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Abstract: Remote sensing is the technique of acquiring data from the earth’s surface from sensors
installed on satellites or on manned or unmanned aircrafts. Its use is common in dozens of sectors of
science and technology, agriculture, atmosphere, soil, water, land surface, oceans and coasts, snow
and ice, and natural disasters, among others. This article focuses on an in-depth literature review of
some of the most common and promising disciplines, which are asbestos–cement roof identification,
vegetation identification, the oil and gas industry, and geology, with the aim of having clarity on the
trends in research on these issues at the international level. The most relevant problems in each sector
have been highlighted, evidencing the need for future research in the area in light of technological
advances in multi- and hyperspectral sensors and the availability of satellite images with more precise
spatial resolution. A bibliometric analysis is proposed for each discipline and the network of related
keywords is discussed. Finally, the results suggest that policymakers, urban planners, mine, and oil
and gas companies should consider remote sensing as primary tool when planning comprehensive
development strategies and in field parameter multitemporal analysis.

Keywords: remote sensing review; vegetation index; oil spill detection; soil identification

1. Introduction

Remote sensing is the process of detecting and monitoring the physical characteristics
of an area by measuring its reflected and emitted radiation at a distance [1–5]. Electromag-
netic (EM) energy, produced by the vibration of charged particles, travels as waves through
the atmosphere and the vacuum of space [6–8]. These waves have different wavelengths
(the distance from wave crest to wave crest) and frequencies; a shorter wavelength means
a higher frequency. Some waves, such as radio, micro-, and infrared waves, have longer
wavelengths, while others, such as ultraviolet rays, X-rays, and gamma rays, have much
shorter wavelengths. Visible light is in the middle of that range of long- to short-wave
radiation. This small portion of energy is all that the human eye is capable of detecting.
Instrumentation is needed to detect all other forms of electromagnetic energy (see Figure 1
taken from [2]).

Some waves are absorbed or reflected by atmospheric components, such as water
vapor and carbon dioxide, while some wavelengths allow unimpeded movement through
the atmosphere; visible light has wavelengths that can be transmitted through the atmo-
sphere. Microwave energy has wavelengths that can pass through clouds, an attribute used
by many weather and 5rftcommunication satellites. All things on earth reflect, absorb, or
transmit energy, the amount of which varies by wavelength, creating a spectral fingerprint,
called a spectral signature, unique to each object [9]. Remote sensing sensors sense the EM
waves reflected/emitted by the objects on the Earth’s surface. The sensors record these
waves as images depending on their spectral capabilities.

Spectral sensors collect remote sensing images taken via drone, plane, or satellite.
They can be used in the environmental field to monitor changes in temperature in the
land surface, oceans and in the topography of the ocean floor [10,11], map great forest
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fires [12–14], track clouds to help predict the weather [15,16], or observe volcanoes erupt
and help monitor dust storms [17,18]. Additionally, among its most common applications
are the monitoring of the growth of a city through multitemporal analysis [19,20], the
identification of objects on the ground, military, intelligence, commercial, planning, and
humanitarian applications, among others [21].
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As remote technologies continue to develop, their use is becoming more widespread
and multidisciplinary [22–29]. Often, review works focus mainly on one highly specific
topic [22–29], while a comparison between remote sensing applications is neglected.

The present study focuses particularly on the selected applications of remote sensing
for civil and environmental engineering, such as the identification of asbestos–cement
roofs, vegetation and its health status, oil and gas, and geological applications. The
authors acknowledge the fact that many other applications of remote sensing exist and
are of primary interest in the academic world; nevertheless, in this work, the topics were
narrowed for extension. This review includes the most relevant papers on the matter in
the last decades found mainly in Science Direct, Scopus, and SpringerLink databases. A
historical cross section of research on the subject aims to detect past and present trends,
thinking about possible developments in the coming years.

2. Methodology

The thirty most relevant articles of each topic treated were identified considering the
number of citations and the relevance of the journal. They were read in order to be filtered,
tabulated, and finally included in the discussion of this document. This review reports a
chapter for each main application. Where relevant, the keywords network was analyzed.
Finally, an original discussion of the spectral signature is presented, which is useful for the
reader while comparing different applications for similar materials to identify a pattern
that is useful for future policy makers’ decisions and future research.
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3. Remote Sensing and Asbestos–Cement Roofs

In the 1940s to 1990s, asbestos was widely used as an additive in construction ma-
terials [30–32]. This mineral is formed by a group of fibrous microcrystalline hydrated
silicates, among which Chrysotile stands out in the form of serpentines. On the other hand,
thermolite, crocidolite, actinolite, anthophyllite, and amosite are classified as part of the
amphibole’s family. All of them are considered carcinogenic to humans by the International
Agency for Cancer Research (IACR) and by the World Health Organization (WHO) [33–35].
The risk of this mineral to humans has been known approximately since the first decades
of the 20th century. The danger is mainly due to the inhalation of fibers that, penetrating
into the respiratory system, cause permanent damage in humans, producing diseases such
as asbestosis, pleural thickening, neoplastic diseases such as lung cancer, mesothelioma of
the pleura, and peritoneum, among others [36]. The use of asbestos on a large scale began
around World War II, with an annual world production of 1 million metric tons in 1950 up
to 5 million in 1975. In 2000, a cumulative world production of approximately 173 millions
of tons was estimated [37]. More recently, in 2021, independent agencies estimated that the
annual world production of asbestos was still at 1.29 million metric tons [38], mainly in
Russia, Kazakhstan, China, and Brazil.

Due to the great impact on public health that occurs due to the inhalation of asbestos
fibers, it is vitally important to invest in methodologies that seek to estimate the amount of
this mineral in the urban environment, where people are more exposed. This is especially
the case for countries that have recently prohibited the use and commercialization of the
material, as it would allow the competent authorities to formulate strategies to mitigate the
environmental and public health problem.

One of the first steps to mitigate the public health problem [37,39–42] is the identifi-
cation of the distribution of asbestos–cement roofs through remote sensing from spectral
images. As evidenced in the literature [30,43,44], for the capture of this type of image, mul-
tispectral sensors are particularly used, with a band range between 400 nm and 2400 nm.
The sensor can be mounted on an unmanned aircraft (drone), on a manned aircraft, and
on satellites.

The relationship between the spatial resolution (SRE) and the economic factor is one
of the most relevant factors when choosing between the three modalities mentioned above.
The unmanned aircraft guarantees the SRE of the order of centimeters, with a flight height
between 100 m and 300 m [45,46]. However, when it comes to identifying large areas, such
as cities or entire regions, this tool has strong logistical limitations; companies providing
this service are scarce and the costs are very high. On the other hand, the overflight with a
manned aircraft could reach an SRE between 0.4 m and 2.0 m with a flight height between
500 m and 1500 m. The relationship between the SRE and cost is acceptable, although it
costs between 600 and 1000 USD per km2, which makes it a common tool in developed
countries and scarcely used in developing countries such as those in South America [47].
The third option, through satellite images, has been highly debated in the international
scientific community in recent years. This is because until 2020, the SRE of WorldView-
3 images had 7.5 m pixels (56.25 m2) for eight short-wave infrared (SWIR) bands [48].
Considering that most roofs have a dimension equal to or less than 56.25 m2, this method
is not effective according to the literature [44,49]. However, to date, thanks to technological
advances, the satellite images that are on the market offer an SRE of 3.70 m (13.69 m2) in
the SWIR band range between 1000 nm and 2400 nm [50], and an SRE of 0.30 m (0.09 m2) in
the band range between 400 nm and 1000 nm (eight bands in the visible and near-infrared
(VNIR) region). This makes them attractive since they have limited costs and do not require
flight permits or particular logistics to purchase them directly from official suppliers.

In the last two decades, the use of remote sensing has proven to be a good instrument
to identify and evaluate the condition and material of roofs [30,51,52] (Table A1). There are
different methodologies for classifying asbestos–cement roofs through the use of multispec-
tral and hyperspectral images, which focus on algorithms such as object classification or
object-based image analysis (OBIA) [53], Spectral Feature Fitting (SFF) [54], Spectral Angle
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Mapper (SAM) [43], Support Vector Machine (SVM) [55], decision trees and Random Forest
(RF), discriminant function analysis (DFA) [56], and the maximum likelihood method
(MLC), among others. The use of Convolutional Neural Networks (CNNs) has also been
implemented [44] for the identification of asbestos–cement tiles with the use of aerial RGB
and color–infrared (CIR) imagery.

OBIA is characterized by simulating the way in which human beings perceive and
recognize objects in the real world. The analysis begins by segmenting an image into
homogeneous regions or objects that roughly represent real-world objects. This approach
is based on the idea that the information in an image should be interpreted as significant
objects rather than individual pixels, classified from spectral, spatial, textual, and contextual
data [53]. On the other hand, the SFF classification method is responsible for comparing the
image pixel spectrum with a reference spectrum from a spectral library or a field/laboratory
spectrum. [54]. Something similar is conducted by the SAM and SVM algorithms. In the
case of SAM, this allows one to quickly map the similarities between the image spectra
and the reference spectra by calculating the angle formed between the spectra. This
algorithm is used in the ENVI® software [57]. Similarly, the SVM is a supervised machine
learning statistical algorithm that analyzes the data and recognizes patterns based on a
decision plane that defines the decision boundary that separates objects with different
class memberships [53]. On the other side, RF is a machine learning algorithm that works
based on the bagging method and the classification and regression tree, in which each
tree contributes a single vote to determine the most frequent class in a set of variables
data [58,59].

In attempts to identify asbestos–cement roofs, the trend is to increase the overall
accuracy of the classification by reducing the error of the algorithm through the delimitation
of the construction areas. Abriha et al. (2018) [56] carried out the identification of asbestos–
cement tiles in the city of Debrecen in Hungary through a mask with the normalized digital
surface model derived from a Digital Terrain Model and a digital surface model using a
LiDAR study, in addition to another mask with the values obtained from the Normalized
Difference Vegetation Index (NDVI). At the time of classification, the discrimination of tiles
was made by those that were shaded and sunny. However, the classification accuracy was
6–7 percent worse compared to the simple approach that did not discriminate, so it is not
particularly efficient to perform this procedure.

In another study carried out in the same city mentioned above by Szabó et al. (2014) [51],
the same procedure was carried out for the delimitation of the construction areas without
including the LiDAR model, giving a global precision of almost 80% against 85% where the
model was applied. On the other hand, it was shown that the DFA and RF classification
methods that were applied by [56] showed better results compared to SVM, SAM, and
MLC [51].

Tommasini et al. (2019) [30] filtered areas in image that were not covered by build-
ings using a vector mask with a layer of cadastral forms. This involved a topographic
map where all the buildings related to the selected area were described using a vector
graphics editor. The clipping operation was performed using functions offered by the
free software QGIS. Something similar was performed in the study carried out by Cilia
et al. (2015) [52] in five municipalities located in northern Italy, where the cadastre map
was superimposed on a multispectral infrared visible imaging spectrometer (MIVIS) to
improve the classification. In addition, roofs with surfaces less than 36 m2 were excluded
due to the 3 × 3 m resolution of the images. However, Frassy et al. (2014) [43] established
that MIVIS data from the Valle d’Aosta region, Italy, with a spatial resolution of 4 × 4 m,
assume that at least a 3 × 3 pixel window containing asbestos–cement roofing is needed for
correct detection to occur, classifying roofs larger than 144 m2 with reasonable confidence.
These assumptions can influence the accuracy of the classification. The authors found a
43% correct classification independent of the roofs size and 75% when only roofs bigger
than 3 × 3 pixels were considered. Krówczyńska et al. (2016) [44] found similar results
with an accuracy of 60% for surfaces up to 300 m2 and 20% for roof surfaces smaller than
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3 × 3 pixels. On the contrary, Cilia et al. (2015) [52] obtained better results by applying
the same algorithm with precisions of 86% and 89%, respectively, showing the impact of
spatial resolution when making the classification. Hence, the finer the spatial resolution,
the better the performance of the classification algorithms.

Methodologies to improve spatial resolution are available, such as pansharpening,
which is an improvement in the geometric resolution of multispectral bands with the finer
resolution of the panchromatic band. This method tends to affect the spectral profiles of the
objects; nevertheless, it improves the spatial characteristics. This method is applied when a
pixel is larger than a possible house, so its values are mixed with those of the environment,
making the spectral profiles not accurate. Pansharpening has been used in different works
found in the literature, such as Abriha et al. (2018) [56], where this technique improved
the classification by 2–3%. It was also used in the cities of Kajang and Bangi, Malaysia, for
the determination of asbestos–cement tiles in buildings, achieving an accuracy of up to
93.10%, [53].

These methods from hyperspectral and multispectral images present in some cases
low resolutions or little information within the spectral range. To ensure that they cover a
spectral range and a high spatial resolution, the costs increase significantly. For this reason,
over time, other methodologies have been studied that have high spatial resolutions, do
not need spectral information, and are cheaper. Among these is the use of CNNs, which
were introduced theoretically for the first time by LeCun et al. (1989) [60]. However, the
first practical use was probably by Krizhevsky in 2012 [61]. The network was named
AlexNet and was used to classify images from the ImageNet library. Neural networks
are characterized by having greater precision than other methods used. Nevertheless, to
classify asbestos–cement tiles, it was used for the first time by Krówczyńska et al. (2020) [44]
in Checiny, Polonia. RGB and color–infrared (CIR) images were used and global accuracies
of 89% were obtained. According to the authors, this could be a more economical and
practical method for the identification of both roof types and other areas of interest.

Remote sensing has been widely studied worldwide, mainly for the identification of
vegetation, minerals, and oil spills. However, in the case of asbestos–cement tiles, studies
are still limited in the literature. The first part of Table A1 shows an overview of the most
recent and cited works found in the literature in the matter of asbestos identification. A
comparison between the classification results in WV3 satellite images (multispectral) and
hyperspectral images is not found in the literature. This would allow for an assessment
of the technical–economic feasibility of the two options, favoring greater awareness in
decision making by authorities and professionals.

The words Remote sensing and Asbestos were searched for in Scopus, resulting in
708 works; then, through the free platform VOSviewer, the network of related keywords
and their distribution per year were obtained (Figure 2). It is clear that in general, the issue
of the remote sensing of asbestos–cement has had its greatest relevance in the last 20 years,
due to strict regulation, especially in European countries [62], which has led to a greater
sensitivity in the authorities and the academic world on the subject. The use of the words
airborne remote sensing, MIVIS, multispectral infrared marked the 2000s [54], especially in
studies in Italy, which also appeared as a keyword; however, in the last 5 years, the most
trending keywords have been hyperspectral, machine learning, satellite data, and satellite
imagery, showing an evolution in technology towards more precise sensors with higher
bands both in aircrafts and at a satellite level [56,63]. The need to have greater spatial
resolution and the costs of these images are the two contrasting factors that dominate the
academic and professional scene. The dominant countries in these investigations are the
United States, Italy, and China; however, adding the studies of European countries, it is
noted that this continent represents the true center of research on asbestos and remote
sensing worldwide. Asia also plays an important role as China, India, and Malaysia are
dominant countries in these investigations, while Latin America has a deep lack of studies.
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4. Remote Sensing and Vegetation

Vegetation studies are carried out for the planning and management of land use
through studies of vegetation cover, the determination of changes caused by fires, the
evaluation of water stress in plants, or the evaluation of stress in the vegetation caused
by water or atmosphere contaminants, among others [64–66]. Remote sensing allows one
to see places that are difficult to access and allows for clarity when estimating changes or
anomalies in the vegetation. For multispectral imagery, images from Landsat, Sentinel, or
QuickBird satellites are commonly used [67,68]. Hyperspectral images are hardly ever used
for this purpose according to the literature found.

Table A2 shows the development of the most common vegetation indices (VIs) over
the last 50+ years; more IVs can be found at [69]. Among these, one of the first to be
conceived was the Normalized Difference Vegetation Index (NDVI), which is attractive
for its ability to rapidly delineate vegetation and vegetative stress. It is widely used in
commercial agriculture and in land-use studies. For reasons related to its long history, its
simplicity, and its reliance on readily available multispectral bands, the NDVI has become
the most popular index used for vegetation assessment [70]. This index measures the
relationship between the energy absorbed and emitted by plant covers through intensity
values of the greenness of the area, the amount of vegetation present on a surface, and
its state of health or vegetative vigor [71]. The NDVI relates the information acquired in
the red and near-infrared (NIR) bands with the state and characteristics of the vegetation
covers through the normalized difference of the two bands whose range of variation is
between −1 and 1. Negative values (−1) to zero (0) are bare surfaces, while values from
zero (0) to one (1) show the presence of plants [72]. Dense vegetation is given from values
between 0.5 and 0.7 [73]. Another index used for vegetation is the Simple Relation Index
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(SR), which reduces or eliminates the influence of the soil on solar reflectance values. It is
considered as a structural index that allows for the estimation of leaf area index values [71].
On the other hand, the Soil-Adjusted Vegetation Index (SAVI) minimizes the effect of the
soil on the characterization of the vegetation, especially on partially covered surfaces [71].

Different combinations of bands were made in order to analyze the most appropriate
combinations for the study of the detection of pests in the vegetation between the Misantla
and Coatepec coffee regions in the state of Veracruz, Mexico [73]. For this, Landsat satellite
images with 11 bands were taken, with each one used to record the characteristics of
surface objects such as soil, vegetation, and water. The methodology consisted of three
main steps: obtaining digital images by flying a drone equipped with a multispectral
sensor, characterizing the levels of the disease in a field-monitoring plot, and the digital
processing of the images to obtain eleven vegetation indices compared in different levels of
severity. These were evaluated from the Shapiro–Wilk, Levene, ANOVA, Kruskal–Wallis,
and Wilcoxon statistical tests [74].

On the other hand, for studies carried out in areas affected by fires [75,76] as in Las
Peñuelas in Moguer, Spain, vegetation indices were calculated for the evaluation of the
recovery of plant vigor. In this case, cartographic maps were made that allowed one
to observe the levels of recovery or retreat of the affected vegetation. Images from the
Sentinel 2 and Pléaides satellites and images obtained in flyovers were used. Imagery was
corrected for dark pixels produced by atmospheric scattering and then they compared with
information obtained in the field to assess the reliability of the classification.

In general, Table A2 shows that IVs have their origins in the ‘60s–‘70s and had their
great development during the ‘90s and ‘00s. Although, in the last decade, new method-
ologies and advances have also been proposed. However, some fundamental aspects are
evident. The first is that with technological advances, the concentration of researchers has
focused on improving the quality of images with a greater number of bands in satellite
sensors and smaller pixels on the ground. The second is that almost all the new indices
have been developed in the United States, denoting a predominance of interest from the
large universities and companies of this country on the subject, probably due to dominance
over technology, the large extensions of vegetation in the country, and attention to envi-
ronmental issues. Additionally, it was observed that the great concern was initially the
reduction in atmospheric disturbance; however, with the arrival of specialized software
on the subject, IVs have focused more on the preliminary identification of the state of the
vegetation to correctly identify the use, timing, and dosage of treatments to intensify crop
production, especially corn [77].

It is felt that the development of new indices is not as essential as in the past and
that agreement has been reached on this. The academy and companies in the last decade
have focused mainly on multitemporal studies of vegetation, evaluating water stress, and
deforestation [78].

Other methodologies for the delimitation and calculation of vegetation areas are found
with the use of spectral libraries that allow for the incorporation of new representative
spectral signatures. For example, in Manaus, Brazil, Landsat satellite images were used, and
the spectral library of urban materials based on categories of urban land cover components
was created. The spectra that had a high probability of confusion with other classes of
materials were eliminated and the most representative member of each class was chosen.
To identify the most representative spectra of each class of material, the root mean square
error (RMSE) was applied [79,80]. The end product of this analysis was a set of fractional
abundance maps for each material class (i.e., vegetation, impervious surfaces, soil, and
water). A similar methodology was applied in Yellowstone National Park, USA, which
aimed at mapping the vegetation cover. In this study, a spectral library of reflectance
signatures was created by pixel averaging over the known occurrences of 27 vegetation
cover types in the study area [81].

Scopus showed that there were 43,651 works that included the words Remote sensing
and Vegetation in the keywords, abstract, or title. Figure 3 shows the most common results
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of the associated keywords. In terms of work frequency, the subject has had its greatest
relevance in the last 20 years, probably due to greater attention to climate–environmental
issues by institutions and companies. China, the United States, and Europe are the areas
where the subject is most studied. Asia also plays an important role as China, India, and
Japan are the dominant countries in these investigations, while Latin America again showed
a trend that was similar to the case of asbestos.
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5. Remote Sensing and Oil and Gas

Multispectral remote sensing is an emerging technology for the oil and gas industry. It
has experienced an enormous advancement in relatively new fields such as geosciences for
the exploration of hydrocarbons [82]. Remote sensing is a support tool for hydrocarbon
exploration as it allows access to areas of physical inaccessibility, guaranteeing control of the
threats caused by oil spills. Oil is an essential asset for societies; however, its transfer turns
out to be difficult, since it is necessary to manage several transfers to take the hydrocarbons
from the deposits to the refineries, the industries, and later the final clients [82]. During
these transfers, spills may occur on land or in the water. In the latter case, waves, wind, and
ocean currents can spread large slicks across open water in a matter of hours [83]. The early
detection of anthropogenic oil slicks can enable the timely protection of critical habitats
and limit economical damage [84].

In San Juan Capistrano, California, a remote sensing study was carried out in which
the authors presented thermal infrared spectra of oil slicks made from five oil samples of
different compositions. Different thicknesses of oil in water was tested in a laboratory to
determine the reflectance spectra [85]. A similar methodology was applied by [86] in which
three annual experiments of artificial mesocosms with oil in ice were carried out at the Sea
Ice Environmental Research Facility (SERF) of the University of Manitoba, Canada, during
2016–2018 in order to see the behavior of oil in the ice.

On the other hand, in the Niger Delta (Nigeria) [87,88], Landsat images were acquired
for the period of 2000–2018, and the NDVI was applied to determine the changes in
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vegetation caused by oil spills. Another similar procedure was the case study in Deep
Horizon (2012) and Campo Basin (2011), in which they used resolution images to monitor
oil slicks using the fluorescence/emissivity index and image analysis, using a multispectral
sensor 36-band with a resolution of 250 m to 1000 m on the EOS AM (Terra) and EOS PM
(Aqua) satellites [89]. The study did not show acceptable results since oil does not have
specific spectral characteristics that can be used for direct detection. However, in some
circumstances, oil can have a silvery appearance with a reflectance higher than that of the
background [82].

Another use of satellite images is that applied to the coast of Lake Albert (Africa), in
which time series of multisensory satellites with images from 1999 to 2008 were used. These
images were corrected for the atmosphere and radiometric calibration; subsequently, a
comparison was made between the anomaly map generated by multisensor satellite images
and the map with superimposed oil and gas fields. In the comparison, it was shown that
all the anomalies are located in areas with high gravimetric gradients, so it was concluded
that microleakage maps can provide new high-quality data, complementary to those of
traditional geophysics, at an affordable cost and with no need for exploration licenses to
help the oil and gas industry reduce exploration risk [82]. This methodology was also
applied in Lake Turkana (Africa), in which satellite multispectral data were used to detect
microfiltration signals. These were grouped into spectral anomalies according to land
use, geographic, geological, and subsoil variables. The study gave good results since an
underground accumulation of hydrocarbons was evidenced [90].

Scopus showed that works with the keywords remote sensing and oil and gas were
not very frequent as 1176 documents were found, which was probably because most of the
works were carried out by private companies that do not publish their results due to issues
related to copyright, patents, and industrial secrets, as this is a strategic economic sector.
Appendix A reports some of the most relevant papers on the matter, confirming that most
of them are related to hydrocarbon seepage. Once again, the United States and China led
the investigations, followed by the Russian Federation.

6. Geology Applications

Remote sensing has become a very important instrument, being used in various inves-
tigations related to the identification of minerals [91–93], lithology mapping [94–96], and
environmental geology due to contamination by mining areas [97]. Mineralogical studies
and lithological mapping have been performed in different climatic and tectonic conditions
where hyperspectral imaging for VNIR and SWIR spectral ranges is common [98]. Never-
theless, according to [99], most minerals are identifiable in the SWIR and Long Wavelength
Infrared (LWIR) ranges.

The basis on which a spectral processing technique requires a priori reference data
or not is used to establish a categorization scheme. In the case of no reference data, the
method is usually able to directly use the available spectral patterns in a pixel (or measured
spectra). Additionally, there are techniques that try to describe the spectral content of a pixel
according to some predefined representative facts, known as reference data or endmembers.
This initial difference gives rise to two different categories: the knowledge-based approach
and the data-driven approach, which contain different classifiers [100].

Other forms for the identification of mineral assemblages is from relation indices, sim-
ilar to the case of vegetation indices [101]. The Index Data Base (IDB) is a tool for working
with remote sensing indices available on the web [69,102]. It provides a quick overview
of which indices are usable for a specific sensor and a specific topic. It is a valuable tool
for indices developed before 2012 based on the Advanced Spaceborne Thermal Emission
and Reflection Radiometer sensor (ASTER), 15 bands from 520–11,650 µm, resolution of
15–90 m. Carbonate, clay, ferric iron, and SiO2, among many other indexes to identify
minerals, are reported in the literature. Clearly, for this type of large-scale application, high
resolution is not needed. The use of hyperspectral images with a spatial resolution of less
than 30 cm is possible thanks to modern technology; however, the information requires



Atmosphere 2023, 14, 172 10 of 35

extraordinary storage and a consequent computational capacity that is not very accessible
at a commercial level.

An applied step in methodologies for geology that can be diligent within other disci-
plines would be the use of Linear Spectral Unmixing (LSU) classifiers, which is a spectral
unmixing tool that decomposes a reflectance source spectrum into a set of end-member
spectra. This classifier showed better results compared to others that were used. According
to [91], the LSU indicates a better technique for estimating the distribution of pure and
impure pixels compared to methodologies such as SAM and SFF that classify all pixels as
pure when they are actually impure. Another technique that performs a partial unmixing
of spectra is the CEM algorithm, applied by [103], which is considered a powerful sub-pixel
demixing analysis tool for analyzing ASTER reflectance data.

Machine learning algorithms are known because they work from training data sets.
In a study carried out by [104] to obtain a lithological map in the greenstone belt of the
Hutti area, India, the impact of the quantity on the performance of these algorithms was
evaluated, for which a reduction of 15%, 30%, and 45% was made of the total samples,
showing that there was a slight reduction in the global accuracies. In the case of LDA,
the precision was reduced by 5%, in RF by 2%, and in SVM by 1%, thus showing that the
least sensitive method to the size of data sets was SVM compared to the other two. This
statement was validated in other studies [105], where SVM showed better results than other
methodologies such as SAM using a relatively low number of sampling data. However,
the SVM method is not widely used for lithology mapping; it is an effective algorithm
for remote predictive mapping for remote areas as well as for updating existing lithology
maps. It generates a high precision of up to 85% as in the lithological cartography of the
Souk Arbaa Sahel region belonging to the Sidi Ifni located in southern Morocco [106].

Over time, new methodologies that are different from the conventional ones have been
applied, such as the Convolutional Neural Networks (CNNs), which have presented better
results. The authors of [96] presented a comparison of this methodology based on other
conventional methodologies such as SAM, SID, FCLSU, SVM, and RF, showing that two-
dimensional CNNs and three-dimensional CNNs were approximately 2.5–12% higher than
that of SVM and RF and approximately 12−25% higher than that of SAM, SID, and FCLSU.
Therefore, the CNN 2D and CNN 3D algorithms improve the classification of hyperspectral
TIR remote sensing images, as it offers a better classification performance, higher noise
immunity, and more accurate boundary classification. It should be noted that with this
method, the global accuracies were up to 98.56%. Despite other classification methodologies
being better for the identification of minerals and the generation of lithological maps such
as SVM, RF, and CNN, the most used classifier is SAM which, as mentioned above, does not
work very well when there are not enough training data [28,96,107]. In geological studies,
it is quite difficult to obtain a lot of training data due to difficult access areas as in the case
of [105] where a lithological map of an area formed by the Teide-Pico Viejo stratovolcano
was made.

In unsupervised classification techniques, where classes are created purely based on
spectral information and not manual visual interpretation, methods such as K-means and
the Iterative self-organizing method (ISODATA) are most common. However, this topic is
outside the scope of this work.

Geological applications of remote sensing are among those that have generated interest
in researchers and companies since the 1980s, aimed at characterizing and monitoring large
extensions of soil, the search for precious minerals, and lithological studies. Appendix A
shows a summary of the most relevant and mentioned works in the literature on the subject.
It can be noted that this field has the greatest variety of applications, mostly focused on
the identification of minerals; however, there are also more advanced applications, such as
in structural geology, crustal deformation, and geological lineaments. Scopus shows that
there are 16,326 works to date with the words “Remote sensing” and “Geology”. Figure 4
shows the most common results of the associated keywords. In terms of the frequency
of keywords, the same frequencies per country are evident as in the case of asbestos,
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vegetation, and oil and gas. On the other hand, relationships between geological and
geotechnical studies with climate change, glacial geology, risk, and landslides are noted.
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7. Spectral Signature

One of the key points in remote sensing studies in any of its fields of application is
the response of materials to the incidence of a light ray and their identification through
the spectral signature [49]. Each material has a different spectral signature, which varies
depending on its physical–chemical and morphological characteristics and its capacity to
absorb, transmit, or reflect the energy received. The latter is measurable through reflectance
as a function of wavelength [108]. The most reflective part of the electromagnetic spectrum
is in the wavelength range of 350 nm to 2500 nm, so it is within these values that most
remote sensing research and applications are carried out [109].

Figure 5 shows some of the spectral signatures that can be found in the fields of
application mentioned above: asbestos, vegetation, oil and gas, and soil. Most of these
spectral signatures can be found in the U.S. Geological Survey (USGS) spectral library, made
with laboratory, field, or aircraft-mounted spectroradiometers and covering the spectrum
from 200 nm to 200,000 nm depending on the measurement performed [110].
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The spectral signatures of asbestos are part of an ongoing investigation by the authors,
where an aircraft mounted with a HySpex V620 hyperspectral sensor was used to collect
the information. Asbestos, having different types of fibers, can present different spectral
signatures according to the material under study; however, the greatest variations in
reflectance occurred near the SWIR wavelengths between 1195 to 1415 nm and between
1742 and 1974 nm, which makes this range quite useful in its identification by means
of classification tools such as SAM or SVM [111]. The state of deterioration and type of
asbestos fibers significantly modify the spectral signature [63,112]. Asbestos–cement roofs
with a nondeteriorated cement matrix may present greater energy reflection; on the contrary,
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those painted or protected with waterproofing usually have lower energy reflection [63,112].
Figure 5a shows some spectral signatures of asbestos–cement roofs in the city of Cartagena,
Colombia. Higher reflectance values in the NIR and SWIR zones were observed, with
some reflectance peaks near 1080, 1250, and 1550 nm. However, low spectral values in the
visible range could differ significantly, while the spectral values for longer wavelengths are
similar. Some asbestos–cement ceilings were painted different colors, and this produced an
effect on the spectral signature of this material, reflecting a high reflectance near the ranges
corresponding to the color; in the case of a blue ceiling, there was a modification that was
significant near 490 nm, and for the red ceiling, an increase in reflectance was seen from
620 nm to 900 nm, passing from the green band to the first part of the near infrared. In both
cases, the spectral signature maintained its shape, but with higher reflectance values.

In the case of the oil and gas industry, the application of remote sensing for the
identification of contamination from oil spills has been of the utmost importance. During
these events, it is necessary to know where the contaminant moves in the water and the
magnitude of the places affected. In an investigation performed by [113] on an oil spill from
the Deepwater Horizon platform in Barataria Bay, Louisiana, the authors found that the
oil spectral signature was affected according to the materials that were in the background,
such as water, sediment, or vegetation. Figure 5b shows the series “Oil Black Poolon
Beach” and “Oil Water Emuls”, where the difference between them was that the first one
was on beach sand and the second one was in the water. Another important factor is the
mixing ratio and the thickness of the oil layer, both of which can cause the oil to emulsify
and therefore change the spectral signature. In the same event as the Deepwater Horizon
spill, the authors of [114] found that the proportion of oil:water that yielded the highest
reflectance values was 40:60 and that the thickness of the layers, even if they varied by a
few millimeters, caused the reflectance to vary considerably.

The vegetation, for its part, presented low values of reflectance in the visible range,
except for a peak near 500 nm where the green band is located; this was due to the
photosynthesis processes of the plants that absorbed most of the energy in the other
wavelengths. However, advancing in the spectrum, near 700 nm where it is known as
the “red-edge region”, the spectral signature increased the reflectance values, maintaining
a similar trend until crossing the midinfrared, where there was a large absorption of
energy due to the water content in the plants. Again the reflectance values rose in the
SWIR area [115]. It is for this reason that the vegetation indices are mostly related to red
and near-infrared wavelengths and some more recent ones use SWIR for applications of
nonphotosynthetic processes [116]. In Figure 5c, the typical behavior of vegetation in four
different species, i.e., Aspen Leaf A (Denver, CO [110]), Conifer Meadow Mix (Yellowstone
Park [81]), Maple Leaves (Golden, CO [110]), and Mango Leaves (Cartagena, Colombia)
is observed, in which the reflectance values vary but the trend and shape of the spectral
signatures are similar to each other. These changes in reflectance allow one to know the
type of vegetation under study and contribute to analyzing changes within the vegetation,
such as the stress levels, leaves’ health, and overall quality of the vegetation [117,118].

The soils presented higher reflectance values than the other categories in the entire
spectrum. They tended to reflect electromagnetic energy in a greater proportion. Most
of the time it was related to the chemical composition of the soil under study and its
relationship with the ecosystem in which it was found [118–120]. The characteristics of
each type of soil made it possible to find some absorption peaks in the spectral signature.
In Figure 5d, it is observed that the greatest energy absorption was found in the SWIR part;
however, the highest reflectance values were maintained in this area. In the case of the
Calcite.5+.Ca-Mont.5 (mixture of Calcite and Montmorillonite) and Limestone signatures,
the authors of [110] describe that the absorptions in the SWIR are related to the interaction
of C-O within the chemical composition and some organic impurities of the materials,
giving the signature a negative slope in this short wave zone. A similar effect also occurred
for Kaol + Muscov (mixture of Kaolinite and Muscovite), where it was observed that a
band was highly influenced by Muscovite in the 2200 nm zone. These patterns can explain



Atmosphere 2023, 14, 172 14 of 35

the behavior of the Limestone Gravel series, from the city of Cartagena, which presented
combinations of the first two materials mentioned.

8. Conclusions

In this work, world trends on remote sensing related to some of the most relevant
issues at the global level were studied. In particular, the present manuscript focused on
public health problems in the case of asbestos; environmental issues in the case of vegetation
and oil and gas, in addition to hydrocarbon exploration; and geological applications in the
case of the identification and characterization of soils and minerals. Several aspects that are
worth highlighting were evidenced. Remote sensing studies related to vegetation were the
studies most frequently found in the literature, with a marked tendency for researchers in
the 1990s and 2000s to create new vegetation indices (Figure 6). More than 30 indices were
found among the most relevant and mentioned studies in the literature, which are useful
for different applications. However, no recent studies were found that would allow all the
indices to be compared with each other in the same multispectral or hyperspectral image.
In the latter case, it is probably due to the scarcity of satellite hyperspectral sensors and
their cost/logistics for use in drones or manned aircraft.
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In terms of public health, the applications for the detection of asbestos–cement roofs
are interesting. Developing countries that are barely banning the use of this material have
multispectral satellite images available, such as those from Word View 3 (WV3), to be able
to identify asbestos–cement roofing. Since 2020, these have had a reasonable SRE for SWIR
(~3.7 m). However, with this tool, countries that have also banned the material decades ago
can track the progress of removal. It is evident that this technology of the WV3, with its 8
VNIR bands and 8 SWIR bands, is also useful for other applications. The main limitation
in this case is cloudiness, which in some areas is constant throughout the year; however,
images can be taken upon request with a limit to the percentage of cloudiness. More
studies are needed to investigate the efficiency of cover identification through multispectral
satellite imagery and hyperspectral flyby imagery. Since these studies are on urban areas,
the overflights have the limitation of urban airports, or military areas, with restrictions in
the landing cone and surrounding areas. Finally, remote sensing applied to oil and gas is a
subject that has not been studied much; however, it has great potential as a tool to support
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preliminary studies for the exploration of wells to find hydrocarbons. As mentioned, this
lack of published studies probably reflects the need for companies in the sector to keep
information and methodologies confidential.

9. Recommendations

The results highlighted in the present review are relevant for environmental policy-
makers. Remote sensing should be applied in problem identification, policy formulation,
policy implementation, and policy control and evaluation to strengthen governance and
improve policy efficiency and effectiveness. For instance, in the case of asbestos–cement
roofs, better strategies for removing and wasting can be tailored if roof distribution has been
previously categorized. On the other hand, great economic development has characterized
entire economic sectors after asbestos prohibition, and private companies should encourage
remote sensing in urban areas to customize roof replacement options and optimize position
of the disposal sites.

Air quality and quality of life in urban environments are in part related to the presence
of green areas. Policymakers and environmental engineering companies should promote
multitemporal remote sensing analysis to control and improve vegetation in urban environ-
ments, especially in underdeveloped countries where the population density and building
speculations are extreme. Similar to the case of oil slick identification, permanent control
with remote sensing will help prevent the spread of environmental disasters, especially in
remote areas of developing counties.

Finally, remote sensing should change paradigms in policymakers and companies
since inversions in this technology and these images may generate high returns in terms
of quality of life and environmental quality, maximize the resources to explore the raw
materials, and minimize the costs of mitigating environmental problems.
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Appendix A

Table A1. The most relevant studies for asbestos roofing identification, oil and gas, and geology related to remote sensing found in literature in the last decade,
identified by relevance and organized in increasing order by year.

Material Location Image Taking
Tool

Type of
Sensor/Satellite

Number of
Bands Ground Resolution Methodology Year Ref.

Asbestos Follonica and
Rimini, Italy Overflight MIVIS 102 3.0–4.0 m Spectral Angle

Mapper (SAM) 2008 [118]

Asbestos Rome, Italia Overflight MIVIS 102 4.0 m Spectral Angle
Mapper (SAM) 2012 [57]

Asbestos Hyderabad, India Satellite QuickBird 3 Panchromatic = 0.61–072
m; VNIR = 2.44–2.88 m

PCA-based;
line-detection-based 2012 [119]

Asbestos Barcelona, Spain Overflight Hyperspectral 32 2.0–2.4 m Integration of
rooftop greenhouses 2017 [120,121]

Asbestos Lombardía, Italy Overflight MIVIS 102 3.0 m Spectral Angle
Mapper (SAM) 2018 [54]

Asbestos Debrecen,
Hungary Satellite WorldView-2 8 Panchromatic = 2 m

VNIR= 0.5 m

LDFA = Linear
Discriminant

Function Analysis;
QDFA = Quadratic

Discriminant
Function Analysis;

RF = Random
Forest;

2018 [56]

Asbestos Prato, Italy Satellite WorldView-3 16
Panchromatic = 0.31 m;

VNIR = 1.24 m;
SWIR= 3.70 m

QGIS Plugin named
RoofClassify 2019 [30]

Asbestos Chęciny, Poland Overflight Orthophotomap 3 0.25 m
Convolutional

Neural Networks
(CNNs)

2020 [44]

Asbestos São José do Rio
Preto, Brazil Satellite WorldView-3 16 Panchromatic = 0.31 m;

VNIR = 1.24 m

Maximum
likelihood,

mahalanobis
distance, and

minimum distance.

2020 [122]

Asbestos Chęciny and
Baranów, Poland Overflight Orthophotomap 3 0.25 m

Convolutional
Neural Networks

(CNNs)
2022 [123]

Asbestos
Paldal-dong,
Daegu, South

Korea
Overflight Orthophotomap NA NA Visual counting

method 2022 [124]
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Table A1. Cont.

Material Location Image Taking
Tool

Type of
Sensor/Satellite

Number of
Bands Ground Resolution Methodology Year Ref.

Exploration of oil Southern Tunisia Satellite

Landsat Enhanced
Thematic Mapper
(ETM+); ASTER
Red–Green–Blue

(RGB) radar
(RADARSAT)

See the reference 10 m to 100 m

Interpretation of the
Shuttle Radar

Topography Mission
(SRTM) Digital

Elevation Models
(DEMs)

2006 [125]

Hydrocarbon
seepages

Campos Basin,
Brazil and Bay of

Campeche, SE
Gulf of Mexico

Satellite ASTER 9
VNIR= 15 m; SWIR= 30

m; Thermal Infrared
(TIR) = 90 m.

Spectral processing
of the data; selection
and preprocessing
(e.g., atmospheric
compensation) of
ASTER imagery

containing seepage
records; mapping

the extension of oil
over water through
some classification
scheme (e.g., Fuzzy

Clustering);
selection of

representative
spectra from

seepage pixels
extracted from

ASTER imagery;
integration of
multivariate

statistics processing.

2012 [126]

Exploration of oil

Louisiana (USA)
(Deep Horizon)

and Campo Basin,
Brazil

Satellite

EOS AM (Terra) and
EOS PM (Aqua)

Moderate-
Resolution Imaging
Spectroradiometer

(MODIS)

36 250–1000 m Object-based image
analysis (OBIA) 2014 [87]
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Table A1. Cont.

Material Location Image Taking
Tool

Type of
Sensor/Satellite

Number of
Bands Ground Resolution Methodology Year Ref.

Gas
leak Kelowna, Canada Unmanned aerial

vehicle (UAV)
Laser Methane

mini-G SA3C50A NA Not specified. Flight
altitudes: 25–30 m

Off-the-shelf
laser-based

methane detector
into a multirotor

UAV

2017 [127]

Hydrocarbon
seepages Gulf of Mexico Satellite

RADARSAT-2;
ASTER and

WorldView-2
See the reference 1–15 m

Oil/emulsion
thickness

classification using
Satellite Synthetic
Aperture Radar

(SAR)

2020 [128]

Gas
leak Katowice, Poland Unmanned aerial

vehicle (UAV)
LaserMethane mini

SA3C321-BE NA

Not specified. Flight
altitudes: 3.5 m, 6 m, 9 m,
12 m, 15 m, 18 m, 21 m,

and 25 m

Data cleaning; back-
ground/leakage gas

concentration
determination;
location of the

leakage estimation.

2021 [129]

Hydrocarbon
seepages

Sudd Wetlands in
South Sudan Satellite Sentinel-1;

Sentinel-2 13 10–60 m Random
Forest (RF) 2021 [130]

Hydrocarbon
seepages

Louisiana (USA)
(Deep Horizon) Satellite Sentinel-1 and

RADARSAT-2 Not specified. Sentinel-1 = 20m;
RADARSAT-2 = 50 m

Faster
Region-based
Convolutional

Neural Network
(Faster R-CNN)

model

2022 [131]

Hydrocarbon
seepages

Matruh Basin,
Egypt

Satellite y
Hyperspectral

EO-1 (ALI) and
Landsat-7; EO-1

(HYPERION)
6; 4; 49; 49 30 m for all sensors Spectral Angle

Mapper (SAM) 2022 [132]

Gold exploration Southeastern
Desert of Egypt Satellite ASTER and ETM+ 6 Not specified

Band ratioing,
principal

component analysis
(PCA), false-color

composition (FCC),
and frequency

filtering (FFT-RWT)

2012 [133]
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Table A1. Cont.

Material Location Image Taking
Tool

Type of
Sensor/Satellite

Number of
Bands Ground Resolution Methodology Year Ref.

General mineral
identification Girón, Colombia Satellite Hyperion- Satellite

EO-1 220 30 m Spectral Angle
Mapper (SAM) 2015 [134]

Geologic mapping Edembo area,
Algerian Sahara Satellite Multispectral

ASTER 9
VNIR = 15 m; SWIR = 30

m; thermal infrared
(TIR) = 90 m.

Maximum
likelihood classifier

method (MLC)
2016 [135]

Map alteration
minerals Southeast Spain Satellite

WorldView-3
imagery and ASTER

TIR
See the reference

Panchromatic = 0.31 m;
VNIR = 1.24 m;
SWIR = 3.70 m

TIR =90 m.

Spectral Angle
Mapper (SAM) 2019 [48]

Groundwater
exploration

Gongola Basin,
Nigeria Satellite Landsat 8 3 Not specified

Detection of
lineaments through
geophysical gravity

2020 [136]

Mineral
exploration

Semna region,
Eastern Desert
(ED) of Egypt

Satellite Multispectral
ASTER 9

VNIR = 15 m; SWIR = 30
m; thermal infrared

(TIR) = 90 m.

The ASTER data
were enhanced in
terms of mapping
lithological units

and the
hydrothermal zones

2010 [137]

Kimberlite
exploration

Kimberlite
Province, Lesotho Satellite

ASTER, Shuttle
Radar Topography

Mission (SRTM)
Digital Elevation

Model (DEM) and
Google Earth

9 VNIR = 15 m;
SWIR = 30 m

Spectral Angle
Mapper (SAM) 2021 [138]

Iron mineral Çankırı Province,
Turkie Satellite Sentinel-2 13 5, 30 and 60 m Spectral Angle

Mapper (SAM) 2021 [139]

Structural
framework and

mineral
occurrences

Nimas-Khadra,
Southern Arabian Satellite ASTER 14 VNIR = 15 m SWIR = 30

m TIR = 90 m

Geophysical and
image analyses to

identify the tectonic
framework and

establish the
relationship of the

lithology and
tectonic features

with the known and
prospective mineral

occurrences

2022 [140]
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Table A1. Cont.

Material Location Image Taking
Tool

Type of
Sensor/Satellite

Number of
Bands Ground Resolution Methodology Year Ref.

Structural geology
measurements of

lava flows

Lake Assal,
Djibouti Satellite Pleiades 5 0.5 m

Mouse Mode (MM)
and Virtual Reality
(VR) approaches

2022 [141]

Crustal
deformation Niger Delta Basin Satellite

Landsat 8,
Advanced Land

Observation
Satellite (ALOS),
World 3D DEM

See the reference 30 m Integration of
satellite images 2022 [142]

Geological
lineaments Central Turkey Satellite

Landsat 8;
Advanced Land

Observing Satellite
(ALOS)

8 30 m; 10–100 m

Preprocessing of
both optical and
radar images, the

image enhancement,
and the

determination of
optimal parameter
values employed in

the extraction of
lineaments from the

data sets and the
verification and the
interpretation of the
resultant lineament

maps

2022 [143]

MIVIS = multispectral infrared visible imaging spectrometer; ASTER = Advanced Spaceborne Thermal Emission and Reflection Radiometer.
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Table A2. The most relevant vegetation indices found in literature.

Vegetation Indices (VIs) Formulas Study Area Observations Year Ref.

Simple Ratio SR = NIR/Red Marysville, USA
A two-wavelength reflectance ratio
R745/R675 was developed for an

objective index of turf color
1968 [144]

Normalized Difference
Vegetation Index NDVI = (NIR − Red)/(NIR + Red) Texas, USA

Multispectral satellite images are used. A
method has been developed for

quantitative measurement of vegetation
conditions over broad regions using

ERTS-1 MSS data

1974 [145]

Green Vegetation Index

GVI =
(−0.2848 TM1) +
(−0.2435 TM2) +

(−0.5436 TM3) + (0.7243 TM4) +
(0.0840 TM5) +
(−0.18 TM7)

Worldwide

This index minimizes the effects of
background soil while emphasizing

green vegetation. It uses global
coefficients that weigh the pixel values to

generate new transformed bands. It is
also known as the Landsat TM Tasseled

Cap green vegetation index

1976 [146]

Difference Vegetation Index DVI = NIR-Red Maryland, USA In situ collected spectrometer data were
used 1979 [147]

Soil-Adjusted Vegetation
Index SAVI = (1.5 (NIR − Red))/(NIR + Red + 0.5) Arizona, USA

Similar to NDVI; nevertheless, it is a
proposed index that minimizes soil

brightness influences involving red and
near-infrared (NIR) spectra

1988 [148]

Infrared Percentage
Vegetation Index IPVI = NIR/(NIR + Red) Worldwide

The near-infrared (NIR) versus red
“infrared percentage vegetation index,”
NIR/(NIR + Red), is functionally and
linearly equivalent to the Normalized

Difference Vegetation Index,
(NIR-Red/(NIR + Red). Advantageously,

it is both computationally faster and
never negative

1990 [149]

Global Environmental
Monitoring Index

GEMI = η (1 − 0.25 η) +
(Red − 0.125)/(1 − Red)

η = 2(NIR2 − Red2) + 1.5NIR +
0.5Red)/(NIR + Red + 0.5)

Worldwide
Designed specifically to reduce the
relative effects of these undesirable

atmospheric perturbations
1992 [150]
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Table A2. Cont.

Vegetation Indices (VIs) Formulas Study Area Observations Year Ref.

Atmospherically Resistant
Vegetation Index Difference

Vegetation

ARVI = (NIR − (Red − γ(Blue − Red)))/
(NIR + (Red − γ(Blue − Red))) Worldwide

MODIS sensor. ARVI has a similar
dynamic range to the NDVI but is on

average four times less sensitive to
atmospheric effects than the NDVI

1992 [151]

Modified Soil-Adjusted
Vegetation Index 2

MSAVI2 = (2 NIR + 1-
√

((2 IR + 1)-
8 (NIR-Red)))/2 Tucson, USA

This index is a simpler version of the
MSAVI proposed by Qi et al. (1994),

which improves upon the Soil-Adjusted
Vegetation Index (SAVI). It reduces soil

noise and increases the dynamic range of
the vegetation signal. MSAVI2 is based
on an inductive method that does not

use a constant L value (as with SAVI) to
highlight healthy vegetation [152]

1994 [153]

Nonlinear Index NLI = (NIR2 − Red)/(NIR2 + Red) Detroit, USA

Multispectral satellite images are used. A
comparison between 3D crop model and
several VIs is proposed focusing on soil
brightness, optical properties of canopy

elements, leaf angle distribution, and
spacing, among others. The authors

found that VIs using off-nadir
reflectances are more informative and

useful than those based on nadir
reflectances; the optimal VI and

sun/view geometries are usually
different for inferring different

parameters, depending on canopy
architecture; and LAI can be practically
estimated by VI only for homogeneous

canopies

1994 [154]
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Table A2. Cont.

Vegetation Indices (VIs) Formulas Study Area Observations Year Ref.

Renormalized Difference
Vegetation Index RDVI = (NIR − Red)/

√
(NIR + Red) Toulouse, France Similar to NDVI; nevertheless, a VI to

minimize soil effects is proposed 1995 [155]

Structurally Independent
Pigment SIPI = (NIR–Blue)/(NIR–Red) Barcelona, Spain

The index minimizes the confounding
effect of leaf surface and mesophyll

structure
1995 [156]

Optimized Soil-Adjusted
Vegetation Index

OSAVI = (NIR − Red)/
(NIR + Red + 0.16) Nottingham, UK

Similar to NDVI; nevertheless, the value
of the parameter X is critical in the

minimization of soil effects. A value of
0.16 is proposed

1996 [157]

Green Atmospherically
Resistant Index

GARI = (NIR – [Green-γ(Blue – Red)])/
(NIR + [Green-γ(Blue – Red)]) Worldwide

MODIS sensor. GARI is tailored to the
concept of ARVI. Resistant to

atmospheric effects as ARVI but more
sensitive to a wide range of Chl-a

concentrations. While NDVI and ARVI
are sensitive to vegetation fraction and to
rate of absorption of photosynthetic solar
radiation, a green vegetation index such
as GARI should be added to sense the

concentration of chlorophyll, to measure
the rate of photosynthesis, and to

monitor plant stress.

1996 [158]

Modified Simple Ratio MSR = ((NIR/Red) − 1)/
(
√

(NIR/Red) + 1) Ottawa, Canada

Multispectral satellite images are used to
classify boreal forests. They evaluate

several vegetation indices against
experimental data sets for their

performance in terms of the ability to
minimize the error induced by noise in

remote sensing data. The authors
propose a nonlinear index that has the

advantage of both low noise effects and
good linearity with biophysical

parameters

1996 [159]



Atmosphere 2023, 14, 172 24 of 35

Table A2. Cont.

Vegetation Indices (VIs) Formulas Study Area Observations Year Ref.

Green Normalized
Difference Vegetation Index GNDVI = (NIR − Green)/NIR + Green) Worldwide Satellite images for remote sensing of

chlorophyll concentration 1998 [160]

Green Leaf Index (GLI) GLI = ((Green – Red) + (Green – Blue))/
(2*Green + Red + Blue) Oregon, USA

This index was originally designed for
use with a digital RGB camera to

measure wheat cover, where the red,
green, and blue digital numbers (DNs)

range from 0 to 255
GLI values range from −1 to +1.

Negative values represent soil and
nonliving features, while positive values
represent green leaves and stems [152].

2001 [161]

Enhanced Vegetation Index EVI = 2.5 (NIR-Red)/(NIR + (6 Red) −
(7.5 Blue) + 1) Worldwide

The study was performed using the
Moderate Resolution Imaging

Spectroradiometer (MODIS), which is a
36-band imaging radiometer, on the

NASA Earth Observing System (EOS)
satellites Terra [162]

2002 [163]

Leaf Area Index LAI = 3.618 × EVI – 0.118 Denmark

Multispectral data were acquired with
the Compact Airborne Spectral Imager

(CASI). The results allowed for the
evaluation of the spatial variations in the
photosynthetic light, nitrogen, and water

use efficiencies. While photosynthesis
was linearly related to transpiration, the
light use efficiency (LUE) was found to

be dependent on nitrogen concentrations

2002 [164]
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Table A2. Cont.

Vegetation Indices (VIs) Formulas Study Area Observations Year Ref.

Visible Atmospherically
Resistant Index

VARI = (Green − Red)/
(Green + Red − Blue) Nebraska, USA

The goal of this study was to investigate
the information content of reflectance

spectra of crops in the visible and
near-infrared range of the spectrum and

develop a technique for remote
estimation of vegetation fraction

2002 [165]

Transformed Difference
Vegetation Index

TDVI = 1.5((NIR-Red)/√
(NIR2 + Red + 0.5)) Ottawa, Canada

This index shows the same sensitivity as
the Soil-Adjusted Vegetation Index

(SAVI) to the optical properties of bare
soil subjacent to the cover. It does not
saturate like NDVI and SAVI and it

shows an excellent linearity as a function
of the rate of vegetation cover

2002 [166]

Green Chlorophyll Index GCI = (NIR + Green) − 1 Lincoln, USA

This index is used to estimate leaf
chlorophyll content across a wide range
of plant species. Having broad NIR and

green wavelengths provides a better
prediction of chlorophyll content while

allowing for more sensitivity and a
higher signal-to-noise ratio [152]

2003 [167]

Sum Green Index SGI = Green California, USA

SGI is the mean of reflectance across the
500 nm to 600 nm portion of the

spectrum. The sum is then normalized
by the number of bands to convert it

back to units of reflectance. The value of
this index ranges from 0 to more than 50
(in units of % reflectance). The common

range for green vegetation is 10 to 25
percent reflectance [152].

2003 [168]
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Table A2. Cont.

Vegetation Indices (VIs) Formulas Study Area Observations Year Ref.

Wide Dynamic Range
Vegetation Index WDRVI = (a NIR-Red)/(a NIR + Red) Lincoln, NE, USA

This index is similar to NDVI, but it uses
a weighting coefficient (a) to reduce the
disparity between the contributions of
the near-infrared and red signals to the

NDVI. The WDRVI is particularly
effective in scenes that have

moderate-to-high vegetation density
when NDVI exceeds 0.6. NDVI tends to
level off when vegetation fraction and
leaf area index (LAI) increase, whereas
the WDRVI is more sensitive to a wider

range of vegetation fractions and to
changes in LAI. The weighting

coefficient (a) can range from 0.1 to 0.2.
ENVI uses a value of 0.2, as

recommended by Henebry, Viña, and
Gitelson (2004) [152]

2004 [169]

Green Optimized
Soil-Adjusted Vegetation

Index

GOSAVI = (NIR-Green)/
(NIR + Green + 0.16) North Carolina, USA

This index was originally designed with
color–infrared photography to predict

nitrogen requirements for corn. It is
similar to OSAVI, but it substitutes the

green band for red [152]

2005 [170]

Green Difference GDVI = NIR - Green North Carolina Coastal
Plain, USA

Aerial photography used for nitrogen
requirements in corn 2006 [171]

Green Ratio Vegetation
Index GRVI = NIR/Green North Carolina Coastal

Plain, USA
Aerial photography used for nitrogen

requirements in corn 2006 [171]
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Table A2. Cont.

Vegetation Indices (VIs) Formulas Study Area Observations Year Ref.

Modified Nonlinear Index MNLI = ((NIR2 − Red) × (1 + L))/
(NIR2 + Red + L)

Colorado, USA

Multispectral satellite images. The
impact of using band ratio and

vegetation indices of the AWIFS sensor
images to the crop classification accuracy

is empirically investigated via
supervised classification. The research

indicates that appropriately used
vegetation indices and image ratios can

potentially improve crop
classification accuracy

2008 [172]

MERIS terrestrial
chlorophyll index MTCI = (R740 − R705)/(R705 − R665) Southampton, UK

This paper reports on the design and
indirect evaluation of a surrogate REP

index for use with spectral data recorded
at the standard band settings of the

Medium Resolution Imaging
Spectrometer (MERIS). This index,

termed the MERIS terrestrial chlorophyll
index (MTCI), was evaluated using

model spectra, field spectra, and
MERIS data

2010 [173]

Normalized Area Over
Reflectance Curve

NAOC = 1−
∫ b

a ρdλ

ρmax(b−a)
Where ρ is the reflectance; λ is the

wavelength; ρmax is the maximum
far-red reflectance, corresponding to

reflectance at the wavelength “b”; and
“a” and “b” are the integration limits

surrounding the chlorophyll well
centered at ∼670 nm.

Valencia, Spain

The Normalized Area Over Reflectance
Curve (NAOC) is proposed as a new

index for remote sensing estimation of
the leaf chlorophyll content of

heterogeneous areas with different crops,
different canopies, and different types of

bare soil. This index is based on the
calculation of the area over the

reflectance curve obtained by high
spectral resolution reflectance

measurements determined from the
integral of the red–near-infrared interval
and divided by the maximum reflectance

in that spectral region

2010 [75]
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Table A2. Cont.

Vegetation Indices (VIs) Formulas Study Area Observations Year Ref.

Triangular Greenness Index TGI = ((λRed − λBlue)(ρRed − ρGreen)
− (λRed − λGreen)(ρRed − ρBlue))/2 Maryland, USA

This index approximates the area of a
triangle bounding a leaf reflectance

spectrum, where the vertices are in the
red, green, and blue wavelengths. The
Lambda (λ) terms represent the center

wavelengths of the respective bands. The
Rho (ρ) terms represent the pixel values

of those bands. The original TGI
equation (Hunt et al., 2011) used 670 nm,

550 nm, and 480 nm for the red, green,
and blue wavelength centers, with a 10

nm band width [152]

2011 [174]

WorldView Improved
Vegetative Index WV-VI = (NIR2-Red)/(NIR2 + Red) Maryland, USA

This index uses WorldView-2 bands to
compute NDVI. The value of this index

ranges from −1 to 1. The common range
for green vegetation is 0.2 to 0.8 [152]

2012 [175]

Enhanced Normalized
Difference Vegetation Index

ENDVI = ((NIR + Green) −
(2 × Blue))/((NIR + Green) + (2 × Blue)) Carlstadt, USA

The blue channel for NDVI can be used
equally as well for the visible absorption
channel as the Kodak film using red as

the visible absorption channel
Maxar found that better results are
achieved using red and green as the

reflective channels while using blue as
the absorption channel

2015 [176–179]
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36. Książek, J. Methods for Detection of Asbestos-Cement Roof ng Sheets. Geomatics Environ. Eng. 2014, 8, 59–76. [CrossRef]
37. Hemminki, K.; Försti, A.; Chen, T.; Hemminki, A. Incidence, mortality and survival in malignant pleural mesothelioma before

and after asbestos in Denmark, Finland, Norway and Sweden. BMC Cancer 2021, 21, 1189. [CrossRef] [PubMed]
38. Statista. Major Countries in Worldwide Asbestos Mine Production in 2021. 2021. Available online: https://www.statista.com/

statistics/264923/world-mine-production-of-asbestos/ (accessed on 7 October 2022).
39. Carmonaa, R.E.; Rivera Rosalesa, R.M. Asbestosis y mesotelioma pleural maligno. Rev. Fac. Med. 2013, 52, 5–17.
40. Selikoff, I.J.; Lee, D.H.K. Asbestos and disease. Asbestos Dis. 1979, 36, 157–158. [CrossRef]
41. Navarro-Vargas, J.R.; Villamizar, G.A. Artículo de Reflexión El largo y sinuoso camino de la enfermedad laboral en Colombia. El

caso de la asbestosis. Rev. De La Acad. Nac. De Med. 2019, 231–240.
42. Neitzel, R.L.; Sayler, S.K.; Demond, A.H.; d’Arcy, H.; Garabrant, D.H.; Franzblau, A. Measurement of asbestos emissions

associated with demolition of abandoned residential dwellings. Sci. Total Environ. 2020, 722, 137891. [CrossRef] [PubMed]
43. Frassy, F.; Candiani, G.; Rusmini, M.; Maianti, P.; Marchesi, A.; Nodari, F.R.; Via, G.D.; Albonico, C.; Gianinetto, M. Mapping

asbestos-cement roofing with hyperspectral remote sensing over a large mountain region of the Italian western alps. Sensors 2014,
14, 15900–15913. [CrossRef] [PubMed]
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