
Citation: Wingate, B.A.; Rosemeier, J.;

Haut, T. Mean Flow from Phase

Averages in the 2D Boussinesq

Equations. Atmosphere 2023, 14, 1523.

https://doi.org/10.3390/

atmos14101523

Academic Editors: Boris Galperin,

Annick Pouquet and Peter Sullivan

Received: 20 August 2023

Revised: 13 September 2023

Accepted: 20 September 2023

Published: 30 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Mean Flow from Phase Averages in the 2D Boussinesq Equations
Beth A. Wingate 1,*, Juliane Rosemeier 1 and Terry Haut 2

1 Department of Mathematics and Statistics, University of Exeter, Exeter EX4 4QF, UK; j.rosemeier@exeter.ac.uk
2 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; haut3@llnl.gov
* Correspondence: b.wingate@exeter.ac.uk

Abstract: The atmosphere and ocean are described by highly oscillatory PDEs that challenge both
our understanding of their dynamics and their numerical approximation. This paper presents
a preliminary numerical study of one type of phase averaging applied to mean flows in the 2D
Boussinesq equations that also has application to numerical methods. The phase averaging technique,
well-known in dynamical systems theory, relies on a mapping using the exponential operator, and
then an averaging over the phase. The exponential operator has connections to the Craya–Herring
basis pioneered by Jack Herring to study the fluid dynamics of oscillatory, nonlinear fluid dynamics.
In this paper, we perform numerical experiments to study the effect of this averaging technique on
the time evolution of the solution. We explore its potential as a definition for mean flows. We also
show that, as expected from theory, the phase-averaging method can reduce the magnitude of the
time rate of change in the PDEs, making them potentially suitable for time stepping methods.

Keywords: mean flow formulation; 2D Boussinesq equations; exponential of linear operator; averaging

1. Introduction

The mean flow in the present study is a time-average of a system of equations that
has been mapped using the exponential operator. The idea is that oscillatory dynamics,
once they are mapped into a new ‘moving frame’, can be composed of a slowly varying
mean and fast departures from that mean. This idea has a long history in studying the
time evolution of the dynamics and in the numerical approximation of oscillatory ODEs
and PDEs, which we discuss in the next paragraph. The technique explored in this paper
has also been proposed as a way of time stepping that uses a serial prediction step and a
time-parallel correction step. The time stepping technique shows promise but has only
been applied to ODEs and 1D PDEs. In this paper, we use the mapping and averaging
technique as a diagnostic in numerical experiments to (1) study the impact of this mapping
and averaging on the time-evolution of the 2D Boussinesq equations, (2) to provide an
initial assessment of whether it might be a useful definition of a mean flow, and (3) to assess
its potential usefulness in predictor–corrector-type numerical methods.

The technique of mapping and averaging, now a classic method in dynamical systems
analysis, is discussed and developed in [1], where they also give a brief history of the
averaging method since the lectures of Jacobi, which date to 1842. One of their key points is
that the oscillatory system of equations needs to be mapped into their ‘standard form’. This
mapping is equivalent to our use of the exponential map in this paper. Further, the eigen-
basis used for the exponential map in this paper has a relationship to the Craya–Herring
basis pioneered by Jack Herring in [2]. Furthermore, in several papers, including [3,4],
Herring and his collaborators used this basis as a means to understand the dynamics of
waves relative to vortical aspects of the flow. In this paper we explore decompositions of
this nature, but for constructing phase averages of the nonlinear dynamics. Ref. [1] gives a
demonstration (page 28) of why straightforward averaging without mapping, which they
call naive averaging, gives approximation errors. The technique in this paper also plays a
role in the theory of fast singular limits [5–10]. The mapping concept without averaging
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has also been useful in the study of geophysical fluid dynamics, e.g., [11–13], to study
nonlinear resonances.

Another way of understanding this technique, for equations in the form of (1), is to
think of it as nonlinear phase averaging because, once the PDE has been mapped using
the exponential operator (2), all the phase information arises in the nonlinear term (see
Equation (3)). Recent papers that explicitly discuss phase averaging in geophysical fluid
dynamics include [14–16].

From a PDEs point of view, the averaging technique in this paper is related to the
concept of ‘cancellation of oscillations’ [7,10] to treat hyperbolic PDEs. The authors of [8]
refer to this technique and treat geophysical applications, that is, the Rotating Boussinesq
Equations and the Rotating Shallow Water Equations. In this context, an exponential
operator and infinite time averaging leads to limiting equations for the ‘slow’dynamics.
This type of averaging was further developed in [17,18] for geophysical applications.
In [18,19], the analysis was extended to the case when more than one fast time scale
is present.

The present study, like those mentioned in the previous paragraph, uses an exponential
operator as a mapping. We emphasize that using the exponential operator mitigates
the linear oscillations in the problem, but the oscillations are not eliminated—there are
oscillations that develop from the nonlinear terms. Therefore, as an additional ingredient,
we evaluate an integral with the scaled kernel functionK, that is, we compute a convolution.
It is this technique that potentially can describe general time-mean flows and that can
potentially be used in numerical time-stepping methods. It differs from the technique used
in the study of fast singular limits in that the averaging is over a finite window and uses a
smooth integration kernel over just a few oscillations, rather than an infinite time average.

Numerically, the classical method of averaging is described in [1]. In geophysical fluid
dynamics applications, a pioneering paper [20] directly applies the method of [5,6] to the
shallow water equations; they found that the method worked well when the oscillations
were fast, but became less accurate as the frequency of the oscillations decreased. The phase-
averaged mean flows studied in this paper use a technique proposed by [21–23] as a coarse
time stepping algorithm for a numerical time-stepping method. This technique has also
been used for time-stepping on the sphere [16].

The oscillatory equations we study in this paper are the 2D Boussinesq equations
given in (6)–(8); before we discuss those, we first describe the phase-averaging method we
use in this paper. We therefore study the more general form of oscillatory equations:

du
dt

+
1
ε
Lu = N (u). (1)

The linear operator L has purely imaginary eigenvalues and makes the problems stiff.
Additionally, the non-linearity N is bi-linear in fluid applications. One possibility is to
eliminate the linear term in the time evolution problem (1) by using the transformation

w(t) = exp
(L

ε
t
)

u(t). (2)

This leads to the following problem:

dw
dt

= exp
(L

ε
t
)
N
(

exp
(
−L

ε
t
)

w
)

. (3)

Applying averaging to further mitigate the oscillatory stiffness leads to a new problem:

dw̃
dt

=
1
η

∫ η/2

−η/2
K
(

s
η

)
exp

(L
ε
(s + t)

)
N
(

exp
(
−L

ε
(s + t)

)
w̃(t)

)
ds. (4)
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Solving Equation (4) can be very useful for numerical time-stepping, such as in the
Parareal method, because the time rate-of-change of the unknowns becomes less oscillatory.
This path was extensively studied in [21–23].

From a fluid dynamics point of view, this type of equations may be interpreted as
the mean flow. In the present study, we want to step in a new, less-explored direction by
applying the transformation and averaging to a given solution u(t) of problem (1) as a
diagnostic tool and investigating if such formulations provide a suitable formulation for
mean flows. In this case, we evaluate

w(t) =
1
η

∫ η/2

−η/2
K
(

s
η

)
w(t + s)ds, (5)

where w is given by Relation (2). The difference between Equations (4) and (5) is that, in
the first equation, the averaging procedure is applied to the right-hand side of a differential
equation, whereas, in the second equation, it is applied to a given solution of that differential
equation. Thus, in the first case, averaging is applied to make a time evolution problem
more well-behaved for numerical computations; in the second case, it serves to extract
information from data. The averaging is discussed in more detail in Section 2.3.

Already, in [8], it was suggested to use exponential mapping for the formulation
of the mean flow for geophysical fluid dynamics applications. However, the approach
described there differs from the ideas in the present expositions in the following ways.
First, the exponential in this exposition is applied to data representing a solution to the
Boussinesq equations. We do not use it to derive analytical expressions for leading order
solutions when the method of multiple scales is applied. Second, for the formulation
of the mean flow, the authors of [8] proposed to consider only modes which satisfy the
condition for resonant triads. In the present exposition, this constraint is relaxed and not
only resonant modes, but also other slow modes are admitted for the formulation of the
mean flow.

In the present study, the focus is the 2D Boussinesq equations. In particular, we study
the case of an initial buoyancy distribution that decays with time:

The Boussinesq equations are

ut + uux + wuz +
∂

∂x

(
∆−1

(
−∇ · (u · ∇u)− N

∂ρ′

∂z

))
= ν∆u, (6)

wt + uwx + wwz +
∂

∂z

(
∆−1

(
−∇ · (u · ∇u)− N

∂ρ′

∂z

))
+ N ρ′ = ν∆w, (7)

∂ρ′

∂t
+ uρ′x + wρ′z − N w = κ∆ρ′, (8)

where the the Brunt–Väisälä frequency is N =
√

bg
ρ0

. We assume periodic boundary
conditions with the vector of unknowns u = (v, ρ′). The divergence constraint is given by
div v = 0, where v = (u, w)T . The pressure obeys a Poisson equation (see [24]). We study
the averaging technique for oscillating and decaying dynamics.

In [8], the following identity was derived for a leading order solution of the rotating
Boussinesq equations:

u0 = e−τLu, (9)

where u satisfies an averaged equation, which contains the non-linearity and is given by

du
dt

= − lim
τ→∞

1
τ

∫ τ

0
esLB(esLu(t), esLu(t))ds. (10)

Note that we take τ → ∞ in Equation (10). The integrand in Equation (10) can be
represented using a Fourier decomposition in space. Applying the Riemann–Lebesque
lemma, one sees that only the modes which form direct resonances are retained by the
intregration process. However, we relax this constraint and allow some slow oscillations
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too. This provides a new tool to define mean flows, where we allow selected oscillations to
be in the formulation. The new averaging procedure, which differs from the one given by
Equation (10), is of central significance to decide which oscillations remain in the solution
and is explained in more detail in Section 2.3.

In the remainder of the article, we describe the details of the diagnostic we use to
compute the time-mean flow. In the results section, we (1) present preliminary numerical
results that show the behavior of the mapping and averaging on the time-evolution of the
buoyancy, (2) characterize the mean flow that results from the mapping and averaging,
including exploring the effect of changing the averaging window, and (3) compute the time
rate-of-change of the buoyancy, to assess whether it can mitigate the oscillatory stiffness for
use in numerical methods.

2. Methods

We compute a temporal mean flow for solutions to the Boussinesq Equations. For that,
the following procedure is pursued. First, a solution to the Boussinesq Equations, denoted
as u, is computed. Particulars can be found in Section 2.1. Then, the exponential of the linear
operator is applied to the solution and we obtain the mapped solution w. The computation
of the exponential is described in Section 2.2 and Appendix A. In the next step, the mapped
solution is averaged according to Equation (5). Thus, we compute w. The mapped solution
w can be represented in terms of spatial Fourier modes. When applying the averaging from
Equation (5), we can choose, which modes shall be averaged or remain in the solution,
by adjusting η, denoted as the averaging window. If the period of a mode is larger than η,
the mode will still be present in the solution—see Section 2.3 for details. In the last step, we
apply the inverse of the transformation (2).

Performing the previously described procedure, we create several data sets:

1. The unchanged data from the numerical solution of the 2D Boussinesq equations u;
2. The data after applying the transformation, yielding the mapped solution w;
3. The data after applying the transformation and the averaging procedure, which give

the averaged solution w;
4. The data after applying the inverse transformation u.

The above items are illustrated in Figure 1. Comparison of the data sets helps to assess
how well the proposed procedure is suited to describe mean flows and potentially to be
used for time-stepping methods.

solution to Boussinesq
equations in physical space u

transformed solution to
Boussinesq equations w

transformed and
averaged solution to

Boussinesq equations w̄

mean flow for solution to
Boussinesq equations
in physical space ū

e
L
ϵ t

averaging

e−
L
ϵ t

Figure 1. The figure illustrates how the data sets for the mean flow representation are created.
The gray boxes represent the data sets. The arrows show the operations which are applied to the
data sets.
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2.1. Numerical Computation of Solutions to the Boussinesq Equations

We compute numerical solutions using the Dedalus software [25]. We use a Fourier
discretization in space in a 2π periodic 2D domain and 3rd-order 4-stage Runge–Kutta
Method (RK433) time-stepper. For all the simulations, the time step is ∆t = 0.001, the spatial
grid is (Nx, Nz) with Nx = Nz = 128, the viscosity is ν = 0.0001, and the dissipation for
buoyancy is κ = 0.0001. For the initial condition, u(0, x) = w(0, x) = 0, while the initial
buoyancy is

ρ′(0, x) =
√

ε f sin(3z)sin(3x), (11)

with ε f = 25. The energy oscillates between kinetic and potential energy in time while
it decays. The higher the value of N, the more frequent the oscillations. Figure 2 shows
an example of the dynamics in decay as it oscillates between kinetic and potential en-
ergy. At some time after the simulation begins, higher frequency oscillations are excited,
providing a challenge for studying oscillatory mean flows.

In this study, we use 3 different values of N: N = 1, 10, and 20. We define the Froude
number to be a function of the character of the initial condition, using similar ideas to [12],
who studied the forced case

Fr = 2
(ε f k2

f )
1
3

N
, (12)

which gives us equivalent Froude numbers of Fr = 10.6, 1.06, and 0.53.
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Figure 2. The total, kinetic, and potential energy (black lines) compared to their mean values (blue
lines). The panel on the left shows the case for N = 10 and η = 0 .1. The panel on the right shows
the case for less frequent oscillations when N = 1 and η = 0.2. Solid lines are the total energy, dotted
lines are the kinetic energy, and dashed lines are the potential energy. The solutions oscillate between
kinetic and potential energy as they decay. The principal effect of the averaging window on the
mapped and averaged solution is to track the frequency of the energetic exchanges between kinetic
and potential energy and to reduce the magnitude of the oscillations. The case N = 10 on the left
suggests that the phase-averaged mean flow shows an oscillatory total energy.

2.2. Fourier Analysis and the Computation of the Exponential of L with the Divergence Constraint

For the implementation of the exponential of the linear operator, we apply a Fourier
expansion in space to the solutions of the Boussinesq equations, i.e., we have

u(t, x) =
N

∑
k=−N

û(t)eik·x. (13)
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Each mode eik·x is applied to the linear operator, which is given by

Lu =


− ∂

∂x

(
∆−1N ∂ρ′

∂z

)
− ∂

∂z

(
∆−1Nρ′

)
+ Nρ′

−Nw.

 (14)

Consequently, a 3× 3 matrix is obtained for each mode. Then, the matrix exponentials
for the different modes are computed. To compute the exponential of the linear operator, it
is sufficient to know the exponential for each mode eik·x. Due to linearity, we have

e
L
ε tu(t, x) =

N

∑
k=−N

e
L
ε teik·xû(t) =

N

∑
k=−N

Bkû(t)eik·x, (15)

where Bkeik·x = e
L
ε teik·x. Applying the exponential, we obtain w, given by (2).

Here, we briefly describe the computation of the matrix exponential. Further details
of the computations can be found in Appendix A. The horizontal wave number is denoted
as k1. With k3, we refer to the vertical wave number. First, the eigenvalues are computed.
Then, the corresponding eigenvectors are identified. With the eigenvectors, we know the
transformation matrix Tk and can also compute its inverse T−1

k . In the computations, we
distinguish between four different cases (first: k1 = 0, k3 = 0; second: k1 = 0, k3 6= 0; third:
k1 6= 0, k3 = 0; fourth: k1 6= 0, k3 6= 0). The matrices are diagonalizable, except for the
case k1 = 0, k3 6= 0. For that case, we compute the Jordan normal form. To compute the
exponential of the matrix Bk, where Bk comes from the spatial discretization of the linear
operator and depends on the wave numbers, we use the identity exp(Bk) = Tk exp(Mk)T−1

k .
In the relation, the matrix Mk is the diagonal matrix or the matrix in Jordan normal form
with the computed eigenvalues. Finally, we enforce the divergence constraint.

2.3. Averaging with a Convolution Integral

A transformed solution of the Boussinesq equations w is convolved by applying a
scaled filter function K:

K
(

s
η

)
=

1
K0

exp
(

1
(s/η − 1/2)(s/η + 1/2)

)
, (16)

where the constant K0 is chosen so that integrating the kernal function along the real
line gives 1. We scale the filter function by choosing an averaging window η. The idea
behind the choice of the averaging window η is that it must mitigate the fast oscillations
while leaving the coarser behavior of the solution unaffected. The bigger the averaging
window, the more oscillations are mitigated. The smaller the averaging window, the more
oscillations are resolved. Temporal averaging was also investigated in other contexts, like
ordinary differential equations [1], heterogeneous multiscale methods [26,27], and PDE
analysis [8].

To further illustrate the averaging, let us suppose that a slow function is superimposed
by a fast periodic function with zero mean. When we compute the integral of the fast
function over an interval of length η, assuming that η is as large as a few times the period
of the fast periodic function, the positive and negative contributions cancel each other.
However, the integrand is weighted by the scaled kernel function K with compact support,
which decays fast close to the boundary of the compact support. In addition, we do
not assume that the length of the exact period is known. Thus, in the general case, the
oscillations are not exactly canceled, but rather they are mitigated, as can be seen in Figure 3.
Technical details of the averaging can be found in [27] in Lemma 2.2.
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1

0
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Slow component
unaveraged data
averaged data
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unaveraged data
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Figure 3. This figure demonstrates the effect of the averaging window on oscillatory functions. In the
left panel, the averaging window η is smaller than the period of the oscillations. The data are barely
altered. In the right panel, the averaging window η is larger than the period of the oscillations.
Therefore, the oscillations are damped and the mean value is between the peaks and valleys of
the signal.

3. Results and Discussion

We begin with a description of the time evolution of the dynamics (unaveraged) for
the specific case studied in this work. In all cases, the initial condition is given by (11) and
the velocity components are zero initially.

Figure 2 shows the evolution of total, potential, and kinetic energy for N = 10 on
the left and N = 1 on the right. The data are shown in black lines for the unaveraged
case with total energy: solid, kinetic energy: dotted, and potential energy: dashed. These
graphs show that the dynamics decay as it evolves, and that the case with the larger Brunt–
Väisälä frequency has more frequent energy exchanges between potential and kinetic
energy compared to the N = 1 case.

These more frequent energy exchanges in potential and kinetic energy can also be seen
by examining the time history of u[3](xp, zp, t) = ρ′(xp, zp, t) at a single, randomly chosen
point (xp, zp) = ( 2π 60

128 , 2π 60
128 ). Other choices of the location of the point show similar

results. This will be explored in the next section where we examine vertical slices, which
show the time evolution for all the values of z at a fixed xp. Compare the solid black line in
the upper right panel of Figure 4 for N = 10 to the same style of line in Figure 4 for the
N = 1 data. For the N = 10 case, the solution has more frequent oscillations than the N = 1
case. For both values of N, the solution breaks up into higher oscillations as the solution
decays. This feature is used to illustrate the effect of the averaging in the following sections.

Finally, before we go on to study the effect of the averaging, we look at the time
evolution of the single point data in the mapped domain w[3](xp, zp, t). These data are
computed by applying the matrix exponential, as in (2), to the vector u. This has the effect
of showing what the time evolution of the solution looks like in the moving frame and
allows us to observe the effect of the ‘phase scrambling’ in the nonlinear term, as in (3).
The evolution in the moving frame is shown in the solid black line in the left panels of
Figure 4. For N = 20 and N = 10, there are more frequent oscillations in the moving
frame than in the ordinary frame shown in the right panel. In contrast, for the N = 1 case,
the difference between the solution in the moving frame w and the ordinary frame u is not
as different as the other cases, which is because the moving frame is slow for N = 1.

In the next three subsections, we examine the effect of the mapping and averaging on
these oscillatory, decaying solutions.
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Figure 4. Time series at a single point for the 3rd component of each vector field. The top row is
for N = 20, middle for N = 10, and bottom for N = 1. Panels on the left show the time evolution
of the data in the moving frame, while, on the right, they depict the evolution in the ordinary
frame. Within each graph, colored lines showing the effect of changing the averaging window. As N
decreases, there is less difference between the dynamics in the moving frame and the ordinary frame,
an effect of the moving frame oscillating at a slower rate over the time scale of the simulation. There
are more oscillations in the moving frame, where the averaging takes place, than in the ordinary frame.

3.1. Impact of Mapping and Averaging

We now describe the impact of the mapping and averaging technique on the time
evolution of the ρ′ dynamics by examining time series for three different values of N in
the context of the four data sets (u, w, w, u) described in the second paragraph of Section 2.
Because we focus on ρ′, when u, w, w, u appear in a figure, these are the third component
of the vector field.

Figure 4 presents the time series at a single point, with each row of the figure corre-
sponding to a different value of N. In all three rows, the left panel shows the time evolution
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in the moving frame w and its average w. In contrast, the right panel shows the ordinary
variable u and the average in the moving frame mapped back to the ordinary frame u.
The significance of the left panels is that they show the result of how the oscillations are
being ‘scrambled’ and evolved by the nonlinear term in (2) as the solution undergoes
decay from its initial condition. A first observation is that, for the two higher values of N
studied, the oscillations in w, the moving frame variables, are faster than those observed in
u. For some parameter regimes in 2D Boussinesq dynamics, one might expect the dynamics
of w to be of lower frequency than u, not higher, so further studies of the case with forcing,
where low frequency buoyancy layers are formed, could be interesting (see [12]).

A second observation is that, for the higher values of N at later times, when the faster
oscillations appear, the averaging from the nonlinear phase scrambler in the moving frame,
w, tracks the mean value, as expected. This is in contrast to the panel on the right where,
for example, for N = 20 in the range 3.5 < t < 4, when the average is mapped back to
the ordinary frame, the average does not track the mean value. This is also as expected
because, in this domain, the average is modulated by the oscillations. As mentioned in
the introduction, ref. [1] gives an example of why straightforward time averages, in the
unmapped equations, do not give accurate results. The comparison that we just described,
where the modulated mean, u, does not necessarily track the mean of u, is a characteristic
feature of averages taken in the modulated domain. We discuss this more in the next section
where we consider the mean-flow possibilities.

Finally, we make a few observations about the effect of the averaging window η on the
mean of the time series. In Figure 4, on the left panels, the effect of varying the averaging
window is shown. The longer the averaging window, the more the amplitudes are damped.
At early times, for N = 20, the main effect is to reduce the magnitude of the oscillations,
but, at later times, the red line, for which a small averaging window η = 0.05 was used,
shows little difference from the unaveraged case. However, when the largest averaging
window is applied, for η = 0.2, the blue line for 3 < t < 4 shows that the mapping and
averaging tracks the mean of the oscillations. This similar behavior can be seen in the
unmapped domain on the right, where, as pointed out earlier, the blue line, with the larger
averaging window, is slower, but does not follow the mean of the oscillations. For the
middle panel, when N = 10, we show three different averaging window lengths (η = 0.05,
0.1, and 0.2). For the largest averaging window (blue line), the mean tracks the mean of
the oscillations. This is true in the right panel as well. Finally, for the lowest value of N,
N = 1, the choice of averaging window has a similar effect, except that, at early times,
it does not have that much of an effect, while, at later times, when the faster oscillations
begin, it appears to track through the mean value.

Figures 5 and 6 show the time evolution of four data sets for every point in the z plane
for a fixed x = xp, for N = 10 and N = 1, respectively. Rather than grouping w and w
together and u and u together, as in the previous paragraphs, this time we show a panel
for each data set in the same counterclockwise order as shown in Figure 1. The upper left
graph shows the time evolution of u, the lower left shows the time evolution in the moving
frame w, and the lower right panel shows the average in the moving frame w. For N = 10,
u oscillates between positive and negative values of the buoyancy and then we see the
creation of higher frequency waves as the solution decays. We observe that, even when
the higher frequency oscillations appear, larger scale (in time) patterns can also be seen.
The lower right panel shows the effect of averaging in the moving frame, where the larger
structures in time now look smoother. For the case when N = 1, the oscillatory pattern
between positive and negative values are less frequent, since N is smaller. Comparing the
two cases N = 10 and N = 1, the graphs show that N = 1 has an overall large-scale (in
time) pattern of oscillations, whereas the N = 10 case has frequent temporal oscillations.
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Figure 5. Time evolution of the 3rd component of the 4 data sets described in Figure 1 for N = 10.
The top left panel shows u in the ordinary frame. The oscillatory pattern here is also seen in the
potential energy shown in Figure 2. The large-scale pattern of oscillations between positive and
negative values can be seen even as higher frequency waves appear. There are approximately 2 times
more oscillations in w than in the ordinary domain. The appearance of the waves is more noticeable
starting at approximately t = 1. The lower right panel shows the time evolution of the average in
the moving frame w, which smooths the higher frequency oscillations. Finally, mapping back to the
ordinary frame, the upper right panel shows the result of the mapping and averaging on the variables
in the ordinary frame, u.

Figure 6. Time evolution of the 3rd component of the 4 data sets described in Figure 1 for N = 1.
The difference between the ordinary frame (top left panel) and mapped frame (bottom left frame) is
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less pronounced than the corresponding frames for N = 10 (Figure 5) because the oscillations in the
exponential operator for N = 1 are less frequent. The higher frequencies that appear later in the
simulation are smoothed by the averaging, with the result in the top right panel, which shows the
result of the mapping and averaging in the ordinary domain u.

Finally, we examine the effect of the mapping and averaging on the energy. Figure 2
shows the effect of the averaging on the kinetic, potential, and total energy for the u and u
data sets for N = 10 on the left and N = 1 on the right. For N = 10, the mean tracks the
oscillation between kinetic and potential, and shows an oscillation in the overall mean flow,
which is discussed a bit more in the next section. For N = 1, the mean total energy decays
faster than total energy, due to the average over the oscillations.

3.2. Definition of a Mean Flow

For a preliminary assessment of whether the mapping and averaging procedure could
be a suitable definition of a mean flow for the 2D Boussinesq equations, we break the
unknowns into its mean and fluctuation:

u = u + u′, (17)

and in the moving frame:
w = w + w′. (18)

Integration over the oscillations would give us zero as positive and negative compo-
nents cancel each other. From a mean flow, we would expect that only the mean behavior
without the departures is retained.

Revisiting Figure 4, we make the following two observations: (1) The fastest varia-
tions in the solution are not visible anymore; (2) The amplitudes are damped when the
solutions have steep gradients. Therefore, the component which is not retained contains
fast oscillations and has positive and negative components.

Figure 7 shows the point-wise departure from the mean in the moving frame, w′,
for three different averaging windows. The main variations from the mean occurs when the
filtering window is larger, as we expect, and also where there are higher oscillations at later
times in the simulation. We also observe that, once the higher frequency oscillations have
begun, the variation from the mean is also nearly periodic. Variation from the mean for the
ordinary frame u′ (not shown) shows a different detailed pattern with a similar periodicity.

Additionally, the choice of the averaging window allows us to determine which
oscillations should be filtered and how strong the damping should be. For large averaging
windows, more oscillations are filtered and the damping is stronger than for small averaging
windows. This means that the definitions of the mean flow and the departures from the
mean depend on the choice of the length of the averaging window. In both the moving
frame and the ordinary frame, periodic patterns can be seen in the deviation from the mean.

Finally, we point out that total energy in Figure 2 for N = 10 shows an oscillation in
the mean and that the the distance from the mean to the instantaneous energy decay is the
energy from the variations from the mean. This oscillatory pattern in the mean flow is a
potential area to explore in further work.

Our observation in the last section, that the mapping and averaging tracks the mean
in the moving frame but not in the ordinary frame, will also be interesting in the context
of fast singular limits, where it is expected that low-frequency structures will appear over
time, rather than only high frequencies. To obtain a more complete understanding a wider
range of behaviors, such as the creation of low frequencies, would be useful.



Atmosphere 2023, 14, 1523 12 of 16

Figure 7. This figure shows the departure from the mean for three different averaging windows,
η, for the case when N = 10, in the moving frame. As the averaging window, η, is increased, the
excursions from the mean flow also increase. The excursions also show a periodic pattern.

3.3. Potential for Use in Numerical Methods

As mentioned in the introduction, the technique explored in this paper has been
proposed for use as a prediction step for time-parallel predictor–corrector methods used to
solve PDEs of type (1). An error bound for a predictor-step algorithm using this method
can be found in [22] and does not require that ε be small. As a part of the error estimate,
the error bound for the approximation of the time rate of change of the unknowns depends
on the averaging window, η. We therefore are interested in whether the time rate of change
of the variable examined in this paper has this property. To study this, we apply a first-order
finite difference method to the moving frame w and w data sets. Figure 8 shows the time
rate of change for the N = 10 case depicted in the time series of Figure 4. This shows that
the nonlinear averaging process reduces the amplitude and frequency of the oscillations,
making it possible that this method could provide a good predictor for numerical methods.
However, it is clear that the filter width matters, in line with the error estimate, and that it
may need to be dynamically adjusted. For example, the solid blue line in Figure 8 shows
that it has fewer large oscillations than the unaveraged case, but whether this is adequate
to take larger time steps is unclear.

We have also pointed out, in previous sections, that, for the simulations in this study,
the actual mean tracks w rather than u. It would be of interest to explore this more fully in
future work.
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Figure 8. This figure shows the time rate of change of the 3rd component of w and w. The wider the
value of η, the smaller the amplitude of the time rate of change, and, in some cases, the less frequent
the oscillations. While this could be useful for taking large time steps, the degree of regularity
depends strongly on the value of η.

4. Conclusions

In this work, we have presented numerical studies of the oscillating and decaying
2D Bousinnesq equations and developed a diagnostics to study a nonlinear averaging
procedure. The goal was to present a preliminary study of the impact of the mapping
and averaging technique by using it as a diagnostic, then assess whether it could make
a good definition of a mean flow and potentially help mitigate oscillatory stiffness in
numerical methods.

We made the following observations:

1. The nonlinear averaging procedure depends strongly on the value of η, but could
potentially provide a reasonable representation of the time-mean of the solutions,
whether or not N is large. Further, the average ‘modulates’ the waves, as in (2).
This has the effect that the mean u depends on how fast the oscillations are in the
exponential operator (2), which could be interesting for further studies. Further work
is needed to assess whether this would be a good definition of a mean flow in fluid
dynamics. For example, it would be interesting to examine a case that admits a
low-frequency solution such as the 2D Boussinesq equations with forcing, as in [12]
and examples shown in [8];

2. We also observed that the method could potentially be used to take larger time steps,
as has been shown in simple examples [21], and that the ability to do so critically
depends on the value of η.
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Appendix A. Computational Details for the Exponential

Appendix A.1. The Eigenvalues and Eigenvectors

First case: k1 = 0, k3 = 0,
eigenvalues: ω1 = 0, ω2 = −iN, ω3 = iN

eigenvectors: v1 =

1
0
0

 v2 = 1√
2

0
i
1

 v3 = 1√
2

 0
−i
1


Second case: k1 = 0, k3 6= 0,
eigenvalues: ω1 = ω2 = ω3 = 0

eigenvectors: v1 =

1
0
0

 v2 =

0
0
1


generalized eigenvector: ṽ =

 0
− 1

N
0


Third case: k1 6= 0, k3 = 0,
In this case, we have the same eigenvalues and eigenvectors as in the the first case.
Fourth case: k1 6= 0, k3 6= 0,
eigenvalues: ω1 = 0, ω2 = iN|k1|/‖k‖, ω3 = −iN|k1|/‖k‖

eigenvectors: v1 =

1
0
0

 v2 = 1√
2

i k1k3
|k1|‖k‖
−i |k1|
‖k‖
1

 v3 = 1√
2

−i k1k3
|k1|‖k‖

i |k1|
‖k‖
1


Appendix A.2. Diagonal Matrix or Jordan Normal Form

First case: k1 = 0, k3 = 0,

D =

0 0 0
0 −iN 0
0 0 iN


Second case: k1 = 0, k3 6= 0,

J =

0 0 0
0 0 1
0 0 0


Third case: k1 6= 0, k3 = 0,
In this case, we have the diagonal matrix as in the the first case.
Fourth case: k1 6= 0, k3 6= 0,
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D =

0 0 0
0 iN |k1|

‖k‖ 0

0 0 −iN |k1|
‖k‖


Appendix A.3. Transformation Matrix and Inverse

First case: k1 = 0, k3 = 0,

T =

1 0 0
0 i√

2
− i√

2
0 1√

2
1√
2

, T−1 =

1 0 0
0 − i√

2
1√
2

0 i√
2

1√
2


Second case: k1 = 0, k3 6= 0,

T =

1 0 0
0 0 − 1

N
0 1 0

, T−1 =

1 0 0
0 0 1
0 −N 0


Third case: k1 6= 0, k3 = 0,
The transformation matrix and inverse are the same as in the the first case.
Fourth case: k1 6= 0, k3 6= 0,

T =


1 i√

2
k1k3
|k1|‖k‖ − i√

2
k1k3
|k1|‖k‖

0 − i√
2

k1
‖k‖

i√
2

k1
‖k‖

0 1√
2

1√
2

, T−1 = i ‖k‖k1


−i k1
‖k‖ −i k1k3

|k1|‖k‖ 0

0 1√
2

− i√
2

k1
‖k‖

0 − 1√
2

− i√
2

k1
‖k‖


Appendix A.4. The Matrices with Divergence Constraint

First case: k1 = 0, k3 = 0,1 0 0
0 1

2
(
e−iNt + eiNt) 1

2
(
e−iNt − eiNt)

0 1
2
(
−e−iNt + eiNt) 1

2
(
e−iNt + eiNt)


Second case: k1 = 0, k3 6= 0,0 0 0

0 1
2
(
e−iNt + eiNt) 1

2
(
e−iNt − eiNt)

0 1
2
(
−e−iNt + eiNt) 1

2
(
e−iNt + eiNt)


Third case: k1 6= 0, k3 = 0,1 0 0

0 0 0
0 0 1


Fourth case: k1 6= 0, k3 6= 0,

0 − k3
2k1

(
eiN k1

|k| t + e−iN k1
|k| t
)

i k3|k1|
2|k|k1

(
−eiN k1

|k| t + e−iN k1
|k| t
)

0 1
2

(
eiN k1

|k| t + e−iN k1
|k| t
)

−i |k1|
2|k|

(
−eiN k1

|k| t + e−iN k1
|k| t
)

0 i k
2k1

(
eiN k1

|k| t − e−iN k1
|k| t
)

1
2

(
eiN k1

|k| t + e−iN k1
|k| t
)
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