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Abstract: With the rapid development of intelligent systems, the application of genetic algorithms to
quickly and accurately determine the location of hazardous gas leaks is of great practical significance.
To further improve the convergence efficiency and stability of the inverse calculation, a new improved
genetic algorithm (NMGA) is designed on the basis of the improved genetic algorithm (MGA).
The adaptive crossover rate and mutation rate change with the evolution algebra to guide the
development trend of good gene genetics and change the genetic crossover ratio of parents and
children in the culler’s gene pool to avoid damaging the good group genes by introducing bad
genes. This study modified the adaptive crossover rate and mutation rate that change with the
evolutionary generations to guide the development of good gene inheritance. Meanwhile, this
study changed the genetic crossover ratio of parent and offspring in the elimination gene pool to
avoid the introduction of unfavorable genes and the destruction of excellent group genes. Through
the calculation simulation of the new improved genetic algorithm (NMGA) in Matlab and the
quantitative and qualitative comparative analysis with the MGA statistical results, it is shown that
NMGA can improve the slow convergence speed of MGA by reducing the number of iterations
on the premise of ensuring the stability of MGA and the accuracy of the inverse calculation. The
results indicated that the convergence rate and stability of NMGA greatly improved its convergence
efficiency, inverse calculation accuracy, and stability, thereby providing powerful decision-making
data for rapid emergency rescue work for sudden light gas leakage accidents.

Keywords: new modified genetic algorithm (NMGA); strong source inverse calculation; Matlab; slow
convergence; stability

1. Introduction

The leakage of toxic and harmful light gas is concealed, rapid, and hazardous. Once
leakage occurs, it can bring serious harm to people and the social ecological environment.
To reduce the harm of toxic and harmful light gas leakage, it is crucial to determine its
leakage location in time.

Currently, combining intelligent algorithms and environmental monitoring data with
atmospheric diffusion models to establish inverse calculation models is the main method to
lock the potential location of leakage [1]. The artificial intelligence optimization algorithm
does not need to know the mechanism of the leakage diffusion model nor need to calculate
the gradient information of the objective function. It has received extensive attention from
researchers in the inverse calculation of gas leakage sources. Thomson et al. [2] combined a
simulated annealing algorithm and random search algorithm to generate source intensity
and location. Zheng et al. [3] established the objective function by using the matching
degree of the simulation data and monitoring data, and they used the Gaussian model as
the gas diffusion model. The pattern search algorithm inversely calculates the strength
and location of the leak source in a timely and accurate manner. However, the parameter
settings of the simulated annealing algorithm, random search algorithm, and pattern search
algorithm are greatly affected by anthropic factors and have great randomness. To solve
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this problem, Zhang [4] combined the particle swarm algorithm with the simplex search
algorithm. Wang [5] and Zhang [6] combined the genetic algorithm and the simplex search
algorithm to inversely calculate the location and intensity of leakage sources. The results
show that the application of the hybrid simplex algorithm can effectively reduce the influ-
ence of the initial value selection on the stability of the optimal solution and improve the
calculation accuracy of the leakage source location and intensity. However, the combination
of different algorithms increases the complexity of the algorithm. Reich et al. [7] repeatedly
trained and optimized a three-layer forward feedback artificial neural network with the
pre-measured SO2 data to analyze the leakage source parameters in detail. However,
because the artificial neural network algorithm is affected by the amount of prior data and
its adaptability to the scene is limited, it is not suitable for the inverse calculation of the
emergency gas leakage position of the current situation. The essence of genetic algorithms
is to simulate the process of hybridization and reproduction between natural creatures,
continually generate new individuals, continually expand the population, and continually
expand the scope of optimization. Therefore, changing the crossover operator or mutation
operator to increase population diversity becomes the key to expanding the search ability
of the genetic algorithm. Fan Qingwu et al. [8] proposed a directed crossover genetic
operator, which can speed up the optimization speed to a certain extent by optimizing
and controlling the crossover position of cross offspring; Cui Shanshan [9] obtained two
improved genetic algorithms with high optimization accuracy by optimizing crossover
and mutation operators of genetic algorithm, but their convergence efficiency needs to be
further improved. Of course, in recent years, many experts and scholars have also carried
out optimization research on selection operators, but the optimization results have room
for further improvement to some extent. Haupt et al. [10] used the genetic algorithm to
directly optimize the observation and prediction data. They confirmed that the genetic
algorithm variational method is more accurate in inversely calculating the leakage source
location and source intensity. Zhang et al. [11] designed a new crossover criterion by
introducing the elimination gene pool. Meanwhile, they introduced heuristic information
with reference to the particle swarm algorithm. In addition, they strengthened the local
search in the convergence region to modify the genetic algorithm (Modified Genetic Algo-
rithm, MGA), which further improved the accuracy and efficiency of strong-source inverse
calculation. However, the crossover rate and mutation rate of the MGA algorithm adopted
fixed parameters of the standard genetic algorithm (SGA), which led to a slow convergence
speed and poor stability of the algorithm. Although the diversity of the population was
improved by adding the elimination gene pool, in the cross-inheritance stage, the ratio
(0.7:0.3) of the individual genes in the parent population and those in the elimination gene
pool population were adopted for cross inheritance. In this case, unfavorable genes were
introduced into the elimination gene pool, which polluted the excellent genes and led
to poor stability of the algorithm. In view of this, an improved genetic algorithm called
NMGA (New Modified Genetic Algorithm, NMGA) was designed and implemented. The
adaptive crossover rate and mutation rate were built in this study. In addition, the crossover
method of the individual genes in the parent population and those in the elimination gene
pool were changed in this study. This further improved the convergence efficiency and
stability of the MGA algorithm and provided effective emergency decision-making data
for hazardous and light gas leakage accident sites.

2. Improved Design of the Genetic Algorithm

A Genetic Algorithm [12] (GA) is a direct optimization algorithm based on the genetic
mechanism of “survival of the fittest”. The order of the genetic structure sequence is
individual evaluation, selection, crossover, and mutation.

2.1. Initial Population Generation

Many encoding methods can be used by a genetic algorithm to optimize function
problems [13]. Different encoding methods are used according to the difficulty in the
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implementation of specific problems. Among them, real number coding has high precision
and fast calculation efficiency [14], and it can avoid the Hamming cliff problem caused
by binary coding [15]. Hence, this study adopts real number coding to ensure calculation
accuracy. In this case, it is assumed that the value range of the gene value at the individual
Xk of the population is

[
Uk

min, Uk
max

]
. The random numbers pick ∼ U(0, 1) are generated.

Then, the gene X_k can be obtained by the linear interpolation shown in Formula (1).

Xk = Uk
min − pick ∗

(
Uk

max −Uk
min

)
(1)

2.2. Selection Operation

The genetic algorithm follows the principle of “survival of the fittest” in the selection
stage, and its selection results directly lead to the loss of genetic diversity in the popula-
tion [16,17]. The traditional roulette wheel selection operator selects individuals randomly,
which is not conducive to the development of population diversity, resulting in premature
and slow search speed of the algorithm [18]. To address this issue, this study adopted the
tournament selection operator [19] with better performance, which passes the best individ-
ual to the next generation while satisfying the diversity of the population individuals. The
specific operation steps of the tournament selection strategy are as follows:

(1) Determine the number of individuals selected each time (k).
(2) Randomly select k individuals from the population to form a group. Record the

position number of the current population. Store the individual number with the best
fitness value in the current group into the index array.

(3) Repeat step (2) until the number of individuals in the index population meets
the requirement.

(4) According to the number in index array, the selected individuals are stored in the
advantage gene pool (AGP). The numbered individuals that do not appear in the index
group are stored in the elimination gene pool (EGP).

2.3. Improvement of Crossover Operator

In reference [11], the addition of the elimination gene pool to MGA increased the
population diversity to a certain extent. However, in the cross-inheritance stage, the
inheritance was in a cross-proportional manner with a maternal inheritance rate of 0.7 and
an individual gene inheritance rate of 0.3 in the elimination gene pool population. This is
quite likely to introduce unfavorable genes in the elimination gene pool at the genetic stage
and destroy the excellent group genes, leading to poor stability of the algorithm. In this
study, to reduce the introduction of unfavorable genes in the elimination gene pool, the
individual genes in the parent population and the individual genes in the elimination gene
pool were cross-inherited at a ratio of 1:0.3 to improve the stability of MGA. The specific
operation steps are as follows:

(1) Randomly select i different individuals Pi (i = 1, 2) from the AGP pool in the
selection stage. Generate random numbers r1 ∼ U(0, 1). Record the crossover rate as
Pc and the maternal inheritance rate as β. If r1 < Pc, then Pi still performs crossover
operations following the traditional crossover method of GA. The way of crossover is
shown in Formula (2). If r1 ≥ Pc, then go to step (2).

Pnew_i = β ∗ Pi + (1− β) ∗ Pi (2)

(2) Record the current genetic generation as T. Set the upper limit of the optimal point
stagnation generation as SetMax. If T < SetMax, then go to step (3); otherwise, go to step (4).

(3) Randomly select i different individuals Vi (i = 1, 2) from the EGP pool in the
selection stage and perform crossover operations with Pi.

Pnew_i = Pi + β ∗ (Pi −Vi) (3)
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(4) Generate random numbers r2 ∼ U(0, 1). Record the following rate as γ. If r2 < γ,
the following process is performed; otherwise, the active search process is performed,
where Pbest is the current optimal individual, Pi is the current genetic individual, Pnew_i is
the updated individual, and f is a random number such that f ∼ N(0, 1).

Pnew_i =

{
Pbest + f ∗ (Pbest − Pi) r2 < γ
β ∗ Pi + (1− β) ∗ Pbest r2 > γ

(4)

(5) Repeat steps (1)–(4) until the number of individuals in the population meets
the requirement.

2.4. Mutation Operator

The mutation operator expands the search range of the algorithm by changing the
individual genes of the population to overcome the local convergence and cause the
algorithm to have global convergence [20,21]. To effectively retain excellent individuals
in the later stage of the algorithm, a non-uniform mutation operator [22] was adopted in
this study. It is assumed that the value range of the gene value at the mutation point Xk is[
Uk

min, Uk
max

]
. The random numbers rand ∼ U(0, 1) are generated. Then, the new gene X′k

is determined by Formula (5).

X′k =

 Xk + ∆
(

gen, Uk
max − Xk

)
rand < 0.5

Xk − ∆
(

gen, Xk −Uk
min

)
rand > 0.5

(5)

where u represents
(

Uk
max − Xk

)
and

(
Xk −Uk

min

)
; ∆(gen, u) represents a random number

that conforms to a non-uniform distribution within [0, u]. As the evolutionary generation
gen increases, ∆(gen, u) gradually approaches 0. The calculation of ∆(gen, u) is shown in
Formula (6):

∆(gen, u) = u
(

1− r(1−gen/maxgen)b)
(6)

where r conforms to a uniform distribution r ∼ U(0, 1); maxgen represents the maximum
evolved generation; and b is the system parameter (b = 2 in this study) that determines the
degree of dependence of random number perturbation on evolved generation gen.

2.5. Improvement of Crossover Rate and Mutation Rate

In the genetic algorithm, crossover and mutation operators [23] are the key factors
for algorithm evolution, convergence, and stability. The crossover operator improves the
global search ability of the genetic algorithm by realizing the genetic recombination among
different individuals of the population to obtain excellent individuals [24]. The mutation
operator expands the search range of the algorithm by changing the individual genes of the
population, and it overcomes the local convergence to cause the algorithm to have global
convergence. The value of the crossover rate directly affects the genetic diversity of the
population [25]. The greater the crossover rate, the richer the population diversity, and
the faster the generation of new individuals, but the greater the possibility that excellent
individuals are destroyed. On the contrary, for a small crossover rate, it is difficult to
generate new individuals, causing the search process to stagnate. The mutation rate
largely determines whether the global optimal solution can be searched. The smaller the
mutation rate is, the less likely it is to generate new individual structures, thus decreasing
the diversity of the population. If the mutation rate is too large, the genetic algorithm
can become a pure random search algorithm [26]. According to the Darwinian evolution
theory [27], the population concentration mode in the initial stage of the algorithm is
dominated by individuals with low fitness. Thus, this study used a larger crossover rate
and a smaller mutation rate to improve the search speed and population diversity. In the
later stage of the algorithm, the population concentration mode develops towards high
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fitness. At this time, by reducing the crossover rate and increasing the mutation rate, the
diversity of the population can be increased to prevent the algorithm from falling into the
local extreme value. Inspired by the non-uniform mutation operator that changes the length
of ∆(gen, u) in the evolutionary generation progresses in reference [22], the crossover rate
Pc and mutation rate Pm are designed as follows:

Pc = P1 ∗ (1− gen/maxgen)b (7)

Pm = P2 ∗ (1 + gen/maxgen)b (8)

where P1 represents the initial crossover rate; P2 represents the initial mutation rate (P1 = 0.6,
and P2 = 0.01 in this study); gen represents the current evolving generation number; maxgen
represents the total evolution generation number of the algorithm; and b is the system
parameter (b = 2 in this study). On the basis of this improvement, with the progress of
evolution, the crossover rate Pc can gradually decrease, while the mutation rate Pm can
gradually increase.

3. Simulation of Continuous Leakage of Single-Point Gas Source in 3D Space

According to the above improved algorithm, a technology roadmap is designed. The
specific implementation process is shown in Figure 1.
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In the early research, various gas diffusion models have been established to predict the
gas diffusion process. Among these models, the Gaussian model [28,29] is suitable for the
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diffusion of non-heavy gases. It is currently the most widely used method for simulating
gas concentration distribution, and it is also specified by the National Environmental
Quality Assessment Standard [30]. Therefore, the Gaussian plume model of the continuous
point source leakage scene was selected as the prior model in this study.

C(x,y,z) =
Q0

2πµσyσz
exp

[
− (y− y0)

2

2σy2

]
·
{

exp

[
− (z + He)

2

2σz2

]
+ exp

[
− (z− He)

2

2σz2

]}
(9)

where C(x,y,z) is the gas concentration predicted by the model at the downwind; Q0 is the
leakage intensity (unit: g/s); µ is the wind speed (unit: m/s); He is the effective height of the
leakage point; and σy and σz respectively represent diffusion coefficients of crosswind and
vertical direction and have a certain correlation with the atmospheric stability. The level
of atmospheric stability is divided into six levels, which are respectively represented by
A (strong instability), B (instability), C (weak instability), D (neutral), E (relatively stable),
and F (stable).

Meanwhile, a process coordinate system was established, where the x-axis (0 m,
1000 m) is parallel to the wind direction, and the y-axis (−500 m, 500 m) is perpendicular to
the wind direction. Under the process coordinate system, it is assumed that the weather
conditions at this time have few clouds. In addition, to simulate continuous leakage
scenes of single-point sources in a 3D space, it was assumed that the leakage source
intensity = 15,178.32 g/s; the height of leakage point was Hr = 2 m; the atmospheric stability
was E-level; and the average wind speed µ = 2.0 m/s. Considering the actual safety, the
coordinate origin of the simulated leakage scene was moved to the left by 25 m and up by
16 m. Then, the position of the coordinate origin became (x = −25, y = 16) (Figure 2). The
location of emission source is Q in Figure 2. The atmospheric stability E-level diffusion
coefficient was determined by the Pasquill–Gifford [31] model diffusion coefficient equation.
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4. Case Application and Analysis
4.1. Implementation of Modified Genetic Algorithm

To increase the richness of the estimated information, a grid of sensors with a figure-
eight distribution was established to obtain monitoring data. It was assumed that Ci

obs
and fixed Ci

cal are the observed concentration and predicted concentration of the i-th
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measurement point, respectively. Then, the objective function to be optimized for the
source intensity inverse calculation is expressed as:

max fobj = 1/
n

∑
i=1

(
Ci

obs − Ci
cal

)2
(10)

where n is the total number of sensors; Ci
cal is obtained via Formula (9). With this objective

function, the NMGA was calculated and simulated in Matlab to obtain the inverse calcula-
tion results of the strong source location, source intensity leakage rate, and effective height.

Reference [11] demonstrated that MGA can break through the limitation of population
size, and small populations can also contribute to excellent results. Hence, independent
experiments were conducted in this study using different operation generations with fixed
population sizes. Reference [11] built a leak scenario for continuous leakage of a single-
point source in a two-dimensional space. The fixed parameters, including the crossover
rate Pc = 0.6, maternal inheritance ratio β = 0.7, the following rate γ = 0.5, and the upper
limit of optimal point update stagnation generation number SetMax = 20 were used for
the inverse calculation of the source intensity location and source intensity by the new
crossover genetic algorithm MGA. On the basis of the population number of 100 and
generation number of 2000, 100 independently replicated experiments were conducted to
obtain the position (x, y) and the mean, standard deviation, and relative error of source
intensity leakage rate Q. The statistical data are listed in Table 1 in the MGA column.

Table 1. Statistical analysis results for 100 independent MGA or NMGA calculations with different
iterations.

Variables
Type

MGA NMGA NMGA

Population × generation (N ×M) 100 × 2000 100 × 1000 100 × 500
Mean of x/m 49.86 −25 −24.9719
Mean of y/m 25.02 16 16.0081

Mean of Q/(g·s−1) 10,442.96 15,178.00 15,173
Mean of Hr/(g·s−1) — 2.00 1.9981

x standard deviation/m and relative error 1.04 and 2.08% 7.96 × 10−12 and 5.46 × 10−14 0.25 and 0.11%
y standard deviation/m and relative error 0.08 and 0.32% 5.32 × 10−13 and 5.71 × 10−15 0.02 and 0.011%

Q distribution standard deviation/(g·s−1) and
relative error

55.40 and 0.53% 1.46 × 10−9 and 1.43 × 10−14 42.24 and 0.038%

Hr standard deviation/m and relative error — 4.4 × 10−13 and 3.7 × 10−14 0.02 and 0.094%

Meanwhile, in this study, the leakage scene for the continuous leakage of a single-
point source in a 3D space was constructed. The fixed parameters, including the dynamic
crossover rate Pc, the mutation rate Pm, the maternal inheritance ratio β = 0.7, the following
rate γ = 0.5, and the upper limit of optimal point update stagnation generation number
SetMax = 20 were used for the inverse calculation of the source intensity position, source
intensity, and effective height by the NMGA algorithm. In addition, 100 independent
repeated experiments were performed on 100 × 1000 (population number × generation
number) and 100 × 500 to obtain the position (x, y) and the mean, standard deviation, and
relative error of source intensity leakage rate Q and effective height H. The results are listed
in Table 1 in the NMGA column.

4.2. Comparative Analysis

(1) Time complexity
The time complexity of the MGA and NMGA algorithms is expressed in Formula (11)

T(MGA) = M× (Tselect + TElimination + Tcross + Tmutation) = O(N ×M) (11)
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where N represents the population number, and M represents the generation number;
Tselect, TElimination, Tcross, and Tmutation represent the selection, elimination, crossover, and
mutation stages, respectively.

MGA and NMGA have the same time complexity. However, MGA adds genetic
generation to improve the computation performance and the accuracy of inverse calcu-
lation results. This approach increases the computation cost and violates the time limit
principle. The NMGA algorithm shows good inverse calculation accuracy, and it converged
in approximately 300 generations (Figure 3).
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(2) Error analysis
As listed in Table 1, when the population size is fixed, 100 rounds of inverse calculation

of the MGA (2000 generations) and NMGA algorithms (1000 generations and 500 gen-
erations) were independently run. By comparing their relative errors, it was found that
the relative error of the NMGA inverse calculation results was much smaller than that of
the MGA inverse calculation results, showing good inverse calculation accuracy. Figure 4
presents the absolute error graph of the inverse calculation of the source intensity position,
leakage rate, and effective height of the NMGA algorithm for 100-round independent
repeated experiments. It can be seen that the results of the NMGA algorithm fluctuated
around its true value with a quite small absolute error, showing excellent stability.
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(3) Statistical significance test
From the standard deviation of the inverse calculation results: the standard deviation

of NMGA was distributed with 10−9, indicating that NMGA is better than MGA. Even
when the number of iterations of NMGA is one-half and one-quarter that of MGA, the
standard deviation of NMGA is also smaller and more stable.

5. Conclusions

(1) The dynamic crossover rate and mutation rate that change with evolutionary
generation were designed. The modified genetic algorithm was optimized by changing the
crossover mode to the maternal inheritance rate of 1.0 and the elimination gene inheritance
rate of 0.3. NMGA can solve the problems of slow convergence in the early stage of MGA
and poor stability in the later stage.

(2) Through quantitative and qualitative comparative analysis, it was found that
the improved NMGA model built an adaptive crossover rate and mutation rate, which
further improved the slow convergence speed of MGA. From the perspective of time
complexity, error, and statistical significance, it is shown that the algorithm has improved
its convergence rate and stability.

(3) The new improved NMGA model can better provide emergency decision-making
data for the toxic gas leakage accident scene and for fire protection and other fields, thereby
guaranteeing national and ecological security.
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