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Abstract: Root zone soil moisture (RZSM) is a vital variable for agricultural production, water
resource management and runoff prediction. Satellites provide large-scale and long-term near-surface
soil moisture retrievals, which can be used to estimate RZSM through various methods. In this
study, we tested the utility of an exponential filter (ExpF) using in situ soil moisture by optimizing
the optimal characteristic time length T_opt for different soil depths. Furthermore, the parameter
analysis showed that T_opt correlated negatively with precipitation and had no significant correlation
with selected soil properties. Two approaches were taken to obtain T_opt: (1) optimization of the
Nash–Sutcliffe efficiency coefficient (NSE); (2) calculation based on annual average precipitation.
The precipitation-based T_pre outperformed the station-specific T_opt and stations-averaged T_opt.
To apply the ExpF on grid scale, the precipitation-based T_pre considering spatial variability was
adopted in the ExpF to obtain RZSM from a new soil moisture dataset RF_SMAP_L3_P (Random
Forest Soil Moisture Active Passive_L3_Passive) continuous in time and space over Huai River
Basin. Finally, the performance of RF_SMAP_L3_P RZSM (0–100 cm) was evaluated using in situ
measurements and compared with mainstream products, for instance, Soil Moisture Active Passive
(SMAP) and Soil Moisture and Ocean Salinity Level 4 (SMOS L4) RZSM. The results indicated that
RF_SMAP_L3_P RZSM could captured the temporal variation of measured RZSM best with R value
of 0.586, followed by SMAP L4, which had the lowest bias value of 0.03, and SMOS L4 significantly
underestimated the measured RZSM with bias value of −0.048 in the basin. Higher accuracy of
RF_SMAP_L3_P RZSM was found in the flood period compared with the non-flood period, which
indicates a better application for ExpF in wetter weather conditions.

Keywords: exponential filter; root zone soil moisture; soil moisture retrievals; soil water balance model

1. Introduction

Soil moisture is a critical state variable in land–atmosphere interactions due to its
pivotal role in hydrological cycle, exchange of energy and moisture fluxes, weather and
climate systems [1–3]. In particular, root zone soil moisture (RZSM) has important appli-
cations in agricultural drought monitoring and prediction, water resource management,
and data assimilation for runoff prediction [4–6]. Huai River Basin (HRB) is an important
grain production area in China, where floods and droughts occur frequently that seriously
threaten agricultural production.

Various techniques (e.g., gravimetric, time/frequency domain reflectometry) provide
in situ soil moisture at fixed locations [4,7], so it is hard to map soil moisture at large
spatial scale due to high spatial–temporal variability resulting from the interactions and
feedbacks between ecohydrological processes. The spatial–temporal variability of soil
moisture is crucial for application in water resource management, agricultural production
and ecosystem sustainability and is dominated by different factors across different spatial
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scales, among which the effect of precipitation distribution on the spatial–temporal soil
moisture variability is non-negligible [8,9]. In addition, the relation between the coefficient
of variation (CV) of mean spatial soil moisture and mean spatial soil moisture often shows
a hysteresis pattern, but the occurrence of hysteresis pattern decreases with increasing
spatially soil heterogeneity and even disappears completely for the fully heterogeneous
soil [10]. Satellite remote sensing techniques enable us to monitor soil moisture globally,
for instance, Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salin-
ity (SMOS). However, they can only capture soil moisture for the top few centimeters
(~5 cm) [11–13]. Recently, satellite soil moisture sensing has widely been used. For instance,
estimating irrigation magnitude by assimilating satellite soil moisture into the land surface
model (LSM) or the soil water balance equation [14]; detecting irrigation signals using
satellite soil moisture [15]; retrieving rainfall from satellite soil moisture based on the soil
water balance equation [16]; monitoring and predicting extreme events (e.g., agricultural
drought and heat waves) [17–20]. Similarly, satellite soil moisture could be used to esti-
mate RZSM due to the strong coupling strength between surface soil moisture (SSM) and
RZSM [21–25]. However, quantities of SMAP and SMOS surface soil moisture are missing,
spatially affected by radio frequency interference (RFI), especially in Europe and Asia
(most areas of China, including the Huai River Basin) [26], which brings great challenges to
the application of satellite soil moisture. Therefore, Wang et al. [27] filled the SMAP soil
moisture gaps using random forest and created the RF_SMAP_L3_P surface soil moisture,
continuous in time and space, which could be used to estimate RZSM over HRB. Both
SMOS and SMAP provide continuous spatial and temporal Level 4 (L4) RZSM, but neither
have been validated in the HRB and the accuracy is uncertain.

To date, a variety of approaches have been adopted to estimate RZSM from near-
surface soil moisture and they are roughly divided into three categories, including
(1) statistics-based methods (e.g., linear regression (LR), cumulative distribution func-
tion (CDF)) [28,29]; (2) data-driven methods (artificial neural network (ANN)) [30–32];
(3) physics-based methods (e.g., assimilation of remote-sensing data into land surface
model, exponential filter (ExpF)) [4,33–36].

Statistics-based methods are the simplest among the three types of methods, which
establish the linear relationship between RZSM and SSM or multiple atmospheric forcing
variables. However, the accuracy of statistics-based methods is the lowest due to the simple
model structure and lack of physical mechanisms. Previous studies show that data-driven
methods can predict RZSM with good accuracy, but the disadvantages are obvious: (1) the
accuracy of an ANN declines sharply once the data used to predict are outside the training
conditions; (2) the trained ANN model has low transferability, limited by local climatic
conditions [31,32]. By comparison, physics-based methods are a better choice for the solid
physical mechanism and higher accuracy, in which assimilating remote sensing data into
the land surface model may be the most accurate [36–38]. However, this method needs a
wide range of input data (precipitation, humidity, etc.) and is not suitable for areas where
measured data are scarce. In addition, the method has a complex model structure and
is computationally expensive. Karandish et al. [39] compare a process-based numerical
model (HYDRUS-2D), machine learning (SVM) and multiple regression model (MLR), they
reported that process-based numerical models are best at predicting soil moisture, followed
by machine learning models and then MLR. Zhang et al. [29] compared three methods
(ANN, LR and ExpF) for vertical extrapolation of surface soil moisture and indicated that
the ExpF outperforms ANN and LR for capturing the relative variability and correlations
between soil moisture at different depths. Tian et al. [2] adopted ANN, CDF and ExpF to
estimate subsurface soil moisture from surface soil moisture and reported that ExpF best
captures the temporal variation of subsurface soil moisture.

The ExpF was proposed by Wagner et al. [34] on the basis of a two-layer soil water bal-
ance equation and widely used to estimate profile soil moisture from near-surface soil mois-
ture with little input and reasonable accuracy at several fixed locations [2,6,11,29,33,35,40].
However, few studies yet exist on estimating RZSM from SSM on a basin scale.



Atmosphere 2023, 14, 124 3 of 21

When the ExpF was used to estimate RZSM from satellite-derived soil moisture grid
data on a basin scale, it was crucial to obtain the characteristic time length T_opt for
each grid unit. Hence, it was necessary to figure out the main controlling factors on
T_opt. Albergel et al. [33] pointed that a weak connection between T_opt and climatic
conditions may exist. Ford et al. [40] reported that T_opt was sensitive to near-surface
soil moisture conditions and tended to be smaller when surface soil moisture conditions
were extremely dry or wet. Wang et al. [41] reported that T_opt was negatively correlated
with sand fraction and bulk density, and positively correlated with clay fraction and soil
organic matter at Automated Weather Data Network (AWDN) stations, but no significant
correlation was found at the Soil Climate Analysis Network (SCAN) stations due to the
higher spatial variability in precipitation. However, Tian et al. [2] drew the opposite
conclusions, namely that T_opt was negatively correlated with clay fraction and soil
organic matter, and positively correlated with bulk density. Therefore, the main driver of
T_opt may depend on a combination of local specific climatic conditions and soil properties.
For the HRB, further research is needed on the main controlling factors of the T_opt and
how to derive the T_opt for each grid at basin-scale from the controlling factors.

This study seeks to provide the following information: (1) how to determine the
T_opt suitable for the HRB at fixed locations; (2) how to obtain the T_opt with high spatial
variability for each grid at basin-scale, considering climatic conditions and soil properties;
(3) how to obtain a relatively accurate RZSM dataset for the HRB.

2. Materials and Methods
2.1. Study Area

The Huai River Basin (HRB) is a typical humid and subhumid region in eastern China,
bordering the Yellow Sea and covering an area of 27 × 104 km2. The ranges of longitude
and latitude for HRB are 111◦55′ to 121◦25′ E and 30◦55′ to 36◦36′ N, respectively (Figure 1).
The HRB is located in the transitional zone between northern subtropical (north HRB)
and warm temperate climates (south HRB). The average annual precipitation ranges from
600 to 1000 mm with an average of 888 mm, and the annual evaporation ranges from 900 to
1500 mm [42]. There are typical north–south precipitation and evaporation gradients in
opposite directions [43–45]. Precipitation is mostly concentrated in June and July. The
heterogeneity of precipitation and evaporation leads to dynamic temporal and spatial
variations soil moisture; thus, frequent droughts and floods occur in the HRB. The territory
is relatively flat, mainly comprising plains surrounded by mountains [42].

2.2. Datasets
2.2.1. In Situ Measurements

The in situ soil moisture measurements were collected at 31 stations from 1 April 2015
to 31 December 2019. At each station, soil moisture is measured daily by time domain
reflectometry (TDR) soil moisture probes installed horizontally at depths of 5, 20, 40 and
100 cm. Most of the in situ stations are located on the Huaibei plain where the main
land-cover is wheat and maize. Hence, the soil moisture measurements are characterized
by similar underlying surface and climate conditions.

Daily precipitation and near-surface air temperature are available on the China Me-
teorological Data Network (http://data.cma.cn/, accessed on 20 December 2022), and
quality control procedures are executed at each station. The grid dataset is obtained by
interpolating spatially, using the method of partial thin-plate smoothing splines from more
than 2400 national ground meteorological station observations after quality controls and
corrections. The average coverage rate of gauging stations located in a grid cell is 38% across
the whole of China, but up to 77% in the eastern part of China where the HRB is located.
The rainfall data has a mean RMSE of 0.49 mm and R of 0.93 significant at p < 0.01 [46]. The
air temperature data have a mean bias of ±0.2 ◦C and RMSE of 0.2–0.5 ◦C [47].

http://data.cma.cn/
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Figure 1. Location of study area (a) and distribution of in situ soil moisture stations in the Huai River
Basin (b), which is divided into a grid of 0.25◦ × 0.25◦. The soil moisture stations probes were buried
at depths of 5, 20, 40 and 100 cm.

For soil properties, information of a gridded dataset with a resolution of 30” × 30”
(about 1 km at the equator) containing the information of eight layers from 0 to 230 cm was
compiled using the soil properties from and surface modeling over China [48].

2.2.2. RF_SMAP_L3_P Surface Soil Moisture

The RF_SMAP_L3_P near-surface soil moisture dataset generated by Wang et al. [27]
was produced by using NASA-derived data (e.g., soil moisture, precipitation, land surface
temperature) to drive a random forest model to estimate missing SMAP values for the Huai
River Basin and used as the input for the exponential filter in the study. The RF_SMAP_L3_P
near-surface soil moisture dataset has a temporal resolution of 1 day and spatial resolution
of 0.25◦ × 0.25◦. The RF_SMAP_L3_P near-surface soil moisture dataset was evaluated with
the method of in situ validation (accuracy: ubRMSD ≈ 0.05) and triple collocation analysis
(accuracy: ubRMSE ≈ 0.04) by Wang et al. [27], which meets the accuracy requirement of
the SMAP mission (0.04 m3/m3) for soil moisture retrievals.

2.2.3. SMAP L4 SSM and RZSM Products

The SMAP Level 4 (L4) surface (0–5 cm) and root zone (0–100 cm) soil moisture
product is generated by assimilating SMAP L1C_TB brightness temperature data into the
NASA Catchment land surface model [49]. The land surface model is driven with surface
meteorological forcing data from the Goddard Earth Observing System (GEOS) forward
processing system, including corrected GEOS precipitation with the Center for Climate
Prediction Unified (CPCU) 0.5◦ daily precipitation product. The L4 soil moisture product
is available from 31 March 2015 to present at a resolution of 9 km and 3 h. The SMAP L4
soil moisture product is distributed by the National Snow and Ice Data Center (NSIDC)
(https://nsidc.org/, accessed on 3 January 2023).

https://nsidc.org/
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2.2.4. SMOS L3 and L4 Products

The SMOS satellite, equipped with a Microwave Imaging Radiometer using an Aper-
ture Synthesis (MIRAS), directly sensed soil moisture in the 0 to 5 cm soil layer. CATDS (Cen-
tre Aval de Traitement des Données SMOS) produced and distributed a global, 0.25-degree,
daily resolution of the Level 4 root zone soil moisture (L4 RZSM) product from 14 January
2010 to present. The SMOS L4 RZSM (0–100 cm) is obtained from SMOS L3 3-day average
SSM (0–5 cm) [13], through a modified formulation of the exponential filter that integrates
soil texture. The water bucket model considers the soil profile as three layers (0–5 cm,
5–40 cm and 40–100 cm). The scaled 0–5 cm layer soil moisture was applied to the water
bucket model to obtain soil moisture in the of 5–40 cm layer, and a similar procedure is
executed for soil moisture in the 40–100 cm layer. The RZSM is depth-weighted average of
soil moisture in the three layers. SMOS L3 and L4 products are both available at CATDS
(https://www.catds.fr/, accessed on 3 January 2023).

2.3. Methodology
2.3.1. The Recursive Exponential Filter

The exponential filter proposed by Wagner et al. [34] is a two-layer water bucket model,
which assumes that the water flux of the two layers is proportional to the difference between
SSM and RZSM. Albergel et al. [50] first used a recursive exponential filter equation to
estimate RZSM from the remotely sensed surface layer, which is written as:

SWIm,tn = SWIm,tn−1 + Ktn

(
mstn − SWIm,tn−1

)
(1)

where SWIm,tn and SWIm,tn−1 are predicted root zone soil wetness index (e.g., 20 cm, 40 cm
and 0–100 cm) at times tn and tn−1, mstn is normalized near-surface soil wetness index
(5 cm) at tn, tn is the time index. mstn and SWIm,tn are both degree of saturation ranging
from 0 to 1, which are normalized by daily volumetric soil moisture with maximum and
minimum values observed across the entire observation period at each in-situ station, the
gain Ktn at time tn is calculated in a recursive form by:

Ktn =
Ktn−1

Ktn−1 + e−
(tn−tn−1)

T

(2)

T =
L
C

(3)

where T is the characteristic time length in units of day and represents the transfer time
from the surface layer to the root zone layer, a comprehensive parameter affected by
hydrological processes (precipitation and others) and hydrogeological conditions (soil
texture and other properties) [33]. L is the soil layer depth of the root zone, and C is the
pseudo diffusion coefficient of soil water. For the initialization of the filter, set K1 = 1 and
SWIm,t1 = mst1 , when there is a long time interval between the adjacent observations at
time tn and tn−1, Kn approaches unity, and the new estimate SWIm,tn takes the value of
the new observation mstn [51,52]. Finally, SWI values at different depths are rescaled to
volumetric water content.

In this study, various T (0–60 days) values were used to optimize the exponential
filter, and the optimal T

(
Topt

)
value was obtained at each station when the Nash–Sutcliffe

efficiency coefficient (NSE) between predicted SWIm and observed SWIo peaked. Further-
more, the exponential filter’s code, provided by Brocca et al. [53], is available at (Satellite
soil moisture validation—hydrology (cnr.it), accessed on 3 January 2023).

https://www.catds.fr/
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2.3.2. Calculation of Profile Soil Moisture (RZSM) Values

The in situ profile soil moisture (0–100 cm) or RZSM is calculated with a depth-
weighted method using the soil moisture measured at depths of 5, 20, 40 and 100 cm [54].
The equation is calculated by:

θRZSM =
2θ1L1 + (θ1 + θ2)L2 + · · · (θn−1 + θn)Ln

2(L1 + L2 + L3 + · · · Ln)
(4)

where θRZSM is the volumetric soil moisture for the 0–100 cm layer (m3/m3), θn is the
volumetric soil moisture at the nth observation depth (m3/m3), and Ln is the soil layer
thickness between adjacent observation depths (cm).

2.3.3. Precipitation-Based Tpre

We first optimized the station-specific Topt value using in situ measurements at a few
fixed locations. However, affected by precipitation, Topt exhibited high spatial variability
among the stations. In order to apply the ExpF on each grid unit, we needed to obtain
Topt for each grid. Topt was mainly driven by precipitation, so different statistical models,
such as linear regression and exponential function, between precipitation and Topt were
established to obtain precipitation-based Tpre values for each grid from grid precipitation.
A summary of the different statistical models is reported in Table S1, and the best fit
models are shown below (R1 = −0.61 ∗∗∗, R2 = −0.69 ∗∗∗, R3 = −0.65 ∗∗∗, R4 = −0.58 ∗∗,
** denotes that the correlation coefficient R values indicate significant correlation at p < 0.01,
*** denotes the correlation coefficient R values indicate significant correlate at p < 0.001).

y1 = 4013.7e−0.006x (5)

y2 = 23290e−0.007x (6)

y3 = 27765e−0.007x (7)

y4 = 4414.3e−0.006x (8)

where y1, y2, y3 and y4 represent Topt (day) at depths of 20, 40, 100 and 0–100 cm, respec-
tively. x represents annual average precipitation (mm).

3. Results
3.1. The Spatial–Temporal Variability of Soil Moisture

Figure 2a,b displays the evolution of mean spatial soil moisture and coefficient of
variation (CV) with time. There is a hysteresis pattern between the CV of spatial soil mois-
ture and mean spatial soil moisture, which could be attributed to differential soil moisture
dynamics and lateral flow redistribution and the heterogeneity in soil properties [8,10].
In addition, the root zone soil moisture leads to a slight increase in the occurrence of
hysteresis comparing with surface soil moisture in this study. The CV values of spatial
soil moisture at depths of 5, 20, 40 and 100 cm across all stations are calculated and are
0.163, 0.150, 0.159 and 0.134, respectively. The root zone soil moisture has a smaller CV
than the surface soil moisture, which is significantly affected by strong land–atmosphere
interactions. And a smaller CV could lead to an increase in the occurrence of hysteresis.
In general, a low precipitation event would mask the hysteresis pattern comparing with a
high precipitation event. Figure 2c,d shows the frequency distribution of mean temporal
soil moisture and CV of temporal soil moisture. The root zone soil moisture (100 cm) shows
similar characteristics to surface soil moisture but has higher range of mean temporal soil
moisture (Figure 2c). Figure 2d shows that deeper soil moisture has a smaller range of
CV of temporal soil moisture than surface soil moisture and lower frequency distribution.
Moreover, the relation between frequency distribution and mean temporal soil moisture
shows clear bimodality, but the relation between frequency distribution and CV of temporal
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soil moisture shows clear unimodality and being skewed to the smaller CV of the temporal
soil moisture.
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3.2. Cross Correlation Analysis
3.2.1. Cross-Correlation Coefficient Calculations

Figure 3 displays the cross-correlation coefficients between SSM and RZSM at various
depths for selected stations. In general, the coupling strength between SSM and RZSM
weakened with time lag (up to 50 days) and soil depth, respectively. The maximum 5–20 cm
cross correlation coefficient typically occurred with a 0-day lag and varied from 0.66 to
0.97 with an average value of 0.87 across the study stations. The maximum 5–40 cm cross
correlation coefficients were lower than those for 5–20 cm, ranging from 0.52 to 0.90 with
an average value of 0.71. The maximum 5–100 cm cross correlation coefficients ranged
from 0.32 to 0.54 with an average value of 0.43. The results were consistent with previously
reported conclusions [25,40]. In addition, we found an interesting phenomenon. When
time lag ranged from 0 to 10 days, the 5–20 cm cross correlation coefficient was higher
than those for 5–40 cm and 5–100 cm, respectively. However, for time lags between 10 and
50 days, the 5–100 cm cross correlation coefficients exceeded those for 5–20 cm and 5–40 cm,
which could be explained by the fact that response time of the 5–100 cm soil moisture was
longer than those for 5–20 cm and 5–40 cm.

3.2.2. Controls on the Coupling Strength

We further analyzed the controlling factors on the coupling strength of soil moisture
between SSM and RZSM at various depths. Average annual precipitation, average annual
air temperature, relative humidity and evapotranspiration were investigated on how they
affected the coupling strength. The relationships between maximum cross correlation coef-
ficients and correlated impact factors are presented in Figure 4. No significant correlation
was found between relative humidity, evapotranspiration and maximum cross correlation,
so it is not exhibited.
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The left panel of Figure 4 displays the scatter plots between maximum cross correlation
coefficient and average annual precipitation calculated with the daily observations over
all in situ stations. There was a significant negative correlation between precipitation and
soil moisture coupling strength of 5–20 cm (R2 = 0.26), 5–40 cm (R2 = 0.49) and 5–100 cm
(R2 = 0.53), respectively. Moreover, it seemed that precipitation had a stronger influence on
the coupling strength between SSM and deeper RZSM. The negative correlation between
cross correlation coefficient and average annual precipitation indicated that the coupling
strength between SSM and deeper RZSM was stronger in dry regions (northwest) than
that in wet regions (southeast), which confirmed the results in Nebraska but contrasted
with that of Oklahoma reported by Ford et al. [40]. As mentioned above, the soil moisture
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might affect the patterns of precipitation by controlling the evapotranspiration and other
energy fluxes. Boé et al. [17] indicated that the precipitation tended to be larger in dry
soil conditions. Taylor et al. [55] also found that the afternoon precipitation preferentially
fell over dry soil regions where convective events driven by increased sensible heat flux
over dry soil occurred frequently. Thus, the negative correlation between precipitation and
coupling strength could be explained by the negative soil moisture–precipitation feedback
caused by the specific circulation regime or convective events.

The right panel of Figure 4 shows similar characteristics but for maximum cross corre-
lation coefficient and average annual air temperature (◦C). There was a negative correlation
between air temperature and soil moisture coupling strength of 5–20 cm (R2 = 0.18), 5–40 cm
(R2 = 0.26) and 5–100 cm (R2 = 0.33), respectively. The difference is that the coefficient of
determination (R2) associated with air temperature was constantly lower than precipitation
at different depths, which showed that precipitation might have a stronger control on cou-
pling strength between SSM and RZSM than air temperature. One reason for the negative
correlation between coupling strength and air temperature could be explained as follows:
The net radiation heat was partitioned into latent heat flux for evapotranspiration and
sensible heat flux for rising air temperature. Therefore, the latent heat flux consumed by dry
soil was less than wet soil; the remaining sensible heat flux for dry soil was more than wet
soil, which increased air temperature [56–58]. In addition, the hydraulic connection and
coupling strength of dry soil is weaker than wet soil, so the maximum cross-coefficient and
air temperature is negatively correlated. Finally, due to the strong land surface–atmosphere
interactions, precipitation and air temperature might have stronger effect on the coupling
strength for 5–20 cm soil moisture than 5–40 cm and 5–100 cm soil moisture, so R2 increased
with soil depth.

The cross-correlation analysis above implied that SSM had a strong connection with
the RZSM over in situ stations in HRB. Similar results were reported by [24,25]. Thus, it is
promising to establish links between SSM and RZSM. However, there are obvious outliers
in the scatterplots for Figure 4a,b. First, these in situ stations are mostly located in or close
to the mountainous regions of the HRB (e.g., northeast, southwest and northwest of the
HRB), where the underlying surface and local weather conditions are different from that in
the plain region. Thus, these differences result in heat and moisture exchange between land
surface and atmosphere distinctly different in mountainous and plain regions, respectively.
In general, the underlying surface in mountainous regions is more complex than that
in plain regions, which impedes the transfer and exchange of heat and moisture in the
vadose zone, and further weakens the response of coupling strength to precipitation or air
temperature. Moreover, due to the stronger land–atmosphere interactions in the surface
layer than the root zone layer, the mixed effect of precipitation and air temperature on the
coupling strength for 5–20 cm soil moisture leads to the low correlation coefficient between
the coupling strength and precipitation or air temperature, i.e., the coupling strength for
5–20 cm soil moisture is not dominated by sole precipitation or air temperature.

3.3. Analysis of Topt

In the study, SWIo at 5 cm was used to predict SWIm at 20, 40, 100 cm and profile
average values at the in situ stations. Figure 5 shows that NSE between SWIo and SWIm at
different depths varied with time for each station. The station-specific Topt was obtained
when the NSE peaked. The statistics of Topt at different depth and evaluation metrics are
presented in Table 1. For the HRB stations, the Topt ranged from 1 to 25 days with an
average value of 4 days at 20 cm, from 1 to 60 days with an average value of 8 days at 40 cm,
from 2 to 60 days with an average value of 36 days at 100 cm, and from 1 to 60 days with an
average value of 11 days for the profile average value. The Topt at 20 cm was smaller than
results from Wagner et al. [34] and Wang et al. [41], who used SWIo at 5 cm to predict SWIm
at 20 cm with Topt = 15 and 15.8 days, respectively. The Topt at 40 cm was also smaller than
previous results. For instance, Albergel et al. [33] used SWIo at 5 cm to estimate SWIm at
30 cm in SMOSMANIA and SMOSREX networks by setting Topt = 6 days, and Tian et al. [2]
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used SWIo at 5 cm to predict SWIm at 40 cm with Topt = 12.4 days. By contrast, The Topt at
100 cm was also larger than the results reported by Wagner et al. [34], who used SWIo at
5 cm to estimate the SWIm at 100 cm with Topt = 20 days. The reasoning can be explained
as follows: the soil column is divided into the plough layer (0–20 cm), black soil layer
(20~50 cm) and the lime concretion soil layer (50~100 cm) due to the soil stratification in
the HRB, so the relative impervious layer hinders the infiltration of soil water and hence
results in a larger Topt at 100 cm [59]. Table 1 also lists the statistics of Topt using surface
SWIo to predict root zone SWIm and corresponding NSE reported in the previous literature.
Overall, Topt tended to increase and NSE tended to decrease with soil depth.
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Table 1. Statistics of the characteristic time length Topt using near-surface SWI to predict SWI at
various root zone depths and corresponding NSE values.

Source Depth Topt (Days) Mean of Topt NSE Mean of NSE

This article
(5 cm)

20 cm 1–25 4 0.14–0.94 0.57

40 cm 1–60 8 0.04–0.82 0.55

100 cm 2–60 36 −0.74–0.71 0.31

soil profile 1–60 11 −0.39–0.92 0.50

[2]
(5 cm)

15 cm 1–6 2.48 0.27–0.99 0.63

25 cm 1–24 7.29 −0.09–0.91 0.41

40 cm 1–48 12.37 −0.23–0.71 0.24

60 cm 1–60 18.93 −0.64–0.64 −0.03

soil profile 1–11 4.32 0.32–0.96 0.64
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Table 1. Cont.

Source Depth Topt (Days) Mean of Topt NSE Mean of NSE

(10 cm)
[41]

(5 cm)

25 cm 2–58 10.47 0.03–0.86 0.59

50 cm 4–60 29.78 −1.24–0.68 0.24

soil profile 1–22 4.81 0.33–0.91 0.76

10 cm 1–60 4.90 −3.57–0.94 0.57

20 cm 1–60 15.83 −6.66–0.92 0.05

50 cm 1–60 31.71 −5.86–0.77 −0.50

soil profile 1–60 9.98 −3.58–0.91 0.42

[40]
(5 and 10 cm)

25 cm 2–22 8 0.07–0.84 0.63

25 cm 3–20 9 0.08–0.83 0.64

[33]
(5 cm) 30 cm 3–11 6 0.56–0.94 0.85

[60]
(5 cm)

25 cm 20–60 40 0.62–0.77 0.67

(50~100) cm 50–60 60 0.41–0.74 0.62

100 cm 40–60 50 0.57–0.75 0.69

[34]
(5 cm)

20 cm 15–30 15 / /

100 cm 15–30 20 / /

Topt varied considerably over different in situ stations. In order to apply the exponen-
tial filter on large spatial scale, so we evaluated the performance of the exponential filter
using the stations-averaged Topt and precipitation-based Tpre for specific depth. Figure 6
shows boxplot of NSE, RMSE and MBE between SWIo and SWIm for two different Topt. The
NSE first increased with T, then decreased to a steady value when the T reached 60 days.
For stations-averaged Topt, the NSE ranged from 0.03 to 0.89 with an average value of
0.53 at 20 cm, from −0.01 to 0.81 with an average value of 0.46 at 40 cm, from −1.26 to 0.60
with an average value of 0.19 at 100 cm, and from −0.67 to 0.84 with an average value of
0.42 for the profile average value. The NSE, at depth of 20 cm was larger than that of 40,
100 cm and profile average value, which was consistent with the trend of coupling strength
between SSM and RZSM. For precipitation-based Tpre, the NSE between SWIo and SWIm
ranged from 0.37 to 0.94 with an average value of 0.63 at 20 cm, from 0.24 to 0.82 with an
average value of 0.59 at 40 cm, from −0.74 to 0.71 with an average value of 0.32 at 100 cm,
and from −0.38 to 0.84 with an average value of 0.55 for the profile average value. On the
whole, the precipitation-based Tpre outperformed stations-averaged Topt. A summary of
the statistical metrics is shown in Table 2.

3.4. Controlling Factors on Topt

The characteristic time length Topt is the unique variable of the exponential filter, so
it is pivotal to figuring out that variables mainly control the Topt, which reflects the time
scale of soil moisture dynamics. Soil depth, soil properties (bulk density, clay/sand/silt
fraction, soil organic matter and porosity) and precipitation are used to investigate how
Topt is affected. Figure 7 shows the boxplot of Topt at depths of 20, 40, 100 cm and the
profile average value over all in situ stations. We are confident it infers that Topt tends to
increase with soil depth. The stations-averaged Topt are 4, 8, 36 and 11 days, respectively.
No significant correlation was found between soil properties and Topt (Figure S1), so it was
not shown here.
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Table 2. Statistical metrics of NSE, RMSE and MBE at depths of 20, 40, 100 cm and profile average
value, calculated with observed SWIo standardized by daily volumetric soil moisture and predicted
SWIm from normalized near-surface soil moisture with the exponential filter.

Depth Statics
Topt

(Days)

NSE RMSE MBE

Stations-
Averaged

T

Precipitation-
Based

T

Stations-
Averaged

T

Precipitation-
Based

T

Stations-
Averaged

T

Precipitation-
Based

T

20 cm

Range 1–25 0.03–0.89 0.37–0.94 0.10–0.21 0.06–0.16 −0.15–0.15 −0.09–0.06

Average 4 0.53 0.63 0.15 0.11 0.00 0.00

SD 8.26 0.27 0.2 0.04 0.03 0.07 0.04

40 cm

Range 1–60 −0.01–0.81 0.24–0.82 0.11–0.25 0.08–0.16 −0.16–0.17 −0.11–0.09

Average 8 0.46 0.59 0.17 0.12 0.01 0.00

SD 16.44 0.29 0.24 0.04 0.03 0.09 0.05

100 cm

Range 2–60 −1.26–0.6 −0.74–0.71 0.12–0.29 0.09–0.22 −0.28–0.12 −0.19–0.11

Average 36 0.19 0.32 0.20 0.16 −0.04 −0.03

SD 23.62 0.42 0.32 0.05 0.04 0.12 0.09

Profile

Range 1–60 −0.67–0.84 −0.38–0.84 0.10–0.25 0.08–0.21 −0.21–0.13 −0.13–0.09

Average 11 0.42 0.55 0.17 0.13 −0.01 −0.01

SD 15.71 0.33 0.22 0.05 0.04 0.10 0.06

Precipitation is the most important driver for soil moisture variation. Figure 8 shows
that Topt was negatively correlated with average annual precipitation at all depths. The
coefficients of determination (R2) between Topt and average annual precipitation were
(R2 = 0.37) at 20 cm, (R2 = 0.33) at 40 cm, (R2 = 0.30) at 100 cm and (R2 = 0.31) for profile
average value. The quantitative analysis between Topt and precipitation helps us better
comprehend how soil moisture and precipitation participate in land–atmosphere interac-
tions and affect each other. There is a feedback mechanism (positive or negative) between
soil moisture and precipitation, which contributes to predicate droughts and floods from
the soil moisture [18,19,55]. For in situ stations with higher precipitation, the hydraulic
connection between near-surface and root zone soil water was enhanced due to the fre-
quent precipitation, which improved the infiltration rate for soil water and provided faster
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drainage conditions. Therefore, a smaller Topt was found for in situ stations with higher
precipitation. The abnormally large Topt values mainly exist in the mountainous regions
or north of the HRB with less precipitation. For the in situ stations in the mountainous
regions, the precipitation reaches the land surface quickly form surface runoff due to the
effect of topography (e.g., steep slope), and less precipitation infiltrates into the soil. In
addition, the water infiltrating into the soil may be hindered by the relatively impermeable
layer (rock formation) and form subsurface runoff. Both reduce the response of Topt value
to precipitation. For the in situ stations in the northern HRB, which commonly has less
precipitation than that in the southern and eastern HRB bordering the Yellow Sea due to
the geographic location. Therefore, less precipitation reaches the land surface and infiltrate
into the vadose zone, which takes more time from surface layer to root zone layer, thus
producing a large Topt value.
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3.5. Evaluation of RF_SMAP_L3_P SSM Product

The in situ SSM was used to validate the reconstructed RF_SMAP_L3_P SSM, SMAP
L4 SSM and SMOS L3 SSM from 2015 to 2019. Evaluation metrics of R, Bias, RMSE
and ubRMSE were used to evaluate the accuracy of specific SSM products. Figure 9
(left) displays the SSM time series of model products and in situ measurements. On the
whole, there was a significant underestimation of SSM by the SMOS L3 product, but for
days with high precipitation, the SMOS L3 product overestimated in situ SSM. SMAP L4
SSM significantly overestimated the in situ measurements when precipitation was low.
Figure 9 (right) shows the scatterplots between model SSM and in situ measurements.
RF_SMAP_L3_P SSM had the highest R of 0.63, followed by SMAP L4 SSM (R = 0.608)
and SMOS L3 (R = 0.445). SMAP L4 SSM had the lowest ubRMSE of 0.032, followed by
RF_SMAP_L3_P SSM (ubRMSE = 0.040), and both satisfied the accuracy requirement of
0.04 (m3/m3). SMOS L3 had ubRMSE = 0.046. Compared to other model products, the
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reconstructed RF_SMAP_L3_P SSM best captured the temporal variations of in situ soil
moisture and had the lowest MBE. Although RF_SMAP_L3_P had a higher ubRMSE than
that of SMAP L4 SSM, we think that it could be used as the exponential filter input to
estimate RZSM at different depths.
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3.6. Estimation and Evaluation of RZSM from RF_SMAP_L3_P SSM

The scaled RF-SMAP_L3_P SSM (0–5 cm) was adopted to estimate root zone SWI
(20 cm, 40 cm, 100 cm and 0–100 cm) using the exponential filter method from 2015 to 2019,
the precipitation-based Tpre (Tpre = 4 at 20 cm, 8 at 40 cm, 36 at 100 cm, 11 at 0–100 cm)
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were considered as the unique parameter to participate the calculation of root zone SWI,
then root zone SWI was rescaled linearly to volumetric soil moisture, which was used to
compare to in situ volumetric soil moisture.

Figure 10 displays the stations-averaged time series and scatterplots of RZSM at
different depths, generally speaking, the accuracy of RZSM estimates decreased with soil
depth, which was consistent with coupling strength. The evaluation metrics of R were
0.554, 0.500 and 0.290; those of MBE were −0.022, −0.025 and −0.064; and of RMSE were
0.038, 0.039 and 0.071 at depths of 20, 40 and 100 cm, respectively. However, the ubRMSE
decreased with soil depth, probably because the bias increased faster than RMSE with soil
depth. In general, compared to in situ RZSM, the RZSM estimates at all depths derived
from the exponential filter were lower.
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Figure 11 shows the boxplots of evaluation metrics over all in situ stations. Generally
speaking, the accuracy of RZSM estimates decreased with soil depth. The evaluation metric
of R ranged from 0.19 to 0.59 with an average value of 0.40 at depth of 20 cm, from 0 to 0.54
with an average value of 0.35 at depth of 40 cm, from −0.15 to 0.39 with an average value
of 0.20 at depth of 100 cm. The average ubRMSE was 0.045 at 20 cm (ranging from 0.033 to
0.069), 0.046 at 40 cm (from 0.032 to 0.075), 0.041 at 100 cm (from 0.021 to 0.068). Table 3
provides a summary of evaluation metrics.

In this section, we evaluated the accuracy of RF_SMAP_L3_P RZSM, SMAP L4 RZSM
and SMOS L4 RZSM compared to in situ RZSM. The left panel of Figure 12 shows the
time series comparison between in situ RZSM and model products, the right panel of
Figure 12 are scatterplots. RF_SMAP_L3_P RZSM had the highest R of 0.586, followed
by SMAP L4 SSM (R = 0.540) and SMOS L3 (R = 0.359), and the lowest ubRMSE of 0.023,
followed by RF_SMAP_L3_P SSM (ubRMSE = 0.027) and SMOS L3 (ubRMSE = 0.027),
all of them satisfied the accuracy requirement of 0.04 (m3/m3). There was no doubt that
the R and ubRMSE for RZSM was lower than that for SSM, which was consistent with
the conclusion drown by Reichle et al. [61]. In general, all model products could roughly
reproduce the in situ RZSM. It was clear that the SMOS L4 RZSM was constantly lower
than in situ measurements, which was similar to the SMOS L3 SSM, and it didn’t respond
very well to precipitation. The underestimation of SMOS L4 SSM might be explained by
the following two reasons. Firstly, SMOS L3 SSM underestimated the in situ measurements.
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Secondly, the root zone SWI derived from exponential filter was lower than that of the
in situ measurements. SMAP L4 and RF_SMAP_L3_P RZSM both captured the temporal
variation of RZSM better than SMOS L4 RZSM; both of them matched the high in situ
measurements well, but slightly overestimated the low in situ measurements. In conclusion,
though showing slightly higher MBE (0.04) and RMSE (0.046) of RF_SMAP_L3_P RZSM
than SMAP L4 RZSM (MBE = 0.030, RMSE = 0.046), RF_SMAP_L3_P RZSM had the highest
R and the lowest ubRMSE (<0.04 m3/m3) among all RZSM products; we believe that
RF_SMAP_L3_P RZSM captured the temporal variation of in situ measurements best.
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Figure 11. The evaluation metrics of R (a), MBE (b), RMSE (c) and ubRMSE (d) at the depths of 20, 40,
100 cm between SWIo normalized by in situ soil moisture and SWIm estimated by RF_SMAP_P_L3
surface soil moisture. “+” represent outliers of Topt.

Table 3. Summary of metrics (R, MBE, RMSE and ubRMSE) between estimated SWIm and observed
SWIo at depths of 20, 40 and 100 cm.

Depth Statistics R MBE RMSE ubRMSE

20 cm
Range 0.19–0.59 −0.08–0.02 0.08–0.13 0.03–0.07
Mean 0.40 −0.02 0.07 0.04

40 cm
Range 0–0.54 −0.11–0.11 0.05–0.13 0.03–0.07
Mean 0.35 −0.03 0.08 0.05

100 cm
Range −0.15–0.39 −0.13–0.32 0.04–0.33 0.02–0.07
Mean 0.20 0 0.12 0.04

Because floods and droughts occurred frequently in the Huai River Basin, we divided
the research period into a flood period (May–September) and non-flood period (October–
April) to investigate the performance of different RZSM products. Figure 13 displays the
boxplots of R, MBE, RMSE and ubRMSE between in situ RZSM and model RZSM products
over all in situ stations. RF_SMAP_L3_P RZSM obtained the highest R mean and lowest
ubRMSE mean than the other products, followed by SMAP L4 RZSM. SMOS L4 RZSM
performed worse than the former due to a lower R mean and higher ubRMSE mean, and
the negative bias SMOS L4 RZSM indicated that it underestimated the subsurface soil
moisture. All the evaluation metrics of SMAP L4 and RF_SMAP_L3_P RZSM in the flood
period had better performance than that of the full period and non-flood period. In the
flood period, the average R value was 0.564 with an SD of 0.101 for RF_SMAP_L3_P, 0.470
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with an SD of 0.104 for SMAP. The average ubRMSE value was 0.033 with an SD of 0.007
for RF_SMAP_L3_P, 0.039 with an SD of 0.008. By comparison, among three research
periods, SMOS L4 RZSM performed better in the non-flood period. In the non-flood period,
the average R value for SMOS L4 RZSM was 0.200 with an SD of 0.167, and the average
ubRMSE value was 0.037 with an SD of 0.007. For SMOS L4 RZSM, though the R of the
non-flood period was higher than that of flood period, the same went for the SD, which
might be caused by temporally uneven precipitation in the non-flood period.
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4. Conclusions

In this study, we assessed the utility of the recursive exponential filter method using
in situ soil moisture measurements from 2015 to 2019 in the HRB. In addition, the impact of
controlling factors on the unique parameter Topt was investigated. The filter method was
applied at a watershed scale by using a new RF_SMAP_L3_P soil moisture dataset (0–5 cm)
to estimate RF_SMAP_L3_P RZSM over the Huai River Basin. Finally, we evaluated the
performance of RF_SMAP_L3_P RZSM with SMAP L4 and SMOS L4 RZSM. The main
findings were as follows:

(1) The coupling strength between SSM and RZSM was strong and correlated negatively
with precipitation and air temperature for the pivotal role of soil moisture in land–
atmosphere interactions.

(2) There exists a hysteresis pattern between CV of spatial soil moisture and mean spatial
soil moisture. The root zone soil moisture leads to a slight increase in the occurrence
of hysteresis comparing with surface soil moisture. In general, a low precipitation
event would mask the hysteresis pattern comparing with a high precipitation event.

(3) The ExpF could be used to estimate RZSM from SSM (satellite-derived or model data)
with reasonable accuracy at the watershed scale, but its utility declined with soil depth.
And it performed better in wetter weather conditions than dry weather conditions.
Precipitation-based Tpre significantly improved the accuracy of the exponential filter
at a basin scale when it was applied to grid units, but it was subject to the accuracy
of precipitation. However, gridded precipitation used to obtain Tpre was generally
provided by reanalysis products or satellite-based retrievals, which had relatively
large uncertainty to gauge-based observations and affected the acquisition of accurate
Tpre in this study.

(4) The ExpF might not be suitable for application in mountainous regions. Steep slope
is more conductive to the quick formation of surface runoff than flat plain and less
precipitation infiltrates into the soil. In addition, the water infiltrating into the soil
could be hindered by the relatively impermeable layer (rock formation) and form
subsurface runoff. Both mentioned above reduce the response of transfer of water in
the soil to precipitation.

(5) Among the three research periods, RF_SMAP_L3_P and SMAP L4 RZSM had better
performance during the flood period, but SMOS L4 RZSM performed better in the
non-flood period. Among all of the RZSM products, RF_SMAP_L3_P RZSM captured
the temporal variation of in situ soil moisture best and SMAP L4 RZSM had the
lowest MBE.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14010124/s1, Figure S1: Scatter plots between Topt and
various soil properties (bulk density, clay, sand and silt fractions, soil organic matter and porosity).
Lines in different color represent the correlated trends between Topt and soil properties; Table S1:
Summary of statistical models between Topt and annual average precipitation.
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