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Abstract: Indoor microbes are a key component of air contamination that causes human health
risks. However, compared with the aquatic and soil environment, microbial diversity and taxonomic
structure and composition in subway facility are not well characterized. This study tries to explore
surface bacterial communities by using swabs collected from four global subway facilities, such
as Busan, Boston, Mexico City, and Moscow using 16S rRNA gene amplicon sequencing. The
alpha-diversities on bacterial communities were significantly different between Moscow and other
samples, despite the different sample characteristics among Busan, Boston, Mexico City samples.
For bacterial taxonomic composition, three phyla such as Actinobacteria (41.1%), Proteobacteria
(27.7%), and Firmicutes (18.9%), were most dominant among all samples, indicating that there was no
significance (p > 0.05). The subway station surface samples were mostly dominated by Gram-positive
bacteria, including genera Corynebacterium, Staphylococcus, and Streptococcus. PCoA analysis also
revealed that the Moscow bacterial communities were clearly separated from others. In addition, core
genera were only shared 75 genera among all samples, but 486 genera were shared with three global
stations, such as Busan, Boston and Mexico City. These results suggested that the human activity and
geographical environment potentially affect the establishment of the bacterial community. Although
this study provided basic information on surface bacterial communities in the subway system, there
is a remaining unknown microbiome in the indoor air environment. Therefore, we consistently try to
understand the indoor environment’s microbial ecology in the subway system.

Keywords: surface microbial community; subway microbes; indoor microbiome; high-throughput
sequencing

1. Introduction

Despite the adverse impact of suspended microorganism exposure on human health [1–4],
relatively little is known regarding microbial particles in indoor facilities. In general, indoor
transportation facilities used by an unspecified number of travelers can lead to exposure to
different pollutants from those in homes or offices that are typically occupied by the same
people for the same time periods [5,6]. The assessment of indoor air quality and exposure of
commuters to air pollution in transportation facilities has garnered increasing attention due
to its public health implications [7–9]. However, most studies on airborne substances have
investigated the chemicals present in indoor air and have mostly focused on physiochemical
hazards and risks, whereas a comprehensive exploration of the microbial community in
multiple-use indoor places has not been conducted [6,10,11].

Currently, our knowledge of indoor microbial communities related to urban environ-
ments is less than that of natural ecosystems. As part of the city’s infrastructure, subway
plays a very important role in the daily lives of countless people, but it can be one of risk
indoor space that is very sensitive to the spread of bioaerosol and the spread of infectious
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diseases [6,12,13]. Biological particles floating in the air of the subway may be derived from
microbiomes on the surface of indoor facilities, and microorganisms may be deposited on
various indoor surfaces to provide microbiome information in the indoor space [5,14]. Since
deposited dust can be resuspended to form airborne microbial particles following venti-
lation systems and human movement, surface microbial community survey is suggested
as one method of determining indoor air quality [6,15]. Metro users constantly interact
with each other and suspended unique indoor microorganisms. At that time, humans can
become a major source such as native microbes and carriers of foreign microbes, acting as
potential targets for opportunistic species [2,16]. Previous studies related to Metro indoor
air microbial communication also reported that human-derived microorganisms dominate
the surface of indoor facilities of subway [17–20]. In addition, previous studies highlighted
that the metro microbiome potentially provided specific geographical characteristics, such
as daily temperature differences, differences between communities occupying gaps of vari-
ous substances in subway locations, as well as potential pathogen emergence and microbial
community composition [5,16,19].

The investigation of microbial communities associated with urban subway systems are
of particular interest for microbial ecology and environmental health aspect, as well as air
environmental research [5,6]. Additionally, specific information on microbial communities
of urban subway systems can be contributed to the understanding of ecological indicators
and their niche in urban subway system. However, such information on the colonization
of the subway microbiome is still lacking even though many previous pollution studies
have been conducted on global metropolitan areas. Therefore, the aim of this study
was to advance the knowledge of urban metro microbiome through analysis of global
subway system. We compressively analyze the spatial bacterial community according to
the geographically, culturally, and economically different metropolitan cities to investigate
alpha, beta-diversities and major bacterial taxa.

2. Materials and Methods
2.1. Study Sites and Sampling

Busan is one of the metropolitan cities in South Korea, and the Busan subway and
airport are daily crowded with commuters and tourists. Surface samples of public trans-
portation facilities were collected from five subway stations (BS1–BS5) between 25 June
and 11 August 2021. The detail information on subway stations was previously re-
ported [20]. Briefly, subway stations were transited by approximately 15,000~29,000 pas-
sengers daily [21], and the airport, a major transportation hub with a wide range of traffic,
has a daily population of approximately 400,000 [22]. The Boston Subway operates approx-
imately 238 million trips a year and is one of the four largest subway systems in the USA,
transporting more than 1 million passengers per weekday [19,23]. The subway system of
Boston city is transited by approximately 520,000 passengers each day [24]. Mexico City, the
largest city in the Western, has a population of 21.3 million [18], and its subway is the ninth
busiest system in the world [25]. The subway system of Mexico City in Mexico has a user
population of more than 4 million every day [26]. The population of Moscow is 17 million
people, and the Moscow subway is the sixth most used in the world [16,27]. The subway
system of Moscow city in Russia has a daily user population of approximately 7 million [28].
Each city of average summer temperature is approximately 23.9 ◦C in Busan, 21.7 ◦C in
Boston, 17.7 ◦C in Mexico City, and 17.2 ◦C in Moscow [29]. Boston is characterized by a
climate with four distinct seasons and an even distribution of precipitation throughout the
year, with an average summer precipitation of about 88.6 mm [30]. Busan, Mexico City,
and Moscow are characterized by most of the annual average precipitation occurring in
summer, with average summer precipitation of approximately 239.8 mm, 159.7 mm, and
82 mm, respectively [31,32].

In this case, 15 sequences of subway station surface each were downloaded from
previous studies in Boston (BT1–BT5), Mexico City (MX1–MX5), and Moscow (MC1–MC5),
as shown in Table 1. Sequences were selected when they satisfied all three conditions as
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follows: (1) indoor subway station sample, (2) surface swab sample, and (3) 16S rRNA
gene sequences for targeting the V4 region. In addition, this study considered the number
of subway users, urban size, climate, and geographical location (including latitude and
longitude) when selecting the sample for this study. Since the Busan sample was collected
only from subway stations, not subways, sequences from other studies were also limited to
those from subway stations. The selected sequences were filtered again to make the surface
material and location similar to that of the Busan, and the same number of samples were
selected at Boston, Mexico City, and Moscow. Since all three cities have distinct four seasons
and an even distribution of annual precipitation, all sequences used in the study were
determined at similar sampling times from summer to early fall. Microorganisms in the air
in the indoor environment have limited circulation of outside air compared to outdoors.
They have relatively low exposure to ultraviolet rays of sunlight, enabling long-term
survival [1,2]. In addition, indoor environmental factors such as temperature, humidity,
and carbon dioxide (CO2) are reported to significantly correlate with microbial diversity
and composition formation [4–6]. This study attempted to investigate the relationship
between these indoor environmental factors with global subway stations. However, the
available data were limited, and some studies did not measure indoor environmental
factors, making it difficult to perform additional statistical analysis.

Table 1. Samples and obtained sequences information in this study.

City Site Station Sequence Available

Busan

BS1 Busan Station mgs860663
BS2 Seomyeon mgs860666
BS3 Busan National University mgs884070
BS4 Haeundae mgs884082
BS5 Airport mgs860669

Boston

BT1 Alewife SRR3498906
BT2 Riverside SRR3545943
BT3 South(underground) SRR3545897
BT4 South(upstairs) SRR3545957
BT5 Foresthills SRR3545889

Mexico City

MX1 Indios verdes SRR9671870
MX2 Pantitlan SRR9671879
MX3 Tacubaya SRR9671874
MX4 Buenavista SRR9671878
MX5 Tacuba SRR9671883

Moscow

MC1 Rimskaya SRR7976670
MC2 Sretenskiy boulevard SRR7976673
MC3 Vystavochnaya SRR7976678
MC4 Vystavochnaya SRR7976679
MC5 Dostoyevskaya SRR7976692

Indoor surface samples for Busan city were collected two times per site using Isohelix
DNA/RNA buccal swabs (SK-2S, Isohelix) moistened with sterile 1 mL of phosphate-
buffered saline. Samples were collected for 3 min from each site in a 100 cm2 area as
recommend in previous study [33] of the surface structures, such as door gate, drawers,
and storage boxes. After swab sampling, the swab head into new empty 1.5 mL microtubes
and transported to the laboratory in an icebox. The samples were stored at −20 or −80 ◦C
until further analysis.

2.2. DNA Extraction and 16S rRNA Gene Sequencing

The collected two swab samples cut into 2 mm pieces were placed in a bead tube of an
extraction kit and added lysis buffer. The tubes were incubated at 65 ◦C for 10 min using
heat block (IKA Dry Block Heater 2 with DB 1.2) [34]. DNA extraction was conducted
using the DNeasy PowerSoil Pro Kit (QIAGEN) with a slightly modified Quick-Start
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Protocol (QIAGEN). The wash process was performed one more time to enhance DNA
purity. Afterward, DNA yield and quality were measured using a Nano-300 UV-vis micro-
spectrometer (Allsheng, China). Prior to further experiment and 16S rRNA gene sequencing,
the extracted DNA was stored at −80 ◦C.

The suspended indoor microbiome was detected based on the 16S rRNA gene. The
V3–V4 region of the 16S rRNA gene was amplified using the 341F (5′-CCT ACG GGN
GGC WGC AG-3′)/805R (5′-GAC TAC HVG GGT ATC TAA TCC-3′) primer set. Amplicon
libraries were constructed following the Illumina MiSeq platform as 2 × 250 bp paired-end
protocol. Sequencing was carried out Macrogen (Seoul, Korea), and amplicon sequences
are deposited in the MG-RAST under sample IDs mgs860663, mgs860666, mgs884070,
mgs884082, mgs860669.

2.3. Bacterial Communities Analysis

After checking the quality of amplicon sequences using FastQC [35], Trimmomatic
(version 0.33) was used to trim ambiguous or low-quality adaptor sequences (<Q30) and to
remove potential duplicate reads due to amplification artifacts [36]. The Mothur software
(version 1.44.3) was used to sequence alignment, classification, and OTU (operational
taxonomic unit) clustering following the MiSeq SOP [37,38]. OTUs were defined sequences
with >97% similarity, and representative sequence for each OTU was determined using
Mothur algorithm for taxonomic annotation. The SILVA reference database was used to
assign taxonomic profiles [38]. The alpha and beta diversity of bacterial communities was
analyzed using Mothur algorithms [37,38].

2.4. Statistical Analyses

The ‘phyloseq’ package in R [39] was used to analyze bacterial communities. Princi-
pal coordinate analysis (PCoA) based Bray-Curtis dissimilarity was visualized with the
‘ggplot2’ package [40]. The upset plot was visualized with genus level, using the ‘Up-
SetR’ package [41]. All statistical significance was analyzed with the ‘vegan’ package in
R [42]. The significance among microbial communities in four countries was assessed via
Wilcoxon-signed rank tests. In order to identify the statistically significant influence of
sampling site on bacterial community structures, one-way analysis of similarity (ANOSIM)
and permutational multivariate analysis of variance (PERMANOVA) test was performed
with considered statistically significant (p-value < 0.05).

3. Results and Discussion
3.1. Surface Bacterial Diversity from Different Subway Stations

Bacterial diversities were calculated alpha diversity using genera relative abundance
and, estimated using the ACE, Chao1, Shannon, and Simpson indices (Figure 1). The
highest diversity was found on BT samples, while the lowest diversity station was found on
MC samples. The bacterial diversities of both the BS, BT, and MX samples were significantly
higher than the MC diversities [mean Shannon index values of 4.59 (BS), 5.01 (BT), 4.07
(MX), and 2.13 (MC), respectively; p < 0.05]. The most diverse station was BT, with a
mean ACE diversity index of 1131.61, followed by BS (872.96), MX City (632.92), and MC
(110.03). The highest Chao1 diversity was found on BT (1131.57), followed by BS (879.26),
MX (634.267), and MC (107.27). The highest Simpson diversity was found on the BT (0.98),
followed by BS (0.97), MX (0.95), and MC (0.81). The alpha diversity indices had similar
distribution patterns, with the MC samples showing low values than the other samples,
there had a significant difference (p < 0.05). Although the diversity of BS samples showed
higher than the diversity of MX and lower than the diversity of BT, there was no significant
difference (p > 0.05).
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Figure 1. Alpha diversity was shown in each city. Blue: Busan, Red: Boston, Green: Mexico City,
Orange: Moscow. Statistically significant differences between the two sample types were shown as
follows. **: p < 0.01, *: p < 0.05, NS: Non-Significant.

The bacterial diversity of BS has similarities to the BT and MX, and significant dif-
ferences in bacterial diversity from MC. These results suggested that microbial diversities
were potentially affected by geographic climate. Previous studies consistently indicated
that the geographical distribution of facilities might be an important and influential vari-
able in the variance of indoor microbial communities [43,44]. The bacterial diversity and
evenness may reflect not only the geographic climate but also the cultural, social, and
environmental differences of each region [4,18,45]. In addition, commuters could posi-
tively contribute the increasing of bacterial diversity [46,47]. Although the mechanisms
causing this phenomenon have not been defined, the surface bacterial diversity in indoor
spaces may be influenced by complex factors such as overpopulation, air environmental
parameters, sampling time, and ventilation systems [48–51].

To identify differences between our study and previous studies, we compared the
alpha diversity with subway bioaerosol studies. Previous study has shown that the Chao1
value of the Hong Kong subway was approximately 2200 [52], which is higher than MC
samples but lower than other samples. The Shannon index values for the Barcelona metro
range from 1 to 2 [53], which is lower than the lowest MC sample in our study. On the
other hand, the Oslo subway showed a Shannon index of about 6.3, which were similar
to that of BT [5]. As indicated, bacterial diversities were quite diverse, according to the
urban cities. These results suggested that because the indoor air quality parameters, such as
temperature and humidity levels were not consistently measured, and very complex indoor
environmental mechanisms and relationships with microbes were still black-box, it is
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difficult to interpret these inconsistent observations [4,54]. The main air quality parameters
generated inside subway stations are PM, CO2, VOCs, and bioaerosols. Ozone (O3) and
carbon monoxide (CO) originate outside subway stations and infiltrate these areas [55].
The environmental parameters of indoor air quality are highly linked between changes in
microbial diversity with surrounding air conditions [56]. Therefore, these air parameters
should be determined to better understand potential relationships between microbial
communities and environmental characteristics in indoor subway facilities.

3.2. Surface Bacterial Community Composition from Different Subway Stations

The bacterial taxonomic compositions from global subway samples were showed
in Figure 2. The most abundant phyla in all samples were Actinobacteria (mean 41.1%),
Proteobacteria (mean 27.7%), and Firmicutes (mean 18.9%), accounting for approximately
88% of the total phyla (Figure 2A). At the phylum level, Actinobacteria was the most
abundant in both the BS (37.8%) and MC (48.6%) samples, followed by Proteobacteria
(mean values of 29.2% and 33.2%, respectively) and Firmicutes (mean values of 16.6% and
10.3%, respectively). Proteobacteria was the most abundant taxon (mean values of 34.9%)
in the BT samples, followed by Actinobacteria (mean values of 26.4%) and Firmicutes
(mean values of 23.0%). The phyla in the MX samples were Actinobacteria (mean 51.8%),
Firmicutes (mean 25.8%), and Proteobacteria (mean 13.4%). The top three phyla were the
same in each city subway station sample. The predominant bacterial phyla, Actinobacteria,
Firmicutes, Bacteroidetes, and Proteobacteria in our study, were also found on the subway
platforms of New York City [57], Hong Kong [52], Barcelona [53], and Oslo [5].

Atmosphere 2023, 14, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 2. Relative abundance of major bacteria in BS, BT, MX, and MC samples (%) at the (A) phy-
lum, (B) order, and (C) genus levels. Taxa with a relative abundance of ≥1% are indicated. 

The result of the genus composition demonstrated that the surface communities were 
similar despite the different sampling sites and regions (Figure 2C). In the subway micro-
biome of four countries, the three most abundant genera were Corynebacterium (5.55%), 
Streptococcus (4.65%), and Staphylococcus (4.14%). The top 5 genera in the BS samples were 
Staphylococcus (mean 7.6%), Corynebacterium (mean 5.0%), Kocuria (mean 4.1%), Micrococ-
cus (mean 3.8%), and Deinococcus (mean 2.5%). In the BT samples, Streptococcus (mean 
5.9%) was the most abundant genus, followed by Staphylococcus (mean 5.3%), Corynebac-
terium (mean 4.6%), Methylobacterium (mean 2.6%), and Sphingomonas (mean 2.6%). Strep-
tococcus (mean 11.0%) was the most abundant genus in the MX samples, followed by Cuti-
bacterium (mean 8.4%), Corynebacterium (mean 6.5%), Rothia (mean 5.3%) and Lawsonella 
(mean 4.0%). In contrast, Brevundimonas (12.2%), Dietzia (mean 11.2%), Janibacter (mean 
8.9%), Leuconostoc (mean 7.7%), and Stenotrophomonas (mean 6.7%) were found in the MC 
samples.  

Corynebacterium was the most abundant in all samples. Comparing the results of ge-
nus bacterial communities in the Oslo subway study in which both surface and air were 
sampled, Corynebacterium was found to be higher in surface samples than in air samples 
[5]. The subway station surface samples were dominated by Gram-positive bacteria, in-
cluding genera Corynebacterium, Streptococcus, and Staphylococcus, and these results were 
consistent with previous studies [58,59]. Generally, Gram-positive bacteria have higher 
resistant characteristics than Gram-negative bacteria due to their spore-foaming surviva-
bility [58,59]. Previous studies have reported that Staphylococcus is positively associated 
with indoor temperature and humidity [60–62]. Temperature and humidity are the most 
obvious factors directly influencing the microbiome, but factors such as population den-
sity and ventilation systems are becoming increasingly important. Among them, existing 
studies have shown that the composition of the subway microbiome is strongly influenced 
by humans and provides an ideal environment for microbial propagation [63,64]. Oral-
related microbial Streptococcus was positively correlated with temperature [65,66]. Staph-
ylococcus and Streptococcus were not found in the MC samples, which had the lowest tem-
perature and humidity. Moscow, a high latitude and cold region, has a different climate 
from other cities, the big differences of the atmospheric or meteorological factors between 
indoor and outdoor air may have influenced the microbial community differences [67,68]. 

Figure 2. Relative abundance of major bacteria in BS, BT, MX, and MC samples (%) at the (A) phylum,
(B) order, and (C) genus levels. Taxa with a relative abundance of ≥1% are indicated.

At the order level (Figure 2B), Micrococcales was the most abundant taxon (mean
17.0%), followed by Corynebacteriales (mean 14.4%), Lactobacillales (mean 8.7%) and Bacil-
lales (mean 6.2%). Micrococcales (mean 14.5%), Corynebacteriales (mean 13.1%), Bacillales
(mean 10.2%) and Nostocales (mean 6.1%) were prevalent in the BS samples, whereas
Lactobacillales (9.0%), Micrococcales (mean 8.6%), Bacillales (mean 8.5%) and Corynebacte-
riales (mean 8.0%) were found in the BT samples. The abundant bacterial order in the MX
samples were Micrococcales (mean 20.6%), Lactobacillales (mean 13.8%), Corynebacteriales
(mean 13.5%) and Corynebacteriales (mean 10.8%). Micrococcales (mean 24.4%) was a
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major bacterial order present in the MC samples, followed by Corynebacteriales (mean
23.2%), Caulobacterales (mean 12.2%), and Lactobacillales (mean 8.3%). Micrococcales and
Corynebacteriales were both in the top 4 of the order level in each sample. Comparing the
order that appeared in the top 5 in each sample, Lactobacillales had a considerably lower
abundance showing in the BS samples (tenth, 3.5%), and Bacillales were not found in the
MC samples.

The result of the genus composition demonstrated that the surface communities
were similar despite the different sampling sites and regions (Figure 2C). In the subway
microbiome of four countries, the three most abundant genera were Corynebacterium (5.55%),
Streptococcus (4.65%), and Staphylococcus (4.14%). The top 5 genera in the BS samples were
Staphylococcus (mean 7.6%), Corynebacterium (mean 5.0%), Kocuria (mean 4.1%), Micrococcus
(mean 3.8%), and Deinococcus (mean 2.5%). In the BT samples, Streptococcus (mean 5.9%)
was the most abundant genus, followed by Staphylococcus (mean 5.3%), Corynebacterium
(mean 4.6%), Methylobacterium (mean 2.6%), and Sphingomonas (mean 2.6%). Streptococcus
(mean 11.0%) was the most abundant genus in the MX samples, followed by Cutibacterium
(mean 8.4%), Corynebacterium (mean 6.5%), Rothia (mean 5.3%) and Lawsonella (mean 4.0%).
In contrast, Brevundimonas (12.2%), Dietzia (mean 11.2%), Janibacter (mean 8.9%), Leuconostoc
(mean 7.7%), and Stenotrophomonas (mean 6.7%) were found in the MC samples.

Corynebacterium was the most abundant in all samples. Comparing the results of
genus bacterial communities in the Oslo subway study in which both surface and air were
sampled, Corynebacterium was found to be higher in surface samples than in air samples [5].
The subway station surface samples were dominated by Gram-positive bacteria, including
genera Corynebacterium, Streptococcus, and Staphylococcus, and these results were consistent
with previous studies [58,59]. Generally, Gram-positive bacteria have higher resistant
characteristics than Gram-negative bacteria due to their spore-foaming survivability [58,59].
Previous studies have reported that Staphylococcus is positively associated with indoor
temperature and humidity [60–62]. Temperature and humidity are the most obvious
factors directly influencing the microbiome, but factors such as population density and
ventilation systems are becoming increasingly important. Among them, existing studies
have shown that the composition of the subway microbiome is strongly influenced by
humans and provides an ideal environment for microbial propagation [63,64]. Oral-related
microbial Streptococcus was positively correlated with temperature [65,66]. Staphylococcus
and Streptococcus were not found in the MC samples, which had the lowest temperature
and humidity. Moscow, a high latitude and cold region, has a different climate from other
cities, the big differences of the atmospheric or meteorological factors between indoor and
outdoor air may have influenced the microbial community differences [67,68].

Notably, in contrast with the BT and MX samples, the BS sample showed a higher per-
centage of Staphylococcus than that of Streptococcus. BS samples were sampled more recently
than the two other cities. Due to COVID-19 at the time of sampling, wearing a mask, using
hand sanitizers, and disinfecting subway stations were mandatory. Although Staphylococcus
and Streptococcus are usually described together, their resistance to disinfectants is slightly
different. Staphylococcus has been reported to be resistant to various disinfectants used
to disinfect COVID-19 [69,70], but only a few studies on the resistance of Streptococcus
to hydrogen peroxide have been reported [69]. Therefore, BS could be less Streptococcus
enriched than BT and MX because of the impact of differences in hygiene practices on
the microbiome of subway station spaces [64]. Methylobacterium genera has a capable of
decomposing TVOC [71] and they were predominant in Busan, Boston and Mexico City.
Previous study reported that TVOC and temperature significantly correlated in indoor
Korea subway station [72]. In addition, Sphingomonas genera showed a positive correlation
with temperature and PM values and a negative correlation with relative humidity [73,74].
The dominance of Sphingomonas genera in three cities subway samples may suggest that
Moscow city has unique climate forms different microbial communities. However, the
different tendencies of microbes in each city subway station may be caused by complex
interactions among various factors, such as human skin, atmospheric environmental factors,
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and passenger transport. Furthermore, we have yet to identify the relationship between
human behavior and the subway microbiome.

Generally, human occupancy in indoor spaces is regarded as one of the primary sources
of resuspending dust and releasing biomass [75,76]. Corynebacterium, Streptococcus, Staphy-
lococcus and Kocuria are known as skin-associated microbiota [6,16,19,77]. Cutibacterium is a
Gram-positive which is usually found in human skin and has a high abundance in moist
or dry skin areas [78,79]. According to existing subway studies, one of the main sources
of the subway microbiome is the skin microbiome, and the dominant microbiome change
depending on the oily, moist, and dry degree and area of the skin [64]. Stenotrophomonas
(6.7%) genera commonly found in soil were abundant in the Moscow subway station and
were also investigated as the dominant bacteria in the New York subway [16,17]. In addi-
tion, Dietzia genera may be a human skin symbiosis and cause infections in humans [80,81].
Generally, microbial community of the subway station is not only of human origin but
also has a large proportion of natural origins, such as soil and water [5,6,20]. For example,
Staphylococcus and Kocuria genera commonly described human origin, while they are also
known their origin was soil environments [5,6,20]. Deinococcus is mainly found in surface
and air samples and is known to grow well over a wide temperature range from room
temperature [82]. The genus Roseomonas, Micrococcus, Methylobacterium, and Pseudomonas
commonly inhabit various terrestrial, aquatic, and atmospheric environmental samples,
such as leaf surfaces, soil, dust, marine water, sand, vegetation, and freshwater [83–85].
Blastococcus is found in many places, including in the sea, soil, and vegetation, but has been
investigated as being widespread mainly inside stones [86]. Blastococcus is also found at
buildings such as limestone or marble stone surfaces [87], and by its nature it is not unusual
to find many in subway stations. Arsenicicoccus found in other metro stations in Moscow
from another study is not an etiological pathogen [27]. Paracoccus and Sphingomonas are
soilborne microorganisms that were found in the Athens Metro, showing entry of outdoor
soil material and road dust into subway stations [6]. Chroococcidiopsis, found in large
numbers in BS samples, is mainly found in harsh natural environments [19]. These genera
are less sensitive to external stresses, such as desiccation and radiation, and may be more
favorable to environmental changes caused by the significant traffics in subway stations.

3.3. Surface Bacterial Community Structure

Compared with the bacterial community results of previous subway bioaerosol papers,
the aerosol and surface microbial communities of the subway systems of major cities in the
world are composed quite similar (Figures 1 and 2). In addition, the surface bacterial com-
munity shows that the human source tends to dominate and shares a bacterial community
quite similar to that of air, indicating that microorganisms in the air can be attached and de-
posited on the surface [5,88]. As shown in PCoA (Figure 3), the bacterial compositions of all
samples were clustered by sampling city, indicating a high degree of similarity (ANOSIM,
statistic R > 0.5). Our samples were collected from various locations, such as door gates,
touch screens, handle, ticket office, vending machine, floor, and lockers, with similar mate-
rials within the range of human activity. However, there were no significant differences
between microbial communities between samples within the same city regardless of the
sampling location (p > 0.05). This result is consistently shown in Mexico City, Boston, and
Moscow samples, and insignificant differences in microbial communities between cities
have been reported in previous studies [18–20,27]. Thus, what is particularly noteworthy in
the PCoA results is that the three cities of Busan, Mexico City, and Boston clearly clustered
among themselves, excluding Moscow, regardless of the sampling country. The microbial
communities of the three regions show strong similarities in the grouping. In addition,
PERMANOVA showed significant differences in the microbial community composition in
each city (p < 0.05). Among the Busan samples, the BS1, BS2, and BS5 samples clustered
close to Mexico City, while the BS3 and BS4 samples were similar to BT2 from Boston. This
result suggested that the microbial community of the Busan subway samples seems to
core microbiome between the Mexico City and Boston subway communities. The Moscow
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samples were clearly distinct from the other three regions, and the distances between each
sample within Moscow were far. These suggested that the environmental characteristics of
the subway station, such as temperature, humidity, and the number of commuters, rather
than the sampling location, may significantly affect the composition and structure of the
bacterial community on the surface [2,4–6].
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According to Upset plot results, the number of identified genera was in the order of
Boston, Busan, Mexico City, and Moscow (Figure 4). All samples shared 75 genera, while
three cities, Busan, Boston, and Mexico City shared the most genus with 486 (Figure 4).
As shown at the alpha diversity (Figure 1) and beta diversity (Figure 3), the uniqueness
of Moscow microbial community is well represented in the upset plot at the genus level.
The number of identified genus is around 1000 each in Busan and Mexico City, whereas
only 100 in Moscow (Figure 4A). However, the small data set of the Moscow subway
station genera is not unique to our study. An existing study, which was the source of the
Moscow subway sequence of our study, has already reported a poor genus count [16].
A study analyzed the surfaces of other stations in Moscow also identified only Genus
near 100 [27]. Even though there are very few genera in Moscow compared to other
samples, the number of genera with a relative abundance of 1% or more was the highest
in the Moscow sample at 31 (Figure 4B). Cities except Moscow share many microbial
genera at more than 1%, while Moscow does not share a whopping 21 of 74 Genus. In
connection with the result Figure 4A, the uniqueness of the Moscow microbiome does not
come from a microbial genera that does not exist in other cities, but rather is a result of
specific microbial genera being exceptionally dominant compared to other cities. Busan,
Boston, and Mexico City share a total of six genera, namely, Staphylococcus, Streptococcus,
Kocuria, Methylobacterium, Skermanella, and Blastococcus, at more than 1%. Streptococcus and
Staphylococcus are representatives of human-derived microorganisms. In studies conducted
in each region in Eurasia, these microbial genera are common in all sites related to the
human oral cavity [89].
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The swab method used in this study is widely accepted as the standard method
for surface sampling [90–92]. The collection of airborne microbes, or bioaerosols, is the
ideal way to directly assess the microbes to which humans are exposed. However, the
collection of airborne microorganisms presents problems such as the sampling process
being labor-intensive and expensive, so collecting sedimented surface samples is a more
practical method [93]. In addition, airborne microbial sampling through vacuuming has
the limitation of evaluating only transient changes, but surface samples may represent
long-term exposed bacterial samples [88,94,95]. Millions of passengers use public transport
systems daily, and commuters and passengers share the same air and surfaces. Since
it is necessary to characterize the microbiome that humans contact with to evaluate the
importance of indoor bacteria to human health, surface bacterial community can contribute
to the open unknown indoor microbiome information.

4. Conclusions

Our study investigated the surface bacterial communities in subway stations in four
large urban cities and compared them with those of other countries. We showed that
the surface bacterial diversities and taxonomic profiling of the studied subway station
surface environment were similar. Most of the predominant phylotypes were Gram-
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positive microorganisms in all investigated samples and likely originated from human
and outdoor sources. Although the ecological role of surface microbes remains unclear,
our findings provided important insights into the structures of bacterial communities in
different types of subway facilities as well as the major habitats of these microbes in subway
station environments. In future studies, larger sample sizes and quantitative assessment of
pathogens may provide additional insights into the ecology of indoor microorganisms.
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