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Abstract: Flash floods are a major weather-related risk, as they cause more than 5000 fatalities
annually, according to the World Meteorological Organization. Quantitative Precipitation Estimation
is a method used to approximate the rainfall over locations where direct field observations are
not available. It represents one of the most valuable information employed by meteorologists and
hydrologists for issuing early warnings concerning flash floods. The current study is in line with the
efforts to improve radar-based rainfall estimates through the use of machine learning techniques
applied on radar data. With this aim, as a proof of concept, six machine learning models are evaluated
to make estimations of the radar-based hourly accumulated rainfall using reflectivity data collected on
the lowest radar elevation angles, and we employ a new data model for representing these radar data.
The data were collected by a WSR-98D weather radar of the Romanian Meteorological Administration,
located in the central region of Romania, during 30 non-consecutive days of the convective seasons,
between 2016 and 2021. We obtained encouraging results using a stacked machine learning model.
In terms of the Root Mean Squared Error evaluation metric, the results of the proposed stacked
regressor are better than the radar estimated accumulated rainfall by about 33% and also outperform
the baseline computed using the Z-R relationship by about 13%.

Keywords: quantitative precipitation estimation; radar data; radar rainfall; Z-R relationship;
supervised learning; ensemble learning; stacking

1. Introduction

Heavy rainfall may lead to flash floods, overflowing rivers or landslides, representing
a frequent and widespread severe weather hazard for population safety and the economy,
with flash floods alone causing more than 5000 fatalities annually, according to the World
Meteorological Organisation. Quantitative precipitation estimation (QPE) [1] is one of
the most important and challenging tasks in meteorology [2], as it represents the primary
method for approximating the rainfall over locations where direct field observations are not
available, thus providing meteorologists and hydrologists valuable information for early
warnings issuing. In spite of the great scientific and technological developments made
over the past decades, higher spatial and temporal accuracy of precipitation forecasts [3] is
demanded by both meteorologists and the public at large.

QPE is generated using different data sources, including interpolated rain gauges
data and weather radar networks. While weather radar data has the advantage of higher
spatial and temporal resolution, it is prone to a series of errors due to incorrect radar
calibration, signal attenuation, ground clutter, range limitations, anomalous propagation
or partial beam filling. Apart from rain gauges [4], weather radars play an increasingly
important role in QPE [5], as they are used for urban hydrology [6], hydrological analysis
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and modeling [7], real-time QPE [8], rainfall climatology [9], rainfall pattern analysis [10,11]
and rainfall frequency analysis [12].

One Hour Precipitation (OHP) is a derived WSR-88/98D radar product depicting the
estimated one-hour precipitation accumulation, on a 1 degree× 2 km (polar) grid, using the
Precipitation Processing System (PPS) algorithm [13]. This product ranges in [0, 203.20 mm]
and helps to assess rainfall accumulation for flash flood warnings, urban flood statements
and special weather statements. Further, the radar-based hourly accumulated rainfall is
denoted as OHP. The Z-R formula is the traditional method for precipitation estimation,
using an exponential relation between radar reflectivity factors and precipitation, but it
is known to have a low accuracy in precipitation estimation [14]. The Z-R relationship
between the radar reflectivity factor Z and the precipitation rate R (mm/h) is Z = a · Rb.

Conventional methods currently used in meteorology and climatology for collecting
meteorology- and climate-relevant atmospheric data are based on fixed weather stations
that are usually located around 50 km apart. This distribution is enough for monitoring
parameters with low spatial gradients such as atmospheric pressure but is sparse for
precipitation observation. The higher spatial resolution (around 1 × 1 km) of weather
radars can enable a more accurate overview of the precipitation field.

In the past decades, efforts have been made to improve the QPE algorithms by ap-
plying various merging techniques or by employing multiple data sources, including
ground-based sensors, satellite-based sensors and weather radars. The Tropical Rainfall
Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) was combining
precipitation estimates from multiple satellites, also integrating rain gauges data where
available, at a 0.25° × 0.25° spatial resolution, every 3 h [15]. The program was decommis-
sioned in 2015, being replaced by the Global Precipitation Measurement (GPM) mission.
The GPM spacecraft has the capabilities to detect rain and snow through dual-frequency
precipitation radar and radiometer measurements [16], and it is not affected by many of
the errors common to weather radars, with higher spatial (5–15 km) and temporal (1–3 h)
resolution than the TRMM. One of the essential applications of the GPM is the Integrated
Multi-Satellite Retrievals for GPM (IMERG) that merges observations from multiple space-
borne sensors, including into an interpolated global gridded precipitation product, with a
spatial resolution of 0.1° and a half hour frequency [17]. The proposed National Mosaic and
Multi-Sensor Quantitative Precipitation Estimation (NMQ) system [18] integrates doppler
radars, rain gauges, satellite and numerical weather prediction (NWP) with the aim of
providing QPE over the entire US territory, at high spatial and temporal resolution, for flash
flood warnings, data assimilation and NWP verification. The Multi-Radar Multi-Sensor
(MRMS) system currently in use by the American National Centers for Environmental
Prediction (NCEP) integrates at high spatial resolution (1 km) and high frequency (2 min)
3D radar data with atmospheric environmental data, satellite, lightning and rain gauge data
in order to generate a suite of QPE products [19]. The MRMS is based on a dual-polarization
radar synthetic QPE that employs the specific attenuation, the specific differential phase or
the reflectivity [20]. A more recent approach in QPE is applying machine learning (ML)
algorithms that can identify patterns and relationships in the data that may not be apparent
to meteorologists or to conventional algorithms.

The current study is in line with the efforts to improve rainfall estimates by employing
ML techniques applied on radar data, with concrete benefits for the national meteorological
services that are still relying on QPE based on the OHP product generated by single
horizontal polarized weather radars, as it is the case with the radar data source used in
this study, from the Romanian Meteorological Administration. The main purpose of our
study is to evaluate the usefulness of ML models to make estimations of the OHP using the
reflectivity data on the first elevation levels. The contribution of the paper is twofold. First,
we introduce a data model for representing the data gathered by a given weather radar in
a certain location at a given moment. An extensive study is conducted for investigating
the performance of deep neural networks (DNNs), Support Vector Regressor (SVRs), k-Nearest
Neighbors (kNNs) and Random forests (RFs) for QPE. As a second contribution, two ensembles
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of ML models [21] combined through stacking are proposed and experimentally evaluated
on real data. The experiments performed are aimed at evaluating the suitability of the
proposed data model and ML regressors to make estimations of the OHP. With this aim,
the proof of concept will use a medium-sized data set. Based on the results obtained, we
plan to continue testing the methods on larger data sets. The computational results are
compared against ground truth and two baselines: the weather radar’s own estimation for
OHP, which is used today by operational meteorologists, and the estimation of the rainfall
rate computed using the Z-R relationship [22], a known analytical relationship between
the radar reflectivity product and precipitation, which is extensively used throughout the
literature and in some existing nowcasting platforms. The study conducted in the paper
contributes to the field by exploring the ML models capabilities to improve the radar
hourly precipitation estimates, and by providing insights to the implementation of ML
in optimizing radar derived rainfall estimation. To the best of our knowledge, our study
regarding the OHP estimation using the proposed stacked ML models and reflectivity data
on the first two elevation levels is new in the literature.

To conclude, the following research questions are targeted in our study:

RQ1 To what extent does a stacked ML model increase the performance of estimating the
rainfall rate from the reflectivity data compared to individual ML models?

RQ2 How effective are the ML models designed to make estimations of the OHP using
the reflectivity data on the first elevation levels?

RQ3 Do the stacked ML models bring a statistically significant performance improvement
to QPE with respect to the performance of current operational baseline products?

The rest of the paper is organized as follows. Section 2 presents the background
concepts needed for our approach and reviews the related work on precipitation es-
timation and forecasting. Section 3 describes the data set, as well as the data model
and representation used in the proposed study, with Section 4 detailing its methodology.
Section 5 presents the experimental setup of the study, together with the obtained results
and analysis. Our research findings are discussed in Section 6, while the conclusions of our
study and directions for future improvement and extension are given in Section 7.

2. Background

We review existing work on precipitation estimation and forecasting in Section 2.1,
and follow up with a brief overview of the machine learning models used in our study in
Section 2.2.

2.1. Literature Review on Precipitation Estimation and Nowcasting

The literature reveals an increasing interest in precipitation estimation and quantitative
precipitation forecasting (QPF) [23]. In the field of QPF, numerical weather prediction
models are usually used, while the research in ML-based QPE based on radar reflectivity
data is still scarce.

Gabriel Martins Palma Perez [24] proposed a deep learning approach for improving
the QPF using a deep neural network for precipitation estimation in the city of Sao Paolo. A
deep autoencoder model was also applied as a non-linear dimensionality reduction tool that
allowed producing a spatial precipitation forecast with a small number of DNNs. Authors
obtained Pearson correlation coefficients varying from 0.5 to 0.64 and Root Mean Squared
Error (RMSE) values ranging from 6 to 18 mm/day for daily precipitation estimated using
deep learning methods.

Two ML models based on backpropagation neural networks (BPNN) and convolu-
tional neural networks (CNN) were investigated by Tian et al. [14], with the obtained
results for precipitation estimation compared with the traditional methods used in meteo-
rological systems. The study addressed the estimation of OHP using a 25 × 25 matrix filled
with the values of the radar reflectivity at the first elevation (i.e., R01). The experimental
evaluation was conducted on a radar data set collected from the center area of Taizhou in
Zhejiang province, China. The comparison revealed that the BPNN model outperformed
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(in terms of Mean Squared Error) the Z-R baseline method with 75.84%, while the CNN
model surpassed the traditional model with 82.30%.

Ridwan et al. [25] applied several ML models to predict the rainfall data in Terengganu,
Malaysia. A comparative study was conducted using four regression models: Bayesian
Linear Regression, Boosted Decision Tree Regression (BDTR), Decision Forest Regression
and Neural Network Regression. Experiments were conducted on data consisting of the
average rainfall from 10 weather stations. Thiessen polygons were used to estimate station
area and projected rainfall as well as different time horizons. The experiments performed
highlighted BDTR as the best regressor, with values of R2 measure ranging between 0.553
and 0.989 for daily rainfall forecasting.

The work of Sun et al. [26] focused on providing high-resolution forecasts of regional
rainfall, by introducing a convolutional 3D GRU (Conv3D-GRU) model. The model was
proposed with the goal of predicting the future rainfall intensity over a relatively short
period of time and consisted of several stages. During the first stage, 3D convolutions were
applied for extracting the spatial features of radar echo maps with different heights. Then,
Gated Recurrent Units (GRUs) were used for encoding and decoding the radar echo maps
on time series. Finally, the trained model was used to predict the radar echo maps in the
following 1–2 h [26]. A Critical Success Index (CSI) of 0.5231 was obtained for predicting if
the rainfall exceeded 0.5 mm/h within the following one, two or four hours.

For precipitation nowcasting, Zhang et al. [27] proposed MFSP-Net, a multi-input
multi-output recurrent neural network model based on multimodal fusion and spatiotem-
poral prediction. The proposed model used precipitation grid data, radar echo data and
reanalysis data. Experiments conducted on the data set of Southeast China highlighted a
CSI of 0.5415 for predicting if the rainfall exceeded 0.5 mm/h within one hour.

Yo et al. [28] proposed a deep learning approach for radar data-based QPE. ML
algorithms were applied to establish a statistical model for QPE in weather stations. The
Mosaic Radar data set [29] consisting of time series of gridded radar reflectivities over
the Taiwan area was employed for experimental validation. By automatically extracting
spatial and temporal features from the input data, the proposed model was designed to
associate these features with location-specific precipitation. A mean RMSE of 1.86 mm/h
was obtained by averaging the results over 45 weather stations.

Tromel et al. [30] highlighted the superiority of QPE based on data provided by polari-
metric weather radars compared to traditional techniques utilizing only the Z reflectivity
factor [31]. The study also discussed recent advancements in the field of precipitation now-
casting by using a DL approach combined with increasingly powerful high-performance
computers and increased amounts of data. The lack of a database of extreme cases hampers
the application of ML approaches in an operational setting [30].

Shin et al. [32] explored the use of two ML methods, regression tree and random
forest, in QPE using polarimetric weather radar variables. Their models were trained using
Two-Dimensional Video Disdrometer data (2DVD) over four locations, the tests employed
data collected by a single weather radar over nine elevation angles, every 10 min, for six
rainfall events that corresponded to either stratiform rain or convective rain, while data
from 192 rain gauges were used to test the radar QPE. The relationships between dependent
and independent variables have been determined, and the most important independent
variables were identified. The proposed ML models outperformed the empirical relation-
ships, with performances that depend on the type of rainfall event, and with an average
RMSE of 1.389 mm/h for the rainfall estimation for stratiform and convective events.

Moraxu et al. [33] proposed a convolutional neural network that uses three input
sources: automatic rain gauge measurement points, European weather radar composite
OPERA (Operational Programme for the Exchange of Weather Radar Information) data and
SEVIRI (Spinning Enhanced Visible Infrared Imager) thermal infrared satellite imagery in
order to estimate the rainfall probability and rainfall rate and accumulation with a spatial
resolution of 2 km. A RMSE of 1.488 mm/h for QPE was obtained using the proposed



Atmosphere 2023, 14, 182 5 of 27

method. The use of satellite data proved to be most relevant for making QPE over the sea,
where radar or rain gauges are usually not available.

Ko et al. [34] recently addressed the precipitation nowcasting and estimation topic.
The U-Net deep-learning model was adapted for precipitation nowcasting and precipi-
tation estimation from radar images. The precipitation nowcasting was formulated as
a classification problem, while the precipitation estimation was defined as a regression
one. The authors propose to pre-train the U-Net model to predict radar images in the near
future without requiring ground-truth precipitation, and to use of a new loss function for
mitigating the problem of class imbalancement problem. Radar images and precipitation
data sets collected from South Korea over seven years were used for the experimental
validation and highlighted average CSI values of about 0.456 for precipitation nowcasting
and average Mean Squared Error of about 1.362 mm/h. Regarding precipitation estimation,
an average relative improvement of about 2.2% was obtained using the DL model when
compared with ZR-relationship-based precipitation estimation.

2.2. Supervised Learning Models Used

In this section, we briefly present the supervised learning models that were employed
in our study.

2.2.1. Deep Neural Networks

Neural network (NN) learning methods are especially well suited for approximating
target functions which are real-, discrete- or vector-valued [35]. As a biological motivation,
neural networks have been modeled to be similar to learning systems that we can find
in humans and animals, namely, complex webs of neurons. This morphology has been
adopted in computer science by building densely interconnected systems that have as
building blocks basic units; these, called artificial neurons, take as input a series of real-
valued numbers and produce a single real-valued output [35]. Neural networks are suited
for problems that deal with noisy, complex data such as camera, microphone or sensor
data. Their success is due to their similarity to effective biological systems, that are able
to generalize and associate data that has not been explicitly trained upon during the
training phase, and correlate that data to a class where it belongs. Each neuron of the
network has an array of parameters, based on which it processes the input data, called
weights. The weights are adjusted during the training phase based on the error of the
network. The error represents the difference between the correct output and the network
output. The learning algorithm used for adjusting the weights based on the error is the
backpropagation algorithm.

Unlike classical neural networks, deep neural networks (DNNs) [36] contain multiple
hidden layers and have a large number of parameters which makes them able to express
complicated target functions, i.e., complex mappings between their input and outputs [37].
Nowadays, DNNs are powerful models in the ML literature applied for complex classifica-
tion and regression problems in various domains.

Due to their complexity, large DNNs are slow to use and are prone to overfitting, which
is a serious problem in supervised learning. Overfitting is a major problem for supervised
learning models, in which the model learns “by heart” the training data, but it does not
have the capability to generalize well on testing data. An overfit model is discovered
through a very good performance on the training data, but a much lower performance
on the testing set. A possible cause for overfitting in DNN is the limited training data,
as in such cases the relationships learned by the networks may be the result of sampling
noise. Thus, these complex relationships will hold in the training data but not in test or
real data [37]. There are various methods for addressing and reducing overfitting, such
as: (1) stopping the training when the performance on a validation set starts decreasing;
(2) introducing weight penalties through regularization techniques soft weight sharing [38];
(3) applying cross-validation; (4) extending the data set to include more training examples;
and (5) dropout by randomly dropping neurons and their connections during training [37].
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2.2.2. Support Vector Machines

Support vector machines (SVMs) are inductive learning methods originally developed
by Cortes and Vapnik for supervised classification [39], but they have been applied in
regression tasks as well [40]. The classification using SVMs is formalised as searching for an
optimal hyperplane (or set of hyperplanes) having a maximal functional margin hyperplane
that separates the training data points. The functional margin of a separating hyperplane is
defined as the distance from it to the closest training data points of any class.

The regression method using SVMs is known as ε-support vector regression (SVR). ε
is an additional hyperparameter used for controlling the algorithm’s error level. Given m
training instances (data points) xi ∈ Rd with their target value yi, the optimization problem
solved by the SVR algorithm is given in Formula (1).

minimize
1
2
‖w‖2 + C

m

∑
i=1

(ξ ′i + ξ ′′‘i )

subject to


yi − (w · xi + b) ≤ ε + ξi

′

(w · xi + b)− yi ≤ ε + ξi
′′

ξ ′i , ξ ′′i ≥ 0 i = 1, . . . , m

(1)

In Formula (1), b ∈ R is a bias term, w ∈ Rd is a vector of weights and C is a
regularization hyperparameter used for controlling overfitting (w and b determine the
separating hyperplane, whose equation is w · x + b = 0). ξi

′ and ξ ′′i are positive values
called “slack variables” introduced for allowing regression errors in the learning process,
i.e., certain training data points will be allowed to be within the hyperplane margin [41].

For obtaining non-linear regression surfaces, kernel functions [39] (such as Radial
Basis Function-RBF, polynomial, sigmoid, etc.) are used for mapping the input data space
into a higher dimension [39]. In the linear case, methods such as stochastic gradient descent
(SGD) [35] are used to solve the SVR problem faster.

2.2.3. Random Forests

Random forests (RFs) are ensemble learning methods consisting of combinations of
several decision tree (DT) predictors using the bagging ensemble learning paradigm. The
individual tree predictors are built only on a random subset of features and an arbitrary
subset of training examples; thus, overfitting is avoided and better stability is achieved for
generalization. As the number of DTs within the forest increases, the generalization error
for RF will converge to a limit, due to the law of large numbers.

The RF predictive modeling is used for both classification and regression. The main idea
behind RF modeling is to incorporate many DTs built using random samples from the data
set. Even if the individual DT models are unstable learners, the combination of them using
the bagging perspective lead to a stable and stronger learner. For each individual tree from
the forest, the prediction value is computed using some generic random variable θ, which is
used to resample the training set and select the directions for each decision tree [42].

Th RF predictive model is used to improve the performance of DT algorithms. The
literature presents a two steps method for using random forests as a predictive model. The
first step in building a RF model is to construct the smaller decision trees from random
bootstrap samples of the original data, each sample containing both positive and negative
examples. The number of data samples may depend on the data set dimension. Afterwards,
in the second step, the random forest is built by using a majority voting procedure among all
decision trees.

2.2.4. k-Nearest Neighbors

k-Nearest Neighbors (kNN) is a simple but widely used machine learning algorithm,
with a performance comparable with that of more complex learning models such as NNs
or DTs. kNN is considered as one of the top ten algorithms in data mining and machine
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learning [43] and it has been applied in many practical applications ranging from pattern
recognition to feature selection and outlier detection [44]. kNN is a supervised learning
paradigm used for both classification and regression, being able to approximate both
discrete and continuous target (output) functions [35]. kNN is a type of instance-based
learning and belongs to the lazy learning paradigm, where the goal is to provide local
approximations of the target function to be learned for the testing instances [35]. Thus,
unlike the eager learning methods that are building a global learning hypothesis from the
entire training data, kNN simply stores the training data and defers the processing until a
new instance must be tested.

The underlying idea behind kNN’s decision rule when estimating the target value
of a certain testing object is that of looking to the training data points which are the most
similar to the query instance. For a test sample, kNN makes a decision by employing the
local information surrounding the query instance: it simply assigns the most frequent
classification of the nearest training data points of the testing sample. The value of k
indicates how many nearest neighbors will be considered to estimate the target value of the
testing data point. kNN is based on the idea of measuring the distance (or similarity) between
two instances. The input instances are visualized as data points in a high-dimensional
space and thus the distance between them may be measured [45] using a distance function
d such as the classical Euclidean distance [35], Chebychey, Minkowski, Mahalanobis [43],
etc. A kNN regressor estimates the target value of a query data point q by computing the
mean value of the k nearest (in terms of the distance function d) training data points to q.

3. Data Set

In our study, we employed two types of meteorological data, namely weather radar
data and precipitation data from weather stations. The radar data employed was collected
by the WSR-98D single polarized Doppler weather radar of the Romania Meteorological
Administration and is located in Bobohalma, Romania. The WSR-98D is capable of pro-
viding information regarding cloud systems above an area greater than 250 km in radius,
using the VCP-21 scan strategy. This entails a complete scan every 6 minutes, consisting
of nine elevation scan levels, starting from 0.5 degrees and increasing with a step of 0.95
over the first four elevation angles. In our experiments, we used reflectivity from the first
two elevation angles and OHP that was collected during 30 non-consecutive days of the
convective season between May and July, in the years between 2016 and 2021.

The second type of meteorological data is represented by the 1-h rainfall collected by
rain gauges from 40 weather stations of the Romanian Meteorological Administration, all
located within a 180 km radius from the weather radar in Bobohalma. The observations
are transmitted from the rain gauge to the central data base every 10 min, hourly and
when reaching certain threshold, and in this study the precipitation data was delivered in a
15-decimal format. Figure 1 depicts the geographical distribution of the weather stations
used in the current study.

3.1. Data Model

As detailed in Section 3, we employed weather radar data and rainfall data. While the
radar data is gathered over a large area around the radar, rainfall data is available only in
some specific geographic locations, as it is gathered by weather stations. The ML models
that we wanted to create had the goal of estimating the rainfall data from radar data. In
other words, the input for an ML model would be radar data while the output would be
rainfall data.

We used three radar products in our experiments, as mentioned in Section 3: Reflectiv-
ity (R) at the lowest and second lowest elevation angles (i.e., R01 and R02) and OHP. The
OHP product is the 1-h rainfall estimation given by the radar and will be used as a baseline
comparison. More details about its computation and use are provided in Section 6.2. The
two R products were used as input data for our ML models. The 1-h rainfall collected at
the weather stations was used as output data.
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Figure 1. Locations of the 40 weather stations used in the study. Background map source:
Google Earth.

As explained in Section 1, the goal of the ML models we used was to estimate accu-
mulated precipitation (rainfall) using radar data as input; radar data, in this case, is the
reflectivity at the two lowest elevation angles, R01 and R02, as mentioned above (through-
out this section we will generally refer to radar reflectivity data as R and to accumulated
precipitation data as rainfall). In order to create the data set to be used by the ML models,
based on R-rainfall as input–output, it was necessary to create correct R-rainfall pairs. The
first step, since we only had rainfall data for specific locations, was to find the correct R
data for the locations of each of the weather stations. For R data, for each time step we have
a data grid—a matrix, also called a grid map—that gives the data for R in the area around
the radar; each point (also called a cell) in the data grid represents the reflectivity value at a
certain geographical location. Relative to the data grid, each point has two coordinates, a
pair (i, j), where the first coordinate (i) represents the row in the matrix while the second
coordinate (j) represents the column in the matrix. The point with coordinates (0, 0) is in
the top-left corner of the data grid. The radar is in the middle of the data grid (i.e., i =

[ nr
2
]

and j =
[ nc

2
]
), where nr is the number of rows and nc is the number of columns from the

grid map. For rainfall data, there is one value for each weather station for each time step
(ideally, but in reality there are often missing values). Thus, in order to pair the rainfall
values with the correct R values, the problem reduces to finding the correct coordinates for
each weather station on the radar’s grid map.

For each weather station we have the latitude and longitude coordinates. To find
the correct (i, j) matrix coordinates from the latitude/longitude coordinates, we used the
latitude/longitude coordinates for the top left point in the data grid (point at (0, 0)) and the
cell size, which represents the real-world size of a cell (a point in the data grid representing
a geographical location) in decimal degrees. Formula (2) shows how each coordinate was
computed. The idea is that we compute the difference in coordinates finding the distance
in decimal degrees between the top-left cell and the weather station (for each coordinate)
then we divide this distance by the cell size in order to find the number of cells between the
top-left cell and the weather station. This number represents the matrix coordinate for the
weather station (either row or column). For finding the i coordinate, we used the latitude
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and to find the j coordinate we used the longitude. In our specific case, the latitude and
longitude for the top-left corner were 44.114 and 21.066, respectively, while the cell size was
0.011 degrees.

coordinatei/j =

[ stationlat/long − cornerlat/long

cell_size

]
(2)

where:

- coordinatei/j: the matrix coordinate to be computed (either i or j);
- stationlat/long: the latitude or longitude of the weather station for which the matrix

coordinates are computed (latitude is used for computing coordinatei and longitude
for coordinatej);

- cornerlat/long: the latitude or longitude of the top-left corner of the data grid (latitude
is used for computing coordinatei and longitude for coordinatej);

- cell_size: real-world size of a data grid cell, measured in decimal degrees.

3.2. Data Representation

As detailed in Section 3, radar data was gathered every 6 minutes and rainfall data
was gathered at the weather stations every hour, in the form of 1-h rainfall. These are two
different time scales and two different type of time steps and we needed to differentiate
between them in order to clearly express how the experiment was conducted. Therefore,
we differentiated them by calling time steps or time moments the steps on the radar scale—the
time moments corresponding to each radar scan gathered every 6 min, and we denote it
by t; the steps on the weather station scale—the time moments corresponding to each 1-h
rainfall data point—are called hour steps or hour moments and are usually denoted by h. It is
important to note that time steps and hour steps do not necessarily overlap: hour steps are
at every fixed hour (e.g., 00:00, 01:00, 02:00), while time steps do not represent fixed hours
or minutes (e.g., we might have steps 00:59 and 01:05 for one day and 00:56 and 01:02 for
another day).

In the data set D used in our study we have, for each hour moment h in a day
z, one instance corresponding to each weather station (gij)h,z, where (i, j) are the matrix
coordinates for the weather station (determined as presented in Section 3.1) and h represents
the hour moment in the day z. The instance (gij)h,z is represented as an n-dimensional
numerical vector (gij)h,z = (g1

ij, g2
ij, . . . , gn

ij)h,z. The ground truth for the instance (gij)h,z is
the 1-hour rainfall provided by the weather station.

The vectorial representation for (gij)h,z is obtained as follows. From a meteorological
viewpoint, the rainfall rate in a certain location (i, j), at a time step t, may be influenced by
the values for the reflectivity at previous time steps (e.g., t− 1, t− 2, etc.) not only in (i, j),
but also in a neighborhood of (i, j). Thus, we are considering a neighborhood of diameter
d around (i, j), i.e., a submatrix with d2 cells centered in the location (i, j). From an ML
perspective, the intuition behind using data from around a station and not just the value
above the station is that multiple data characteristics would give the ML models more
informative data from which they will learn to extract only the relevant features which are
correlated with the rainfall rate. From a meteorological viewpoint, the data from around
the station would help to mitigate the effects of, for instance, storm tilt, under the beam
phenomena, etc.

As an example, let us consider the 5 × 5 dimensional data grid from Figure 2. The grid
contains the values for R01 (front) and R02 (behind) for each cell on the data grid, at time
step t. The location of the weather station is (3, 3) (i.e., i = 3 and j = 3) and the diameter d
is also 3.
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Figure 2. Sample data grid at a time step t. The location of the weather station is (3, 3) (i.e., i = 3 and
j = 3) and the diameter d is also 3. The values from the neighborhood are highlighted.

Using a neighborhood of diameter d = 3 (as shown in Figure 2), the 2 · d2-length
numerical vector vt

ij corresponding to the weather station location ((3, 3), in our example)
at time t, is obtained by concatenating the linearized sub-matrix containing the values for
R01 (the sub-matrix in front) with the linearized sub-matrix containing the values for R02
(the sub-matrix behind): vt

ij = (15, 0, 10, 20, 40, 25, 25, 20, 15, 0, 10, 15, 10, 5, 30, 25, 40, 20).
In representing the data instance (gij)h,z corresponding to the weather station lo-

cated at (i, j) at the hour moment h in a day d, we consider that all the reflectivity val-
ues in the neighborhood of (i, j) for a period of 1-h before the current hour moment h,
(i.e., t− 1, t− 2, . . . , t− 10), are relevant for estimating the 1-hour rainfall accumulation at
the location (i, j). Since, as mentioned, the time interval between two consecutive radar
scans is 6 min, the instance (gij)h,z corresponding to the weather station located at (i, j) is a
20 · d2-length numerical vector obtained by concatenating the vectors vt−1

ij , vt−2
ij , . . . , vt−10

ij ,
where time step t− 1 is the closest time moment before or equal to the hour moment h (for
example, if h is equal to 02:00 then t− 1 must be in the interval [01:55, 02:00]).

A data set D was formed using the high-dimensional vectors (gij)h,z corresponding
to the weather stations for each hour step h and each day z. The data set includes 30 days
worth of meteorological observations. For each instance (gij)h,z ∈ D, the 1-h rainfall (oij)h,z
given by the weather station located at (i, j) in the day z from an hour moment h is available
as the ground truth (true label) of the instance.

Since we gathered data from 40 ground weather stations over 30 days, D contains
28,800 instances (for every hour we had 40 stations, there are 24 h in a day and 30 days of
data). However, there were some missing data, due to the impossibility to gather data from
some ground stations at some hours; therefore, D is a medium-sized data containing 28,605
instances with non-missing values. We used 60% of D for training the ML models, and 10%
of D for validating them. The remaining 30% from the data set was further used for testing.
More details about the training–validation–testing split is given in Section 4.4. The radar
and rainfall data sets used for this paper can be found at [46].

To better understand the rainfall data from D, we present the histogram in Figure 3,
which illustrates 1-h rainfall recorded at weather stations. The OX axis depicts rainfall in
millimeters, while the OY axis shows the number of instances labeled with a certain rainfall
rate, using a logarithmic scale. Thus, the histogram shows the number of instances (gij)h,z
for which the ground truth (oij)h,z was in the interval represented by each bucket. The
buckets count values in increments of 5 with the value 0 being counted separately—that
is, the first bucket shows the number of instances for which the ground truth was 0, the
second bucket shows the number of instances for which the ground truth was between 0
and 5 and so on. Note that the number of instances is on a logarithmic scale due to the
large differences between the values in each bin. The instances with ground truth 0 were
depicted in a separate bin in order to highlight the high number of such instances—more
than three-fourths of the total number.
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From Figure 3, we clearly observe a high data imbalance, as more than 75% of the
1-hour rainfall values are 0 while less than 3% are higher than 5. This imbalance is not
unexpected as storms are usually localized at certain weather stations and therefore only
some of the 40 weather stations will read non-zero values at a time; meanwhile, there are
also large periods of time with no storms or meteorological events, when all readings are 0,
so it was expected that most values for the 1-h precipitation would be 0 and higher values
would be very rare. This, however, raises the difficulty of the regression problem, as ML
algorithms tend to have a bias towards the majority class—a tendency to predict lower
values or 0 in this case—simply because there are more instances to learn from in those
cases. Values that appear very rarely compared to the rest of the data in the set, such as
values above 20 in our data, might be considered outliers by a supervised regression model.

Figure 3. Histogram of the 1-h rainfall values from the data set D.

4. Methodology

This section introduces our methodology for designing and validating the ML models
proposed for the task of estimating the rainfall rate from the reflectivity data. We start
by formalizing the regression task in Section 4.1, then Section 4.2 introduces the ML
models proposed for answering research question RQ1. The training stage is discussed in
Section 4.3 and the testing methodology is further presented in Section 4.4.

4.1. Formalisation

We further present the formalization for the regression task of estimating the one-hour
precipitation using the data model and representation previously introduced in Section 3.1.

As previously shown in Section 3.1, we considered the data set D =
⋃

i,j,h,z

{(gij)h,z}

consisting of high-dimensional vectors corresponding to each of the weather stations—
located at the map coordinates (i, j)—at an hour moment h in a specific day z. The high-
dimensional real-valued vector corresponding to a weather station in a certain location at a
time moment is composed by the reflectivity values at the first two elevations at previous



Atmosphere 2023, 14, 182 12 of 27

time steps in the neighborhood of the weather station’s location. The 1-h rainfall given by
the weather stations was used as ground truth (i.e., the output for the ML models). Let us
denote by O =

⋃
i,j,h,z

{(oij)h,z} the set of the 1-hour rainfall given by the weather stations and

available as labels for the instances from D.
From a supervised learning perspective, the target function in our learning task is

the mapping rr : D → R that assigns the 1-h rainfall rate (oij)h,z for the weather station
instances from D, i.e., (oij)h,z = rr((gij)h,z). Consequently, the QPE problem considered in
this paper is formalized as a regression problem, more specifically as the problem of learning
a hypothesis r̂r (approximation of the target function rr) such that r̂r((gij)h,z) ≈ rr((gij)h,z)
with a certain degree of confidence.

Thus, the learning problem further approached is formulated as finding a mapping
between data instances corresponding to weather stations at a specific hour moment in a
day and the rainfall rate at the location of the weather station at the given hour moment.

4.2. ML Models Used

Considering the formalization from Section 4.1, six ML-based regressors were used in
our study for investigating the performance of QPE: four individual ML regressors (DNN,
SVR, kNN and RF) and two ensemble regressors obtained by combining the individual
learners using the stacking learning paradigm. For the DNN regressor we used a custom
architecture that will be further detailed, while the other three models (SVR, kNN and RF)
were used with their default configurations from scipy [47].

Stacking [48] is a method used in the ensemble learning paradigm [49] which uses
multiple individual ML learners for obtaining a better predictive performance. Stacking
involves training an ML algorithm (on the top of the stack) to combine the predictions of
several individual ML learners (base predictors). The idea behind stacking is the following:
the base algorithms are trained on an available training data set, then the algorithm on the
top of the stack is trained on the outputs of the base learners (used as inputs) to make the
final prediction. Thus, through stacking several heterogeneous learners L1, L2, . . . , Ln are
combined by training a meta-model M which takes as inputs the outputs of the base learners
L1, L2, . . . , Ln and will learn to return the final prediction from these inputs. Figure 4
illustrates a stacking ensemble learner.

The ML literature established that stacking generally provides better predictive perfor-
mance than any single trained model [50]. Two stacking models were considered in our
study, as follows:

• A stacking model denoted by StackPLS with base the DNN, SVM, kNN and RF regres-
sors (i.e., n = 4 and L1 =DNN, L2 =SVM, L3 = kNN, L4 =RF) and in the top of the
stack the Partial Least Squares (PLS) predictor (M =PLS). The PLS regressor [51] is a
variation of the linear least-square regression, where the model reduces the number of
variables used for regression; it is especially useful for cases where instances have a
high number of variables and there is a high chance that the variables are correlated.

• A stacking model denoted by StackDNN with base the PLS, kNN and RF regressors
(i.e., n = 3 and L1 =PLS, L2 = kNN, L3 =RF) and at the top of the stack our cus-
tomized DNN predictor (M =DNN).

Regarding the selected ML models, we note that the individual ML regressors (DNN,
SVM, kNN and RF) are based on different learning paradigms, as discussed in Section 2.2
and this makes them suitable for stacking. Regarding the stacking models, we decided to
employ PLS and DNN on top of the stack, since linear regression and neural network-based
models were often used as regression meta-models in stacking [52].
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Figure 4. Overview of a stacking ensemble learning model.

4.3. Training

As presented in Section 3.1, 60% of the data setD will be used for building the machine
learning models. For training our custom DNN model we used a separate validation data
set representing 10% of D. The remaining of 30% from the data set will be further used
for testing.

For our custom DNN model, we used the architecture presented in Figure 5. In order
to increase the readability of the proposed architecture, we color-coded the different layers.
The main ones are the Dense layers colored in yellow and the Dropout layers colored in
red. There are 2 special layers, the Input layer which specifies the input of the neural
network—an image section representing the neighborhood around a location, along with
its previous time steps—and a Flatten layer which creates the instance vector described in
Section 3.2. For the stacking model that has our neural network model on top, as explained
in Section 4.2 (StackDNN), the neural network architecture is the same with the exception of
the input layer, which is adjusted to input the previous models’ prediction instead of an
image section.

For the other models employed, we used the default parameters as described in
the scikit-learn documentation [53]. The SVM model (sklearn.svm.SVR) has a RBF ker-
nel with γ being computed as 1

n · var, where n is the number of instances and var is
the variance of the data set, with the stopping tolerance being 10−3. The kNN model
(sklearn.neighbors.KNeighborsRegressor) uses 5 neighbors (k = 5) and the Euclidian
distance metric, while the algorithm used to compute the nearest neighbors is selected au-
tomatically between BallTree, KDTree and Brute-force search, based on the data. The
RForest model (sklearn.ensemble.RandomForestRegressor) uses 100 estimators, using
bootstrap samples and a modified version of CART for the decision tree algorithm.
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Figure 5. The architecture of our DNN model. Color scheme: white—input layer; gray—flatten layer;
yellow—dense layer; pink—dropout layer.

4.4. Testing and Performance Evaluation

For assessing the performance of the ML models considered in our study a cross-
validation testing methodology using the “2/3-1/3” split rule is applied. Thus, 60% of D
will be used for training the models and 10% for models’ validation, while the remaining
of 30% will be further used for testing. Due to the randomness involved in selecting the
training-validation-testing data sets, the testing is repeated six times.

Several performance metrics that will be further detailed were computed on each
testing data set. Due to the multiple training-testing data splits performed during the
cross-validation process, the values for the performance measures were averaged over the
6 runs and a 95% confidence interval (CI) [54] was provided for the average values. The
performance of the proposed cross-validation will be detailed in Section 5.2.

4.4.1. Performance Metrics

Given a testing data set consisting of n instances, let us denote by yi the ground truth
for the i-th testing instance and by ŷi the prediction (forecast) for the i-th testing instance.
The following evaluation measures used in the regression literature are computed:

• Mean absolute error (MAE) computes the average of the absolute errors obtained for

the testing instances: MAE =

n

∑
i=1
|yi − ŷi|

n . Lower values for MAE indicate better
regressors.

• MAEnz is used for computing the MAE values only for the non zero-labeled testing
instances (i.e., precipitations). This measure is particularly relevant, since we are par-
ticularly interested in our models being able to accurately estimate the precipitations
(i.e., non-zero target outputs). Lower values for MAEnz indicate smaller regression
errors for the rainfall rate.
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• Root mean squared error (RMSE) computes the square root of the average of squared

errors obtained for the testing instances: RMSE =

√√√√ n

∑
i=1

(yi − ŷi)
2

n . Lower values for
RMSE indicate better regressors.

• RMSEnz is used for computing the RMSE values only for the non zero-labeled testing
instances. Lower values for RMSEnon−zero indicate smaller regression errors for the
precipitations.

• Multiplicative Bias (MB) is used for comparing the average value of the forecast to

the average value of the true observations: MB =

n

∑
i=1

ŷi

n

∑
i=1

yi

. MB expresses the degree of

correspondence between the average forecast and the average observation, i.e., how
many times the average prediction is bigger or lower than the average ground truth.
The closer MB is to 1 the better.

• MBnz is used for computing the MB values only for the non zero-labeled testing
instances (i.e., precipitations).

5. Results

This section presents the experimental results obtained by evaluating the six regressors
described in Section 4.2 following the methodology introduced in Section 4. We start by
detailing the experimental setup used in our experiments in Section 5.1, and then illustrate
our experimental results and outline the improvements achieved by the ML models with
respect to the baseline products used for QPE in Section 5.2.

5.1. Experimental Setup

As detailed in Section 3.1, the rainfall rate in a particular location at a certain time mo-
ment might be influenced by the conditions in the neighborhood at the previous time steps.
For the hyperpameter d (the diameter of the neighborhood) we are going to experiment
with three possible values: 3, 5 and 7. These dimensions of the relevant neighborhood were
selected based on minimum, average and maximum convective cell propagation speed
which has average values between 15 and 40 km/h, in which case an air parcel represented
by an element in the reflectivity matrix would travel 1.5 to 4 km between two radar scans
(6 min). As the geographical distance between two neighboring values is about 900 m, for
our experiments we chose values for diameter d corresponding to distances between about
0.9 km and 4 km, thus correlated with the above mentioned propagation speeds.

For our experiments, in order to ensure the robustness of the tested machine learning
models, we used a cross-validation testing methodology, by repeating six times the training-
testing split of the data. For each fold (iteration), we shuffled the instances of the data set in
a random order then we split the training, testing and validation data, with an algorithm
that ensures that the same indexes are associated to the training, testing and validation
data each time (so the only random element is the initial shuffle). In order to make sure
that all models were trained and tested over the same data, to have fair comparisons,
we associated a fixed seed for each fold and we used that seed for the random shuffling
of the data set instances. We note that two points cannot be close enough to be in each
others neighborhood because we are only considering the points where we have data
from a weather station–and the weather stations are too far apart to have overlapping
neighborhoods. This means that, even though we are using random shuffling of the data
set, the neighborhoods of all points in the training, testing and validation data sets will
be completely separate. From an ML perspective, it is most important to have a separate
testing data set, and since the training, validation and testing data sets do not overlap, this
is enough to ensure that the training data set cannot influence the measurements taken on
the testing data set.
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For training our neural networks we used the Adam optimization algorithm [55], with
a learning rate of 0.0001, a batch size of 8 and the absolute cubed error loss function—we
used a higher degree error than the usual squared error in order to give more weight to
higher values which are heavily underrepresented in the data set, as shown in Section 3.2.
The other machine learning algorithms were set up with their default parameters, as
described in Section 4.3.

The training duration for the neural networks was of 500 epochs. The PLS and SVM
models have a tolerance for stopping criterion (which is used to end training when the loss
is less than this criterion) of 1 × 10−6 and 1 × 10−3 respectively; the PLS model also has a
hard limit on the maximum number of iterations of 500. The RF training time is standard,
until the decision trees have been built, whereas the KNN has no training phase, other than
storing the training data in a ball tree data structure (for faster lookup during prediction).

5.2. Computational Results and Analysis

For answering research question RQ2, this section presents the computational results
obtained by evaluating the proposed ML-based regressors.

Table 1 presents the values for the performance metrics presented in Section 4.4.1
obtained by testing each of the ML models detailed in Section 4.2. As previously discussed,
three possible values (3, 5, 7) were considered for the hyperparameter d that denotes the
diameter of the neighborhood used for data representation (Section 3.1). For each of the
ML models employed, a cross-validation was applied for assessing its performance on the
data set described in Section 5.1. 95% CIs were computed for the average values of the
performance metrics. For each value of d, the best value obtained for each performance
metric is highlighted.

Table 1. Experimental results obtained. 95% CIs are used for the results.

Metric d DNN SVM kNN RF StackPLS StackDNN
3 2.065 ± 0.058 1.774 ± 0.06 1.943 ± 0.107 1.813 ± 0.055 1.734 ± 0.06 2.085 ± 0.1

RMSE 5 2.045 ± 0.053 1.774 ± 0.06 1.891 ± 0.055 1.818 ± 0.051 1.734 ± 0.059 2.027 ± 0.079
7 2.004 ± 0.034 1.774 ± 0.06 1.907 ± 0.047 1.827 ± 0.044 1.764 ± 0.046 2.028 ± 0.083
3 3.16 ± 0.165 3.507 ± 0.106 3.422 ± 0.112 3.321 ± 0.109 3.328 ± 0.11 3.106 ± 0.118

RMSEnz 5 3.167 ± 0.164 3.507 ± 0.106 3.424 ± 0.102 3.303 ± 0.113 3.328 ± 0.11 3.107 ± 0.112
7 3.107 ± 0.105 3.507 ± 0.106 3.428 ± 0.094 3.302 ± 0.1 3.376 ± 0.074 3.123 ± 0.127
3 1.55 ± 0.057 0.535 ± 0.01 0.833 ± 0.053 0.863 ± 0.014 0.766 ± 0.022 1.500 ± 0.11

MAE 5 1.512 ± 0.038 0.535 ± 0.01 0.786 ± 0.022 0.896 ± 0.008 0.766 ± 0.022 1.435 ± 0.079
7 1.473 ± 0.034 0.535 ± 0.01 0.81 ± 0.032 0.908 ± 0.009 0.768 ± 0.023 1.406 ± 0.087
3 1.684 ± 0.04 1.804 ± 0.032 1.783 ± 0.052 1.631 ± 0.028 1.595 ± 0.027 1.673 ± 0.053

MAEnz 5 1.672 ± 0.038 1.804 ± 0.032 1.778 ± 0.025 1.630 ± 0.031 1.596 ± 0.027 1.643 ± 0.037
7 1.624 ± 0.042 2.218 ± 0.516 2.419 ± 0.791 1.916 ± 0.583 1.601 ± 0.024 1.638 ± 0.042
3 3.065 ± 0.135 0.206 ± 0.005 1.127 ± 0.047 1.236 ± 0.057 0.945 ± 0.017 2.973 ± 0.280

MB 5 2.971 ± 0.125 0.206 ± 0.005 0.898 ± 0.048 1.329 ± 0.056 0.946 ± 0.02 2.81 ± 0.208
7 2.876 ± 0.121 0.206 ± 0.005 0.909 ± 0.054 1.364 ± 0.055 0.940 ± 0.022 2.736 ± 0.229
3 0.774±0.037 0.053 ± 0.001 0.266 ± 0.033 0.314 ± 0.014 0.254 ± 0.012 0.759 ± 0.069

MBnz 5 0.750 ± 0.033 0.053 ± 0.001 0.236 ± 0.019 0.339 ± 0.014 0.253 ± 0.013 0.713 ± 0.049
7 0.731 ± 0.032 0.053 ± 0.001 0.253 ± 0.025 0.349 ± 0.015 0.256 ± 0.017 0.696 ± 0.055

Regarding the impact of the neighborhood hyperparameter d on the results depicted
in Table 1, we note that generally there was a slight performance increase for higher values
of d.

Considering the results from Table 1, the following reasoning is applied in order to
determine the best performing ML model and the best value for the diameter d. Let us
denote by M the set of ML models used in our experiments, M = {DNN, SVM, kNN, RF,
StackPLS, StackDNN} and by PM = {RMSE, RMSEnz, MAE, MAEnz, MB, MBnz} the set
of all performance metrics used for evaluation. For each model m ∈ M, each value of the
hyperparameter d ∈ {3, 5, 7} and each performance metric p ∈ PM we are computing the
value w(m, d, p) that expresses how many ML models (other than m) are outperformed by
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m, using the value d for the neighborhood diameter, in terms of the performance measure
p. We mention that only the mean values for the performance metrics will be used in
computing the values w(m, d, p), without considering their confidence intervals.

Except MB and MBnz, for all other performance metrics, lower values are better and
express better regression performance. If m1 and m2 are two regression models, then m1 out-
performs m2 in terms of the performance measure p ∈ {RMSE, RMSEnz, MAE, MAEnz}
iff p(m1) < p(m2). For MB and MBnz values closer to 1 are better: a value of 1 indicates
that the average prediction is equal to the average observation; values higher than 1 express
how many times the average prediction is bigger than the average ground truth (i.e., the av-
erage prediction overestimates the average observation), while values lower than 1 express
how many times the average prediction is lower than the average observation (i.e., the
average prediction underestimates the average ground truth). Thus, in order to compare
the performance of two regressors in terms of the performance metric p ∈ {MB, MBnz},
we map the values of p in [1, +∞) by reversing the subunitary values. For a given value

v of the performance metric p ∈ {MB, MBnz}, we compute inv(v) =

{
v i f v ≥ 1
1
v otherwise

.

After the transformation, values closer to 1 (lower) for both MB and MBnz express better
regression performance, i.e., the model m1 outperforms m2 in terms of the performance
measure p ∈ {MB, MBnz} iff inv(p(m1)) < inv(p(m2)).

For each regression model m ∈ M trained using a diameter d ∈ {1, 3, 5} for the neighbor-
hood hyperparameter and a performance metric p ∈ PM the value w(m, d, p) is computed

as w(m, d, p) = ∑
m′∈M
m′ 6=m

δ(m, m′, d, p), where δ(m, m′, d, p) =

{
1 i f p(m, d) < p(m′, d)
0 otherwise

,

and p(m, v) denotes the value of the performance metric p obtained for the model m using
the value d for the diameter. Then, for an ML model m and each value for d, the value
Win(m, d) is calculated by summing the values w(m, d, p) for all performance metrics p, i.e.,
Win(m, d) = ∑

p∈PM
w(m, d, p). The value Win(m, d) counts how many ML models (other

than m) are outperformed by applying m with a diameter d, in terms of the performance
metric p ∈ PM.

Table 2 illustrates the values Win(m, d) computed based on the results from Table 1
for each of the ML models m used in our experiments and various values for the diameter
d. The “winning” ML model (i.e., the best performing one, denoted by best) is declared the
one that maximizes WIN(m) = ∑

d∈{3,5,7}
Win(m, d), i.e., best = arg max

m∈M
WIN(m).

Table 2. The values for Win(m, d) computed for each machine learning model m ∈ M and each
value d ∈ {3, 5, 7}. The last row depicts, for each ML model m, the values for WIN(m).

d DNN SVM kNN RF StackPLS StackDNN
3 13 9 14 18 22 15
5 12 9 13 18 23 16
7 16 10 13 17 23 14

WIN 41 28 40 53 68 45

From Table 2 we conclude that the best performing ML model in our experiment
is the stacked model StackPLS and for this model there are two values for the diameter
hyperparameter d (5 and 7) which provide the highest value (23) for Win(StackPLS, d).

Figure 6 depicts the performance of the StackPLS model for d = 5 and d = 7. The
OX axis from the figure depicts the performance metrics employed for evaluation, while
the values of these metrics obtained by the StackPLS regressor are represented on the OY
axis. We observed very similar performances for both values of d and also small values for
the 95% CIs (see Table 1) expressing the stability of the stacking model. However, slightly
better performance metrics values were observed for d = 5.
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Figure 6. Performance metrics for the StackPLS regressor for d = 5 and d = 7. The OX axis depicts
the performance metrics employed for evaluation, while the values of these metrics obtained by the
StackPLS regressor are represented on the OY axis.

From a meteorological point of view, the values 5 and 7 for d represent neighborhoods
up to 1.8–4 km, relevant for storm propagation speeds between 18 and 40 km/h, so exactly
within the average speed considered for such phenomena. Consequently, d = 3, which
would be relevant for quasi-stationary storms, which have a lower occurrence, displayed a
lower performance in our experiments.

6. Discussion

This section discusses our research findings and the threats to validity of our study.

6.1. Time Complexity Analysis

This section discusses the performance of the employed ML models from the compu-
tational complexity perspective. An empirical analysis of the time complexity is further
conducted, by presenting the exact running time for the training and testing stages of the
ML models presented in Section 4.2. Table 3 shows the training and testing times, measured
in seconds. We note that for both the training and testing stages we present the average
running time over the six experiments performed during the cross-validation process (as
shown in Section 4.4) together with the 95% confidence intervals (CIs) [54]. During one
cross-validation step 17,164 instances (60% from the data set) were used for training the
models and 8581 (30% from D) for testing. The diameter d of the neighborhood was set to 5
and thus 500 features (i.e., 20 · d2–as shown in Section 3.2) were used for characterizing the
input instances.

The experiments were performed on a workstation desktop with an Intel i9-7960X
CPU, an Nvidia RTX 2080Ti graphic card with 11 GB of dedicated graphic memory (VRAM)
and 64 GB of memory (RAM).

Table 3. Running times (in seconds) for the training and testing stages of the employed ML models.
The time was measured for 6 runs, the average time over these 6 runs is presented as well the 95%
confidence interval.

Stage DNN SVR kNN RF PLS StackPLS StackDNN
Training 8673 ± 113 66.9 ± 1.15 0.01 ± 0.00 138 ± 10.8 0.23 ± 0.00 13.4 ± 0.67 1330 ± 16.8
Testing 0.52 ± 0.02 34.9 ± 0.99 4.40 ± 0.17 0.25 ± 0.01 0.03 ± 0.00 5.03 ± 0.10 3.28 ± 0.18
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When analyzing the values in Table 3 it is important to consider the following notes.
First the StackPLS model also uses our DNN model as part of the base models in the stack.
The DNN model was trained only once, so the training time of the DNN model was not
added to the StackPLS model—that means that the presented training time is measured
only for the other models in the stack. Secondly, one might notice a significant difference
between the StackPLS training time and the RF training time, even though the StackPLS
model contains a RF model as part of its stack, among other models. This difference
appears because the RF model was slightly changed from the standalone version to the
stack versions (both StackPLS and StackDNN) to use multiprocessing for training—the stack
versions use 16 jobs while the standalone one uses only one.

As previously discussed in Section 5.2, the stacked ensemble model StackPLS is the
best performing ML model, in terms of the quality of the results assessed through the
evaluation metrics used. From Table 3, one also observes the efficiency of StackPLS from
the time complexity as well, as both its training and testing stages are fast from the running
time perspective.

6.2. Comparison to Baselines

In order to improve our assessment regarding the best performing ML regressor
(StackPLS with d = 5) identified in Section 5.2, we compared the results with two base-
line QPE products: OHP and the estimation of the rainfall rate computed using the Z-R
relationship. We note that, for our StackPLS regressor, the value 5 has been chosen for the
hyperparameter d as it provided the best results, as previously discussed in Section 5.2 and
illustrated in Figure 6.

As previously discussed, the Z-R formula (Z = a · Rb, where a = 300 and b = 1.4) is a
relationship between the radar reflectivity factor Z and the precipitation rate R (mm/h).
Using the Z-R relationship formula, we need to find the rainfall value R (from the Z-R
formula) using the radar reflectivity values measured in dBZ. We first compute Z with
Z = 10

val
10 , where val is the reflectivity value; then we compute R using R = ( Z

300 )
1

1.4 . In the
following, we denote by ZR the value estimated for the rainfall rate R, computed according
to the Z-R formula.

Table 4 compares the results provided by the StackPLS regressor with d = 5 with
the values obtained by the OHP and ZR baselines. For a precise comparison, the OHP
and ZR values were computed by applying the same experimental methodology as for
the ML model (the testing is repeated six times). The performance metrics presented in
Section 4.4.1 were averaged during the cross-validation process and 95% CIs were provided
for the mean values. The best results are highlighted.

Studying Table 4, we observe that the StackPLS regressor is outperformed in terms of
the average MBnz evaluation measure by OHP and in terms of MAE by both OHP and ZR.
However, for the OHP product we note high values for the 95% CIs, which denotes a lack
of stability. One also observes that ZR outperforms OHP for four performance measures
(RMSE, RMSEnz, MAE and MAEnz), being outperformed in terms of MB and MBnz. The
StackPLS regressor is more stable, as the 95% CIs are much lower then for OHP and ZR.
Overall, out of 12 comparisons, StackPLS won 9 cases, representing 75%.

Table 4. Comparison between the results of the StackPLS regressor and the OHP and ZR baselines.
95% CIs are used for the results. The best values for the performance metrics are marked with bold.

ML Model/Baseline RMSE RMSEnz MAE MAEnz MB MBnz
StackPLS with d = 5 1.734 ± 0.059 3.328 ± 0.11 0.766 ± 0.022 1.596 ± 0.027 0.946 ± 0.02 0.253 ± 0.013

OHP 2.60 ± 0.334 4.507 ± 0.781 0.657 ± 0.082 2.349 ± 0.310 0.694 ± 0.166 0.280 ± 0.107
ZR 2.012 ± 0.067 3.625 ± 0.138 0.608 ± 0.012 1.882 ± 0.047 0.430 ± 0.01 0.170 ± 0.008

For verifying the statistical significance of the improvement achieved by the StackPLS
regressor with respect to OHP and ZR and answering research question RQ3, a one tailed
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paired Wilcoxon signed-rank test [56,57] was applied. The sample of values for all per-
formance metrics obtained for all evaluations of StackPLS was tested against the sample
of values obtained for OHP and ZR. A p-value of 0.016113 was obtained, emphasizing
that the performance improvement achieved by StackPLS was statistically significant at a
significance level of 0.05.

6.3. Comparison to Related Work

As the literature review from Section 2.1 revealed, there are numerous approaches in
precipitation prediction and forecasting using ML models. However, in the field of QPF,
numerical weather prediction models are usually used, while the research in ML-based
QPE based on radar reflectivity data is still scarce. From a meteorological point of view, the
reviewed models, most of which are using weather radar data and rain gauges as input,
seem to outperform the traditional reference QPE methods.

The work that is the most similar to ours is that of Tian et al. [14]. The authors
addressed the same problem as in our work, that of estimating the one-hour precipitation
based on the values of the reflectivity at the first elevations, but both the data model
and the used ML models differed from ours. The authors applied two ML models based
on backpropagation neural networks (BPNN) and convolutional neural networks (CNN)
and compared their results with the precipitation estimation computed using the Z-R
relationship. The input data for the ML models from [14] is a matrix with shape of 25
× 25 which stores the reflectivity data at the first elevation level, while the input data in
our approach is represented as a 20 · d2 real-valued vector, where d is a hyperparameter
expressing the diameter of the neighborhood around a location.

The comparison performed by Tian et al. [14] revealed that the BPNN model out-
performed (in terms of Mean Squared Error) the Z-R baseline method with 75.84%, while
the CNN model surpassed the traditional model with 82.30%. Even if the improve-
ment achieved by our StackPLS regressor with respect to the baseline Z-R method is only
25.73% (in terms of MSE) and 15.71% (in terms of MSEnz), we note that our StackPLS
model obtained better RMSE values than both the BPNN and CNN models proposed by
Tian et al. [14] (with 74.83% and 70.6% lower, respectively).

In addition, the RMSE value obtained by our StackPLS regressor (an average of 1.734)
compares favourably with those provided by the literature approaches for QPE (ranging
from 1.167 mm/h [34] to 1.86 mm/h [28]).

6.4. Interpretation from a Meteorological Perspective

To sustain, from a meteorological perspective, the computational results provided in
Section 5 and the comparison between the 1-hour estimations provided by our StackPLS
regressor and the OHP and ZR baselines, we depict in Figures 7–9 the 1-h rainfall estima-
tions for 27 June 2016 at 18:59 using the StackPLS regressor, OHP and ZR, respectively. The
figures show the rainfall estimation for each geographical location around the radar—one
pixel in the image represents one cell in the grid map (the data model used is the one
presented in Section 3.1). While the data in study were collected during convective seasons
and all selected days contain relevant convective events, this specific interval was selected
for better illustrating the effectiveness of the models, as there is a broad range of Reflectivity
values and the convective storms have an ample geographical extension.

The maximum between the R01 and R02 values in 27 June 2016 between 18:03 and
18:59 are illustrated in Figure 10. Figure 11 presents the map depicting interpolated
weather station data. The interpolation method used is currently in operational service
at the Romanian Meteorological Administration, and it is a regression-kriging model
that combines ground observations with weather radar precipitation estimates and local
topography as ancillary data for generating sub-daily precipitation gridded data sets in
high spatial resolution (1000 m × 1000 m) [58]. The weather radar data employed by the
interpolation method comes from a national mosaic generated from the first two elevations
angles, at 0.01 degree spatial resolution and 1-h temporal resolution.
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Figure 7. The 1-h rainfall estimation, in millimeters, provided by StackPLS with d = 5 for 27 June 2016 at
18:59.

Figure 8. The 1-h rainfall estimation, in millimeters, using OHP for 27 June 2016 at 18:59.

From a meteorological point of view, when comparing the results with the map
depicting interpolated weather station data, the estimations using StackPLS regressor have
outperformed the OHP product currently used in operational activities, as the StackPLS
regressor better identifies both the areas with precipitation and the intensity. Both the
StackPLS regressor and OHP underestimate the precipitation values in the north-eastern
part (the upper right side) of the map, which could be because of the distance from
the weather radar, which in turn leads to a poor scanning of the lower altitude levels
where precipitable clouds usually are to be found. A further observation concerns the
overestimations of StackPLS regressor in the central part of the map, which are due to the
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ground clutter caused by the hilly and mountainous terrain, but this type of error is usually
easily identified by the meteorologist, given its unnatural aspect.

Figure 9. The 1-h rainfall estimation, in millimeters, using ZR for 27 June 2016 at 18:59.

Figure 10. Max R01 or R02 values,in dBZ, in 27 June 2016 between 18:03 and 18:59.

Based on Figures 9 and 11, the Z-R method seems to make the estimation closest to
the ground-truth interpolated map, but this is probably due of the interpolation method
used by the Romanian Meteorological Administration, which employs besides the weather
station data also the radar reflectivity, which would bring the estimation closer to a product
that directly employs reflectivity, in this case the Z-R.
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Figure 11. The map depicting interpolated weather station data, representing estimated 1-h rainfall,
in millimeters.

6.5. Threats to Validity

The study conducted in this paper, more specifically the experimental evaluation and
analyses previously presented may be influenced by some threats to validity and biases that
may affect the obtained results and their interpretation. Following the guidelines proposed
by Runeson and Martin [59], we further discuss the issues which may have influenced the
experimental results and their analysis.

With respect to construct validity, which refers to the validity of the measures used for
evaluation, the performance of the ML regressors proposed for estimation of the OHP has
been evaluated using metrics employed in regression and forecasting: MAE, RMSE and
MB. RMSE is a measure that is more biased towards bigger errors than the other metrics,
thus being able to better express errors for higher values of 1-h precipitation. For reducing
the threats to construct validity, we also used metrics to assess if our models are being able
to accurately estimate the precipitations (i.e., non-zero target outputs): MAEnz, RMSEnz
and MBnz. As future work we intend to also use classification metrics by applying different
thresholds on the precipitation rate, for assessing the performance of estimating high values
(i.e., high values of accumulated precipitation), which are important from the operational
point of view. In addition, throughout our experiments we followed best practices in
building and evaluating ML models such as: model validation during the training, cross-
validation for the model evaluation and statistical analysis of the obtained results.

For minimizing threats to internal validity, which it is about internal parameters and
experimental settings which could influence the experimental results, various architectures
and hyperparameters settings were examined in the experimental part, and the resulting
models have been cross-validated. Regarding the threats to external validity, which refers to
the generalization capability of the StackPLS regressor, our proof of concept used a medium-
sized real data set provided by the Romanian Meteorological Administration. Given that
our hypothesis that the proposed data and ML models provide good performance for QPE
estimation stands, we plan to continue testing the proposed methods on larger data sets.
The experimental evaluation will be further expanded to other real data sets, to test if the
findings of the current study are still valid.

Lastly, regarding reliability, the methodology used for data representation, the ar-
chitectures employed for the ML regressors and the hyperparameters setting, as well as
the testing methodology have been detailed in Sections 3 and 4 in order to allow the re-
producibility of the results. The data used in the experiments is also publicly available
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at [46]. For increasing the accuracy of the obtained results, we applied a cross-validation
experimental methodology by repeating the same experiment six times and we provided a
statistical analysis by computing confidence intervals for the obtained performance metrics.
To ensure a correct interpretation of the results and the validity of the conclusions, the
statistical significance of the improvement achieved by our StackPLS regressor has been
confirmed statistically.

7. Conclusions

The study presented in this paper was conducted with the aim to improve radar-based
rainfall estimates by employing machine learning techniques applied on radar data. A data
model was introduced by representing a data instance (i.e., a weather station in a certain
location) at a time t as a high-dimensional real-valued vector composed of the reflectivity
values at time steps preceding t in the neighborhood of the weather station’s location.
Thus, the learning problem was formulated as finding a mapping between data instances
corresponding to weather stations at a specific time step t in a day d and the rainfall rate
at the location of the weather station at the given time. Six ML models (DNNs, SVRs,
kNNs, RFs and two ensemble learning models) were then employed to estimate the One
Hour Precipitation using the reflectivity data on the first two elevation levels (R01 and R02)
using real radar data provided by the Romanian National Meteorological Administration.
Besides the radar data, we also employed the corresponding hourly precipitation data
collected by rain gauges from Romanian weather stations network.

The computational results highlighted that ensemble learning models are more effec-
tive compared to the individual learners and also bring a statistically significant improve-
ment compared against to the OHP and Z-R baselines. Considering the RMSE performance
metric, our StackPLS regressor with d = 5 outperforms the OHP baseline with 33.3% and the
Z-R baseline with 13.82%. The results of our study strengthen the conclusion from previous
approaches from the literature [28] that ML-based methods, as opposed to QPE methods
based on the Z-R relation, are able to automatically uncover the dynamics and movement
of weather systems and to connect the learned patterns to a specific geographic location.

The research questions stated in Section 1 have been answered. As an answer to
RQ1 and RQ2, our experimental findings empirically supported the hypothesis that ML
models are effective models for making estimations of the OHP using the reflectivity data
on the first elevation levels (R01 and R02). In addition, the ensemble learning regressor
StackPLS increased the performance of estimating the rainfall rate compared to individual
ML regressor. The statistical significance of the improvement achieved by the StackPLS
model with respect to OHP and ZR has also been highlighted by applying the Wilcoxon
signed-rank test, and thus research question RQ3 has been answered as well.

RQ2 and RQ3 have been answered from the viewpoint of operational meteorol-
ogy as well. The first two radar elevation angles provide enough information to the
ML models in order to make sufficiently good estimations of the rainfall accumulation
over 1-h intervals, which is among the information of highest importance in meteorol-
ogy and hydrology, given its impact on human lives and the economy. Although the
algorithm was developed for estimating the rainfall rate over 1 h, it can be adapted for
sub-hourly intervals, which could provide timely information on dangerous accumula-
tions. Further on, StackPLS could be integrated in the current 24-h precipitation accumula-
tion methods that employ hourly estimates based on the Z-R relationship. As shown in
Section 6, StackPLS outperforms both statistically and visually the current operational
methods employed by nowcasting meteorologists of the Romanian Meteorological Admin-
istration. The results presented in this paper, and in similar works, strengthen the trust
of nowcasting meteorologists in ML methods and consequently promote the adoption of
ML-based solutions in operational meteorology.

Further work will be conducted towards enlarging the data set considered in the
experimental part and using other real radar data sets for a better validation of the research
findings from this paper. As additional lines of improvement, alternative data models
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and the integration of heterogeneous data sources will be further investigated. From a
computational perspective, we also aim to transform the regression task into a classification
one (by using various rainfall rates) and to investigate the classification performance
as well. By using classification metrics at different thresholds we will be able to better
assess the performance of estimating high values of precipitation, as regions with high
values of accumulated precipitation present a higher relevance from the meteorological
perspective. Since the current study did not focus on particular types of precipitation, future
extensions of the current work may also address the regression task for particular types
of precipitation [60], which may help increase the performance of the machine learning
regressors.

From a meteorological point of view, immediate improvements could be brought by
increasing the number of ground stations that are employed in the experiment, by using
data from other public databases and by removing ground clutter from the reflectivity
data. For the evaluation of the models, alternative methods could be identified for the
interpolation of the ground stations data.
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