Our analysis reveals
variations in the density distribution of rainfall events, which vary across these regions, re-
flecting the distinct spatial impacts of tropical storms and atmospheric disturbances in each
area. In the northern region, an examination of the PDF reveals a positively skewed gamma
distribution. This distribution indicates that roughly 50% of recorded rainfall events can be
attributed to trace rain, with less than 30% and 10% associated with light and moderate
rain, respectively. The occurrence of heavy to violent rainfall events is exceptionally rare,
accounting for less than 5% of the total (Figure 7b).

Indeed, the daily rainfall density functions in the northeast, central, and eastern
regions closely align with negatively skewed linear tail-fitted curves (Figure 7c–e). These
curves signify an asymmetrical distribution of rainfall intensities in these sub-regions, with
a propensity for more frequent instances of lighter rainfall (35–40%) and progressively
fewer occurrences of heavier rainfall. Approximately 20–30% of the recorded events fall
within the moderate to violent rainfall categories. It is worth noting that this distribution
pattern aligns with the observed heavy rainfall events in 2020, and typically occurred in
these sub-regions (see Figure 2).

Regarding the western sub-region’s rainfall distribution, it is evident that it closely
adheres to a gamma-fitted distribution with a positive skewness by which about 45% of
rainfall events are attributed to trace rain, with 20–35% associated with light rain, 5–10%
categorized as moderate, and less than 5% falling into the heavy to violent rainfall category
(Figure 7f). Unlike the other sub-region, in the south, while it may not exhibit a perfect fit,
its rainfall distribution closely approximates a normal curve (Figure 7g). Occurrences of
zero and trace rain are infrequent, constituting less than 5%. The majority of rainfall events
are concentrated within the light to moderate rain categories, ranging from 20 to 40%, with
heavy to violent rainfall events making up less than 10%.

For prediction, our findings indicate that predicting the observed daily rainfall dis-
tribution can be a challenging task for the model. The skill of prediction depends on
the specific geographical region and the combination of CU and MP. For instance, in the
north, we observed that none of the combinations can effectively replicate the shape of the
observed PDF of rainfall distribution. The model tends to exhibit tendencies of overestima-
tion (underestimation) of the occurrence of trace (light) rain (Figure 7b). Similarly, in the
northeastern sub-region where extreme rainfall events were particularly prevalent in 2020,
the model cannot provide accurate estimations of the sub-regional rainfall distribution in
most combinations. The exception is the BMJ + LIN combination, which closely aligns with
observed data (Figure 7c). In addition, we observed that most combinations perform well
in estimating the frequency of heavy to violent rainfall events in the northeast. However, a
subset of KF combinations tends to slightly overestimate the tail end of rainfall distribution
in the sub-region by approximately 5%.

In the central sub-region, a particular group of combinations involving BMJ and G3
tends to exhibit a substantial tendency to overestimate trace rain occurrences, whereas the
KF combination consistently provides more accurate estimations for this rainfall category.
Furthermore, the model tends to underestimate the occurrence of light to moderate rain
across all combinations. However, the G3 + ETA combination stands out as the most reliable
in terms of estimating this category accurately. For heavy to violent rainfall, combinations,
that is, BMJ + LIN, G3 + ETA, and G3 + LIN outperform other combinations, closely
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aligning with the tail end of the observed PDF. Meanwhile, a set of KF combinations
slightly overestimate (<5%) the long-tail of the observed distribution (Figure 7d).

In the eastern sub-region, the model exhibits poor accuracy in predicting the observed
rainfall distribution across all combinations and rainfall categories (Figure 7e). Notably,
within this sub-region, all combinations underestimate trace rain events while overesti-
mating the occurrence of heavy to violent rainfall. Additionally, specific combinations
involving BMJ and G3 exhibit an overestimation of the frequency of light to moderate rain,
while a subset of KF combinations underestimates the occurrence of these rainfall events.
In the western sub-region, the model underestimates the occurrences of trace to light rain
events for all combinations. However, it does perform well in estimating non-rainfall
events for most combinations, except for a set of G3 combinations and KF + ETA, which
notably overestimates non-rainfall events by approximately 10% (Figure 7f). In the south,
the shape of the observed rainfall distribution is well approximated by the model across
all combinations. The model closely captures, although not perfectly fitting, the peak
of the distribution, which corresponds to trace to light rain events. Notably, the CTRL
combination (i.e., BMJ + ETA) outperforms other combinations in this sub-region.

4. Discussion

The results unveiled both commendable strengths and notable weaknesses in the mod-
els’ performance. The models excelled in accurately predicting light to moderate rainfall,
and some model combinations exhibited a higher level of proficiency in specific rainfall
categories. However, forecasting heavy and intense rainfall posed a more formidable
challenge, resulting in limited success across various model combinations and lead-time
forecasts. Wu et al. [18] also highlighted limitations in forecasting heavy to violent rainfall,
particularly in response to tropical disturbances and storms. They suggested that this diffi-
culty might be attributed to the intricate and nonlinear interactions among storm-related
factors, which encompass dynamics, heat, cloud microphysics, and radiation.

Regarding the POD, the model performance varied across different rainfall categories
and lead-time forecasts. In the case of light rain, specific combinations, particularly the BMJ
combinations with LIN and WSM3 microphysical options, exhibited higher POD values
compared to the CTRL. However, other combinations showed comparable performance
to CTRL, except for a slight decrease in POD as the lead time increased. For moderate
rainfall, CTRL and specific G3 combinations demonstrated superior performance with POD
values around 45–50%. Conversely, the KF combinations showed lower skill in predicting
moderate rainfall. For heavy rainfall, certain G3 and KF combinations, particularly when
combined with ETA and LIN microphysical options, showed improved results compared
to CTRL. In the case of violent rainfall, the combination of BMJ, G3, and KF, along with
LIN microphysics, outperformed other combinations, especially when combined with KF
for lead-0. The KF combinations consistently exhibited high prediction skill for subsequent
lead times, while lower predictions were observed in other combinations.

In terms of the FAR, both CTRL and the combination models showed similar perfor-
mance in predicting light to moderate rainfall. The FAR values increased as the lead-time
forecast and rain intensity increased. For heavy rainfall, the FAR values were comparable
between CTRL and the combination models, with the highest FAR observed at lead-time-2.
The BMJ combinations showed higher FAR values in capturing heavy rainfall, while the KF
scheme combinations exhibited improved predictions of intense rainfall with lower FAR
values, particularly for longer lead-time forecasts.

The CSI analysis revealed that CTRL and the combination models exhibited compa-
rable performance in predicting rainfall across light to heavy rain categories and various
lead-time forecasts. Light rain events showed higher CSI values, particularly in the BMJ and
KF combinations, indicating a stronger agreement between the forecasted and observed
rainfall occurrences. However, the prediction skill of CTRL decreased as the intensity of
rainfall increased, especially for violent rainfall, with very low CSI values at higher lead-
time forecasts. It is worth noting that the KF scheme consistently showed better prediction
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of heavy to violent rainfall in almost all lead-time forecasts. However, the prediction of
intense rainfall categories remained limited.

The study also offered valuable insights into the model’s ability to predict density
distribution of daily rainfall across different geographical sub-regions of Thailand and
combinations of CU and MP, revealing substantial variability in predictive accuracy con-
tingent upon specific geographical regions and combinations. In the northern sub-region,
the model faces challenges in accurately replicating the observed rainfall distribution’s
shape, particularly in trace and light rain categories, resulting in instances of both overes-
timation and underestimation. In the northeastern sub-region, characterized by extreme
rainfall events in 2020, the model has difficulty in providing precise estimations across
most combinations, with an exception found in the BMJ + LIN combination.

The central sub-region exhibits unique challenges, with BMJ and G3 combinations
tending to overestimate trace rain, and the KF combination offering more accurate estimates.
Notably, the G3 + ETA combination excels in estimating light to moderate rain. For heavy
to violent rainfall, combinations such as BMJ + LIN, G3 + ETA, and G3 + LIN perform well,
albeit with slight overestimations by KF combinations.

The eastern sub-region presents considerable difficulty, with consistent underestima-
tions of the probability distribution of trace rain and overestimations of heavy to violent
rainfall, along with overestimations of the density of light to moderate rain by BMJ and G3
combinations and underestimations by KF combinations.

The western sub-region is characterized by underestimations of the occurrence of trace
to light rain events across all combinations, while non-rainfall (zero rain intensity) events
are well estimated in most cases, except for G3 combinations and KF + ETA, which notably
overestimate non-rainfall events.

In the south, the model closely approximates the observed rainfall distribution, par-
ticularly the peak corresponding to trace to light rain events, with the BMJ + ETA (CTRL)
combination performing most effectively in this sub-region. It is worth noting that while
our suggested combination proves optimal for this sub-region, it may not align with the
findings of Kirtsaeng et al. [70], who advocated for KF as a preferable option over BMJ and
G3 for the southern sub-regions. This disparity between our study and the previous one
could stem from differences in the analyzed rainfall events. The prior research focused on
a single instance of heavy rainfall, heavily influenced by a monsoon system rather than the
dynamics of a tropical storm or atmospheric distribution. Additionally, the earlier study
employed their simulation based on a microphysics option.

These findings emphasize the region-specific complexities and underscore the neces-
sity of tailored approaches for enhancing rainfall predictions, particularly in regions with
unique characteristics or extreme weather events.

5. Conclusions

This study addresses the persistent challenge of accurately predicting heavy to violent
rainfall events in Thailand, often associated with tropical storms and atmospheric distur-
bances. The innovative approach employed here, utilizing the coupled WRF-ROMS, aimed
to optimize MP and CU parameterization schemes. Three CU schemes (i.e., BMJ, G3, KF)
and three MP schemes (i.e., ETA, LIN, WSM3) were rigorously evaluated in seven instances
of heavy to violent rainfall events during June to December of 2020. The performance
assessment using POD, FAR, and CSI metrics revealed that while the models showed
proficiency in predicting light to moderate rainfall, forecasting heavy and violent rainfall
remained challenging, especially for longer lead-time forecasts. Based on the evaluation
metrics, the study reveals several key findings. Notably, certain combinations, including
BMJ and KF with LIN microphysics, demonstrate improved POD performance, particularly
in predicting heavy and violent rainfall events. However, challenges persist, such as higher
FAR values for intense rainfall predictions, especially in a set of the BMJ combinations. The
CSI values reflect the varying success rates across rainfall categories, with light rain events
showing higher skill.
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According to the analysis of probability distribution of daily rainfall, it is evident that
certain combinations of CU and MP parameterizations exhibit superior performance in pre-
dicting the rainfall distributions over Thailand and its sub-regions. Notably, the BMJ + LIN
combination stands out as an effective choice in accurately estimating rainfall distribution
overall in Thailand, especially in the northern sub-region. In the northeastern sub-region,
where extreme rainfall events were prevalent in 2020, the BMJ + LIN combination also
aligns well with observed density distribution. Additionally, the G3 + ETA combination
demonstrates strong predictive capabilities, especially in estimating density of light to
moderate rain in the central sub-region. In the South, the CTRL combination (BMJ + ETA)
emerges as the most effective choice for approximating the observed rainfall distribution.

In summary, these findings emphasize the critical importance of carefully selecting
cumulus and microphysics parameterizations that are tailored to the specific geographical
characteristics and rainfall patterns when conducting predictive modeling for Thailand.
These customized approaches have the potential to significantly enhance the accuracy of
rainfall forecasts, thereby offering valuable insights for decision-making processes related
to water resource management, flood control, and disaster preparedness in the region.
Furthermore, our study sheds light on the unique challenges and strengths of the model in
predicting the density distribution of daily rainfall. It underscores the necessity of exploring
various combinations of cumulus and microphysics parameterizations, particularly in the
context of tropical storms and atmospheric disturbances. While the results presented here
are derived from the analysis of seven selected significant rainfall events modulated by
tropical storms and atmospheric disturbances in 2020, it is essential to establish statistical
significance through a more extensive sampling of case studies. This expanded dataset
should also account for major atmospheric factors, such as the Madden–Julian Oscillation
(MJO), known to exert a profound influence on rainfall patterns in Thailand. Additionally,
it is worth mentioning that previous studies, such as Efstathiou et al. [30] and references
therein, have indicated that the choice of boundary layer schemes had a limited impact
on the simulation of heavy rainfall. While this aspect was not specifically addressed in
the present study, it remains a subject for further investigation and consideration in future
research efforts.
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