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Abstract: As part of a contract with ENRESA (National Radioactive Waste Company S.A. is a Spanish
public company responsible for the management of radioactive waste), after the closure of the
uranium mill factory in Andújar, Spain, continuous measurements of the radon flux have been
carried out on an annual basis using activated carbon detectors following a methodology established
in our laboratory (ISO 11665-7, 2012). The results obtained and their usefulness are presented from
the point of view of control of the closure conditions established by the competent authority in order
to minimize the impact of the site on the environment.
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1. Introduction

Radon flux from naturally occurring porous materials, like soil and rocks, as well as
man-made materials like mining subproducts and building materials has been the subject
of research activities for several decades [1–3]. It has also been used to plan, monitor, and
evaluate the remediation of uranium mine and mill sites. In the USA, regulations require
that the radon flux from active uranium mill tailing should not exceed 2666 Bqm−2 h−1

(EPA-520/5-85-029, 1986 [4]). The IAEA (International Atomic Energy Agency) pub-
lished the report Technical series nº 474 [5] related to the measurement and calculation of
radon releases from NORM (naturally occurring radioactive materials) residues in 2013.
Sahu, P. [6], in 2014, performed a review of the sources of radon and its measurement
techniques in underground uranium mines. Lopez Coto et al. [7] established that radon
flux measurements are also of interest for phosphogypsum piles and their remediation due
to their high radium content. Hassan et al. [8] concluded that the release of radon atoms
from the material grains to pore spaces is caused by processes such as recoil and diffusion.

The Uranium Mill Factory in Andújar is located in the province of Jaén, Andalucía,
at 1.5 km south from the urban center of Andújar (Figure 1). The site is a flat area of
approximately 175,000 m2. A very low permeability shale on alluvial clays and gravel
underlies the site. The Andújar facility was designed for processing low-grade uranium
ore and produced 80% concentrate of U3O8 in the form of sodium and ammonium uranate
at a rate of 60–80 thousand kg per year. The plant was in operation from November 1959
until July 1981. All the solid wastes generated during the plant’s operations, approximately
1200 million kg, are contained in the tailing pile, which covers 94,000 m2 and has a volume
of 980,000 m3 with a total activity of 4500 Ci [9]. In 1986, the facility was transferred
to the Spanish National Company of Radioactive Wastes (ENRESA) for the long-term
conditioning of tailings and later the closure of the facility.
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Figure 1. Localization of Uranium Mill Factory in Andújar (Spain).

In 1991, the Ministry of Industry established the criteria related to the execution of
activities to dismantle and restore the site of the Andújar Uranium Factory for its closure
(BOE 5 February 1991 [10]). In 1999, the sealing of the mines and the storage under a mound
of 400 cages with radioactive waste was considered the end of the task of dismantling the
Andújar mine, although the dismantling and recovery of spaces does not mean that the
environmental problems have ended. The Nuclear Safety Council (CSN; competent body
in Spain in matters of nuclear safety and radiological protection) must carry out an annual
inspection to find out the levels of groundwater contamination, which are still higher than
those established within the factory site. The radiological protection objective and design
criteria that govern the dismantling and site restoration activities have been established
by the CSN, taking into account the recommendations of international organizations
(ICRP—International Commission on Radiological Protection; IAEA; and OCDE/NEA—
Nuclear Energy Agency). The program reduces the radon flux over the surface of the final
pile to an average release rate of less than 2664 Bq m−2 h−1.

In this paper, we present the monitoring results, from 2001 to the present, of the value
of the radon flux through the restored surface.

2. Materials and Methods
2.1. Radon Flux Measurement Used in Large Area Collectors

The method used to perform the radon flux measurements involves absorption of
radon into activated charcoal in a large area collector. This method has been used ex-
tensively since the publication by Wilkening et al. [11], with many different collector
geometries. The radon collector is placed on the surface of the material to be measured and
it is allowed to collect radon for a time period more than 24 h. The accumulated radon in
the charcoal is then measured by gamma spectroscopy.

The activated charcoal method is more appropriate in this case than other published
methods (ISO 11665-7, [12]) because a very large area has to be measured. The charcoal
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canisters allow for the placement of many detectors that can be disseminated on a wide
extension at the same time, making the cost of numerous measurements very cheap when
compared with other methods. The 0.0038 m2 collector is inside a cap or PVC capsule as
shown in Figure 2. Approximately 70 g of activated charcoal is spread onto the distribution
grid. The top is very rugged, and therefore ideal for field use. A small hole on top of the cap
is necessary to equalize the pressure and to prevent the disturbance of the normal radon
flux from the soil.
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Figure 2. Activated charcoal canisters and PVC capsule used.

The collectors are deployed by twisting the cap firmly on the surface of the material to
be measured. The deployment situation and time are recorded in a notebook. After 24 h of
exposure, the collectors are picked up and the time is recorded. The charcoal canister is
extracted from the cap and sealed with aluminum tape to avoid radon leakages. The radon
trapped in the charcoal is kept in equilibrium for 3 h before counting, to allow ingrowth of
the radon daughters.

The amount of radon adsorbed in activated charcoal is determined by gamma spec-
troscopy. The gamma spectroscopy system used in this study consists of a NaI(Tl) crystal, a
photomultiplier tube, an amplifier, and a pulse counter. The peaks of Pb-214 (242, 295 and
352 keV) and Bi-214 (669 keV) are used.

A basic National Bureau of Standards (NBS) for Ra-226 adsorbed in charcoal is mea-
sured at least once daily to determine the efficiency count in cpm Bq−1. An unexposed
container of charcoal is also counted each day to determine the background. The radon
flux is calculated from the net counts, collector area, exposure time, and system efficiency
count. A detailed procedure for preparing and deploying collectors and calculating the
radon flux is presented in a previous publication [13].

This radon flux measurement method includes two basic assumptions. First, it is
assumed that charcoal is 100% effective in collecting radon. For short time periods (<36 h),
this assumption is considered valid [14]. Charcoal may not be 100% effective, however, if
longer exposure times are used. The main factors affecting the effectiveness of charcoal for
radon collection are temperature and humidity. Figure 3 shows the correction factor for
this last parameter. Longer exposure times can be used in the winter than in the summer.
Twenty-four hours is a conservative estimate of a valid exposure time during any time
of the year. The second assumption is that the measured radon flux is constant over the
exposure period. Although this condition is known to be rarely, if ever, encountered, the
introduced errors are relatively small.
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Figure 3. Correction factor CF related to the humidity adsorbed (expressed as increase in mass, ∆m,
in grams) in the charcoal [15].

2.2. Determination of the Number of Points to Test

To estimate a valid annual statistical average radon flux for a site, an appropriate
number of locations in the mound must be measured. The number of measurements
needed to define the average annual flow depends on the homogeneity of the pile and the
desired precision of the estimation. A homogeneous heap requires fewer samples than
an inhomogeneous heap. Standard statistical techniques [16] have been used to estimate
the number of samples needed for the average for a given error limit, uncertainty, and
also taking into account the economic cost. Taking these factors into account, the optimal
number of measurements was considered to be 101 points; this value is significantly higher
than that used in other similar studies [17,18]. For each point, five detectors were placed
and the value assigned to the point was the average of the five measurements.

2.3. Quality Control

The surface radon flux can be calculated by solving the radon diffusion equation [14],
taking into account the physical and radiological properties of the soil being measured.

Radon Flux:
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where R = 226Ra concentration in soil, Bq/kg;
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= emanating power of soil;
ρ = density of soil;
λ = radon decay constant 7.59 × 103 h−1;
D = diffusion coefficient, m2/s;
T = thickness of the tailing, m.
If the thickness is less than the diffusion length, the equation became
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Using different soil samples in our laboratory, it is possible to evaluate the radon flux by
previously characterizing the parameters that appear in the expression (Rábago, D. et al., [19]).

The measurement of radon exhalation in our laboratory (LaRUC), Natural Radioactiv-
ity Laboratory of the University of Cantabria, is accredited (ISO/IEC 17025:2017) by ENAC
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(National Certification Agency). The reference code laboratory is 1204/LE2219 [20], and
technical information about this testing are shown.

2.4. Evaluation of Radon Flux Using Activated Charcoal

The radon flux is calculated from net counts, collector area, exposure interval, efficiency
count, and others factors related with the process such as humidity or temperature [21,22].

E =
λ2Neλtd

εS(1− e−λtc)CF
(3)

where
λ = radon decay constant 7.59 × 103 h−1;
N = T − F where T is the total count measured in the cartridge and F is the back-

ground count;
td is the time elapsed from the middle of the cartridge exposure to the start of the

count expressed in minutes;
ε is the efficiency in cpm Bq-1 corresponding to the area shown in Figure 2;
S = πR2 = 3.20·10−3 m2 is the surface of the canister;
tc = 10 min is the counting time;
CF is the correction factor derived from the accumulation of water in the charcoal.
Including all of these values into expression (3), we found a new expression for the

radon flux in Bq m−2 h−1:

E =
0.236Neλtd

εCF
(4)

The associated uncertainty (k = 2):

u(E) =

√(
0.236eλtd

εCF
u(N)

)2

+

(
−0.236Neλtd

ε2CF
u(ε)

)2

+

(
0.236Neλtd

εCF2 u(CF)
)2

(5)

where
u(N) is the uncertainty of the total counts T including the contribution of the back-

ground Fu(N) =
√

T + F;
u(ε) is the uncertainty of the efficiency;
u(CF) is the uncertainty of CF correction factor by humidity.
For the evaluation of the exhalation detection limit (LDE), since this depends on the

background measured under the peaks studied in the gamma spectrometry equipment,
it will be necessary to know the detection limit in counts per minute with a degree of
significance 3σ (LDC), which is given by the following expression:

LDC = 3σF (6)

where σF =
√

F is the uncertainty in the background.
Once the LDC is obtained, the corresponding LDE is calculated as:

LDE =
0.236LDCeλtd

εCF
(7)

The exhalation detection limit for the radon content adsorbed in the activated carbon
at the end of 24 h of exposure is 5.3 Bq for an average delay time between the end of its
exposure and its subsequent measurement at 26 h. This value corresponds to a detection
limit for the radon flux of 40 Bq/m2h for an average content of moisture adsorbed in the
carbon during the 24 h of exposure of 0.3 g [23].
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3. Results

The radon flux measurements in the Andújar tailings have been carried out since 2001
at the 100 points indicated in Figure 4. These points were selected following the statistical
criteria referred to in a previous paragraph. Measurements are only taken at the same time
of the year for budgetary reasons and because the regulatory body, Nuclear Safety Council
(CSN), establishes that it is carried out in this way. Under these conditions, always during
the months of June and July, the measurements were taken.

The value of radon exhalation in the Andujar surrounding area is low due to the
geological characteristics of the terrain. Therefore, the limitation of the authorities is
stricter in this area than in others, such as in the vicinity of uranium mines. However, the
radiological impact in the area, due to measurements of the concentration of radon gas
both outside and inside the nearby homes, is very limited, with values below 50 Bq/m3

found in the latter and below 20 Bq/m3 in the outside air.
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Figure 4. Location and distribution of measuring points.

In order to minimize the effects due to temperature and rainfall on the measurement
of the radon flux, all the measurements have been carried out in the same period of the
year (June or July).

For all years, the evolution of the averages, arithmetic and geometric values, along
with their corresponding standard deviations are shown in Figure 5, showing a typical log
of normal distribution. As can be seen, in no case has the average value, established by
the Nuclear Safety Council, of 2666 Bq m−2 h−1 been exceeded, which confirms the good
design of the cover layers. The pile was covered with a multilayer system to minimize the
effects of erosion, infiltration, and radon control. From top to bottom, the multilayer system
consists of an erosion barrier of mixed gravel and soil (50 mm); vegetation growths and
desiccation protection (500 mm); filter of clean sand (250 mm); coarse rock (300 mm); and
silty clay as an infiltration barrier and radon control (600 mm).
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Figure 5. Results of the exhalation from 2001 to 2022.

In Table 1, we include the radon flux values year by year. During the first eight years,
the average radon flux was 322 Bq m−2 h−1. Over the next five years, this value was
reduced to 227 Bq m−2 h−1 by optimization of the mill conditions. Unfortunately, a surge
in the population of rabbits in the mill, around 2014, led to an increase in holes and as
a consequence, the radon flux rose to its highest value, around 360 Bq m−2 h−1. After
removing the holes, the radon flux was reduced again to approximately 200 Bq m−2 h−1.
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Table 1. Results of minimum value, maximum value, averages (arithmetic and geometric), and their
standard deviations (SD) from 2001 to 2022.

Year
Minimum

Value
Bq·m−2·h−1

Maximum
Value

Bq·m−2·h−1

Arithmetic
Average

Bq·m−2·h−1

SD
Bq·m−2·h−1

Geometric
Average

Bq·m−2·h−1

SD
Bq·m−2·h−1

2001 43 1157 337 443 182 3.2

2002 45 1486 354 724 143 3.9

2003 42 1361 376 831 118 3.7

2004 43 1422 288 370 143 2.8

2005 49 1395 353 461 216 2.7

2006 41 1620 290 420 168 2.7

2007 44 1348 255 306 151 3.0

2008 47 1555 325 274 226 2.5

2009 49 997 249 241 161 2.6

2010 43 883 221 167 162 2.1

2011 43 1475 232 231 178 2.1

2012 46 1093 228 198 166 2.2

2013 49 1448 205 90 195 1.6

2014 43 1360 344 294 261 2.1

2015 45 1612 371 351 278 2.1

2016 46 1332 172 193 128 2.1

2017 46 1514 256 290 178 2.2

2018 42 990 199 168 147 2.2

2019 42 765 151 116 119 2.0

2020 44 594 183 127 146 2.0

2022 45 1037 215 208 149 2.4

In order to obtain data related to the radon flux in undisturbed soils around the
facility, we carried out an annual sampling in its vicinity using the same procedure. The
average value referred to 20 years of measurements and was 42 Bq m−2 h−1 with a standard
deviation of 10 Bq m−2 h−1.

4. Discussion and Conclusions

Finally, we can conclude that the inclusion of the systematic measurement of the radon
flux in restored areas with a high radium content, especially uranium mines, becomes
a control parameter of the goodness of the design of the different coverage layers as
well as of their temporal stability. This affirmation will be correct as long as the number
of measurements is representative of the land surface to be controlled; this aspect has
not always been taken into account in the development of similar studies [24,25]. These
measurements also allow us to take corrective measures to keep the radon exhalation within
the legal limits established in the restoration file. In our case of Andújar, the average values
found are on average seven times lower than the legal limit, showing the optimization
carried out in the drafting of the project. Additionally, as occurred in the first years of
closure (2001–2007), the measurements allowed corrective measures to be taken to optimize
the radon exhalation and therefore the last layer of coverage was increased with respect to
the initial design until stabilization was achieved.
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