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Abstract: Accurate forecasting of droughts can effectively reduce the risk of drought. We propose
a hybrid model based on complementary ensemble empirical mode decomposition (CEEMD) and
long short-term memory (LSTM) to improve drought prediction accuracy. Taking the Xinjiang Uygur
Autonomous Region as an example, the prediction accuracy of the LSTM and CEEMD-LSTM models
for the standardized precipitation index (SPI) on multiple timescales was compared and analyzed.
Multiple evaluation metrics were used in the comparison of the models, such as the Nash–Sutcliffe
efficiency (NSE). The results show that (1) with increasing timescale, the prediction accuracy of the
LSTM and CEEMD-LSTM models gradually improves, and both reach their highest accuracy at
the 24-month timescale; (2) the CEEMD can effectively stabilize the time-series, and the prediction
accuracy of the hybrid model is higher than that of the single model at each timescale; and (3) the
NSE values for the hybrid CEEMD-LSTM model at SPI24 were 0.895, 0.930, 0.908, and 0.852 for Fuhai,
Kuerle, Yutian, and Hami station, respectively. This indicates the applicability of the hybrid model in
the forecasting of drought.

Keywords: drought forecasting; complementary ensemble empirical mode decomposition; long
short-term memory; standardized precipitation index

1. Introduction

Drought is one of the most serious meteorological disasters, causing increasing damage
to agricultural production, economic operations, and modern life [1,2]. Furthermore, the
frequency and intensity of widespread droughts is expected to increase. Easy-to-compute
drought indicators are often used to monitor and assess the extent, duration, and impact
of drought [3–6]. Due to the wide range of applications and the different understandings
of drought in different disciplines, various drought indicators have been proposed and
applied in drought prediction.

Common drought indices include the standardized precipitation index (SPI) [7–9],
standardized precipitation evapotranspiration index (SPEI) [10–12], Palmer drought sever-
ity index (PDSI) [13,14], and reconnaissance drought index (RDI) [15,16]. Among these, the
SPI can be used for drought analysis at various timescales. Furthermore, it has high accu-
racy in drought classification and can be calculated using only precipitation data [17,18].
As the SPI is widely used in drought research and can be calculated using only precipi-
tation data, it was chosen for use in this study to illustrate the applicability of models in
drought prediction.

Precipitation data and the SPI time-series have non-stationary and non-linear charac-
teristics, but traditional data-driven models, such as the autoregressive and moving average
(ARMA) model, cannot predict non-linear data very well. Therefore, artificial neural net-
works (ANNs) have been used in the study of drought prediction [19], and good prediction
results have been obtained. With the development of machine learning, the long short-term
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memory (LSTM) network has been applied in the time-series prediction of drought and
its related fields [11,20,21]. LSTM has been proposed to solve the long-term dependency
problem and thus has advantages in handling sequences with long intervals and delays [22].
However, a single model is prone to a local optimum in the prediction of time-series, and
the prediction effect is not satisfactory. Therefore, many scholars have introduced the
decomposition of signals in the prediction of time-series [23,24]. Signal decomposition
can extract the local features of the sequence and make the sequence stable. Scholars in
related disciplines have decomposed time-series using empirical mode decomposition
(EMD) [22], ensemble empirical mode decomposition (EEMD) [25], and complementary
ensemble empirical mode decomposition (CEEMD) [26]. These decomposition methods
reduce the complexity of the original time-series and improve the predictability of the data.
The original series is decomposed into a set of more stable components and a trend term.
Among the above three decomposition methods, CEEMD solves the modal mixing problem
of EMD and the residual white noise problem of EEMD. Johny et al. [27] used multivariate
EMD-LSTM for predicting monthly rainfall in India, and the prediction results showed that
the model is superior to ANN hybrids in the prediction of mean and extreme rainfall.

As mentioned above, with the non-linear and non-stationary characteristics of precip-
itation data and the advantages of LSTM in long time-series prediction, a hybrid model
is proposed to improve prediction accuracy in drought prediction. Taking the Xinjiang
Uygur Autonomous Region as an example, the main objectives of the present study are
as follows: (1) to characterize drought conditions using the SPI at 1-, 3-, 6-, 9-, 12-, and
24-month timescales; (2) to develop the LSTM and propose a hybrid model by combining
it with the advantages of CEEMD in dealing with non-linear, non-stationary time-series;
and (3) to evaluate the efficiency of the LSTM and CEEMD-LSTM models based on the
Kruskal–Wallis test, statistical criteria, and the Kriging interpolation method.

2. Materials and Methods
2.1. Study Area and Data

The Xinjiang Uygur Autonomous Region is the largest provincial-level administrative
region in China in terms of area. It ranges from 73◦40′ E to 96◦18′ E and from 34◦25′ N
to 48◦10′ N, with an average altitude of about 1000 m (Figure 1). The region is far from
the sea and deep inland, with low precipitation levels and a dry climate. The average
annual precipitation in Xinjiang is about 150 mm, but there is a large difference between
the annual precipitation in the northern and southern regions, with only 20–100 mm in the
southern region and 100–500 mm in the northern region. Furthermore, the temperature in
the south of Xinjiang is higher than that in the north, with an annual average temperature
of 10–13 ◦C in the south and one below 10 ◦C in the north. Xinjiang was used as the study
area due to its large area. Furthermore, the main purpose of this study was to investigate
the applicability of CEEMD-LSTM for drought prediction. Therefore, four meteorological
stations located in the northern, southern, eastern, and central parts of the region were
selected as examples to display the SPI calculation values and the predicted values of the
two models. The original data were obtained from the National Meteorological Data Center
(http://data.cma.cn/ accessed on 13 March 2020).

2.2. Methods
2.2.1. Standardized Precipitation Index

The SPI was developed by McKee et al. [28] and has been recommended by the World
Meteorological Organization [29]. It is calculated based on precipitation data only. SPI
values on 1-, 3-, 6-, 9-, 12-, and 24-month timescales can be used to describe meteorological
drought, agricultural drought, and hydrological drought conditions in a region [30–32].
The calculation process of the SPI is as follows:

SPI = B
(

t− c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
, (1)

http://data.cma.cn/
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where B is the positive and negative coefficient of probability density; for B = −1,

t =
√

ln 1
G(x)2 , and for B = 1, t =

√
ln 1

(1−G(x))2 , where G(x) is a cumulative proba-

bility [33]. The values of the constants are c0 = 2.515517, c1 = 0.802853, c2 = 0.010328,
d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308. The drought classification based on SPI
values is shown in Table 1.
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Figure 1. Geographical information and meteorological station distribution in Xinjiang Uygur
Autonomous Region.

Table 1. Drought classification based on standardized precipitation index.

SPI Value Classification

−0.5+ No drought
−0.5 to −0.99 Mild drought
−1.0 to −1.49 Moderate drought
−1.5 to −1.99 Severe drought
−2.0 and less Extreme drought

2.2.2. Complementary Ensemble Empirical Mode Decomposition

As proposed by Yeh et al. [34], CEEMD is able to decompose the original sequence to
obtain a set of intrinsic mode function (IMF) and trend terms. It has obvious advantages in
handling time-frequency sequences of non-linear and non-stationary signals. The compo-
nents contain the local features of the original sequence at different scales. The algorithm
steps are described below.

First, n groups of auxiliary white noise, including positive and negative noise, are
added to the original sequence B(t):[

H1
H2

]
=

[
1 1
1 −1

][
B
N

]
, (2)
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where N is an auxiliary sequence, and H1 and H2 are positive noise and negative noise
sequences, respectively. Then, the obtained sequences are decomposed by EMD to obtain m
IMF components, and each set of components is denoted as C+

ij (t) and C−ij (t), where i = 1,
. . . , n and j = 1, . . . , m. The value of IMFj is obtained according to the following formula:

IMFj =
1

2n

n

∑
i=1

(
C+

ij (t) + C−ij (t)
)

. (3)

The obtained IMF values are used as the final decomposition results. The original
sequence is decomposed into:

B(t) =
m

∑
j=1

IMFj(t) + r(t) (4)

where r(t) is a residual trend quantity.

2.2.3. Long Short-Term Memory

As proposed by Hochreiter et al. [35], the LSTM network is a special type of recurrent
neural network (RNNs) that is able to learn long-term dependent information in data
transmission and can effectively solve the gradient problem. The LSTM network has a
more complicated repetition module than RNN, as shown in Figure 2, where Xt is the input
sequence at time t, ht is the output of the LSTM network cells at time t, and σ and tanh are
the sigmoid activation function and tanh activation function, respectively. The cell state is
the key to this repetitive chain of neural network modules. The cell state is the horizontal
line that runs through each module, and it ensures the invariance of the information
transfer. It is similar to a conveyor belt that runs through the entire chain. Through
the “gate” structure, cell state information is added or removed. The “forgetting gate”
determines what information is removed from the cell state. The “input gate” determines
what information is stored in the cell state. The “output gate” uses a sigmoid layer to
determine the portion of the cell state to be output [22]. After the operation (the circle part
of Figure 2), the result is passed to the next unit structure.
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2.2.4. Framework of the Hybrid CEEMD-LSTM Model

The workflow of the hybrid model proposed in this paper is shown in Figure 3. The
main processes of forecasting through the hybrid model are as follows:
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(1) The CEEMD is used to decompose the original SPI sequence into several subse-
quences and a residual sequence;

(2) The decomposed sequence is predicted using the LSTM network;
(3) Finally, the predicted SPI sequences are obtained by merging the predicted subse-

quences and residual error.

2.2.5. Evaluation Metrics

In this study, the Kruskal–Wallis test was used to evaluate the accuracy of the estimated
values of the two models. When the p-value ≤ 0.05, there is a difference between the
estimated and actual values. Four statistical criteria, including root mean square error
(RMSE), mean absolute error (MAE), Willmott index (WI), and Nash-Sutcliffe efficiency
(NSE), were used to evaluate the performance of the models. The model with the lowest
RMSE and MAE as well as the highest WI and NSE was proposed as the appropriate model.
The formulas for the above criteria are as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (5)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (6)

WI =

∣∣∣∣∣1−
[

∑N
i=1(yi − ŷi)

2

∑N
i=1(|yi − y|+ |ŷi − y|)2

]∣∣∣∣∣ (7)

NSE = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (8)
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where yi is the observed value, y is the average value of yi, ŷi is the forecasted value, and N
is the total data size of yi.

3. Results and Discussion

The calculation of the SPI and the fitting of the LSTM were both accomplished on the
Python 3.7 platform.

3.1. SPI Values at Different Time Scales

The 1-, 3-, 6-, 9-, 12-, and 24-month timescale SPI values were calculated using daily
precipitation data from 32 meteorological stations in the Xinjiang Uygur Autonomous
Region during the period of 1960–2019. The results of the multi-timescale SPI for the four
example stations are shown in Figure 4. It can be seen that the SPI3, SPI6, SPI9, SPI12, and
SPI24 values of the four stations show an increasing trend, especially at Fuhai station, and
the frequency of extreme drought decreases over time. In the past decade, there were fewer
occurrences of extreme drought at the four stations.
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Through the Mann–Kendall trend test (Table 2), it became clear that all SPI sequences
at the four stations have an increasing trend, except for SPI1 at the Kuerle station. The
precipitation in Xinjiang has increased significantly since the mid-1980s, which caused the
SPI values to increase.

Table 2. Mann–Kendall trend test for SPI sequences.

Example Stations SPI Series p Value Trend

Fuhai

SPI1 2.492 × 10−5 increasing
SPI3 3.721 × 10−10 increasing
SPI6 8.860 × 10−14 increasing
SPI9 1.665 × 10−14 increasing
SPI12 2.220 × 10−16 increasing
SPI24 0.000 increasing

Kuerle

SPI1 0.081 no trend
SPI3 0.001 increasing
SPI6 3.329 × 10−5 increasing
SPI9 6.254 × 10−6 increasing
SPI12 8.926 × 10−7 increasing
SPI24 4.159 × 10−12 increasing

Yutian

SPI1 0.035 increasing
SPI3 0.001 increasing
SPI6 1.649 × 10−4 increasing
SPI9 2.321 × 10−4 increasing
SPI12 4.652 × 10−4 increasing
SPI24 1.990 × 10−11 increasing

Hami

SPI1 0.006 increasing
SPI3 9.700 × 10−7 increasing
SPI6 3.212 × 10−12 increasing
SPI9 1.332 × 10−15 increasing
SPI12 0.000 increasing
SPI24 0.000 increasing

3.2. LSTM Modeling and Prediction

In this study, based on 1-, 3-, 6-, 9-, 12-, and 24-month timescale SPI values, LSTM mod-
eling was performed and the SPI dataset was divided by grid search and cross-validation.
A total of 80% of the data (1960–2007) were selected as the training set and 20% (2008–2019)
were selected as the test set.

Before the data are input into the LSTM model for prediction, it needs to be normalized
to eliminate the effect of data dimensionality differences and to improve the model training
speed. The common activation functions for LSTM networks are sigmoid, tanh, and
ReLU [36–38]. However, as the layers of the neural network deepen, the gradient tends
to disappear in the backpropagation when using the sigmoid function, and the stochastic
gradient descent converges slowly when using the sigmoid or tanh. Therefore, ReLU
was chosen as the activation function in this paper. The batch size was set to 1, which
means that the model weights were updated after each sample. The hidden layer was
composed of 25 storage units, and the loss function was the mean squared error (MSE). To
prevent overfitting of the model training, the early stopping method was used during the
simulation. Specifically, as the number of iterations increased, the MSE gradually decreased
and the model accuracy improved. When the MSE value started to increase, the training
was stopped. At this point, the model accuracy was at its highest. To ensure that the
accuracy of the model could be maximized, the number of iterations was set to 300. The
prediction results of the LSTM are shown in Figures 5–8.
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3.3. Hybrid CEEMD-LSTM Model Prediction Results

The data from 1960 to 2007 were used as the training data. Therefore, only this part of
the dataset was decomposed by CEEMD. After several modifications and comparisons of
the parameters, the standard deviation of the original time-series was finally set to 0.2, the
Gaussian white noise logarithm was 100, and the total number of modes (not including the
trend) was 8. The multi-scale SPI was decomposed by CEEMD, and eight IMF components
and one trend item were obtained. Taking the decomposition of SPI3 at Hami station as an
example, the original sequence and the decomposed subsequence are shown in Figure 9. As
can be seen in Figure 9, the fluctuation range of the original series is large, while that of the
decomposed IMF components is small. Additionally, the fluctuations of the components
tend to be smooth as the decomposition proceeds gradually. It is shown that after CEEMD
decomposition, the original sequence with strong fluctuations can be decomposed into
a set of IMF components with lower fluctuations, which improves the predictability of
the sequence.
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In the testing phase, the hybrid CEEMD-LSTM model was used to predict the data
from 2008 to 2019, and the prediction results for Fuhai, Kuerle, Yutian, and Hami station
are shown in Figures 5–8, respectively. For all four stations, there is a significant difference
between the LSTM predicted value and the observed SPI value at the 1-month timescale.
In particular, the LSTM seems to lose its learning ability when forecasting SPI1 at Hami
station (Figure 8). At SPI3, SPI6, SPI9, SPI12, and SPI24, the difference between the LSTM
predicted and observed value is reduced. In this study, the data volume at SPI1 was the
largest and the time-series was the least smooth, thus, the prediction was most ineffective
at that timescale. The SPI time-series is a non-stationary series, but the accuracy of the
single model prediction results is strongly influenced by the stationarity of the original data.
Similarly, Adikari et al. [39] predicted the SPI using LSTM, and it provided only merely
acceptable results at Nonghine, Sekong River Basin.

The predicted value of the hybrid CEEMD-LSTM model is closer to the observed
SPI, and the predicted SPI trend is consistent with the actual trend. In Figures 5–8, the
hybrid model performs well at SPI6, SPI9, SPI12, and SPI24. As can be seen from Figure 6,
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an extreme drought occurred in the Xinjiang Uygur Autonomous Region in 2011. For
this year, the hybrid model’s prediction of drought conditions was more consistent with
the actual situation and it more accurately predicted the occurrence of extreme drought.
Through CEEMD decomposition, local features of the original series at different scales are
extracted, and the non-stationary time-series are transformed into stationary components.
This reduces the non-stationarity of SPI sequences, which improves the ability of LSTM to
predict SPI sequences. Therefore, the hybrid CEEMD-LSTM model has a good performance,
even in forecasting SPI1 at each station.

With an increasing timescale, the accuracy of the predictions of the LSTM and CEEMD-
LSTM models improves. At the 24-month scale, the prediction results of both models are
nearly consistent with the observed SPI. Since the prediction accuracy of the single model
gradually improves, that of the hybrid model also improves. At SPI1, the prediction of the
hybrid CEEMD-LSTM model is significantly better than that of the single model because
the predictability of the subseries, which are obtained from the CEEMD decomposition, is
higher than that of the original series. However, this advantage of the combined model
diminishes with an increasing timescale. At SPI12 and SPI24, the CEEMD-LSTM model
only slightly outperforms the single model. The reason for this is that the long timescale SPI
series aggregates more information from the original data and the whole series tends to be
stable. Therefore, the prediction accuracy of the single model is improved. In recent years,
several scholars have used hybrid models for forecasting. They have found that the results
of hybrid models, especially those combining decomposition methods with forecasting
methods, are better than those of single models [22,27,40–42]. The difference between the
aforementioned studies and the current study is that the current study uses such a hybrid
model in drought prediction, and the decomposition method chosen was CEEMD. CEEMD
is more suitable for prediction because it can effectively solve the problem of mode aliasing
and reduce the residual white noise.

The accuracy of the predicted values of the LSTM and CEEMD-LSTM models was
evaluated using the Kruskal–Wallis test. The results showed that the p-values of the
predicted sequences were greater than 0.05, except for the LSTM predicted SPI1 values at
Fuhai station (0.015) and Hami station (0.003). This means that the differences between
the observed values and the predicted values of the hybrid CEEMD-LSTM model is not
statistically significant, and the CEEMD-LSTM model is able to predict all timescales at
different sites, while the LSTM model may not be proficient in predicting the most unstable
SPI1 sequences. Four evaluation metrics, namely MAE, RMSE, NSE, and WI, were used to
evaluate the prediction results of the two models (Table 3). At the four stations, the MAE
values of LSTM were above 0.5 at SPI1, and were mostly below 0.2 at SPI24. The MAE
value tends to decrease with an increasing timescale, and RMSE displays the same, while
NSE and WI display the opposite trend. These trends indicate that the prediction accuracy
of LSTM constantly improves with an increasing timescale. The hybrid CEEMD-LSTM
model outperforms the LSTM model in prediction at different timescales, which means
that CEEMD can effectively improve the prediction accuracy of the LSTM model. At SPI24,
the NSE values of the hybrid model for the four sites were 0.895, 0.930, 0.908, and 0.852,
respectively, and the WI values were all above 0.95.

As seen in Figure 6, extreme drought has occurred in the Xinjiang Uygur Autonomous
Region during the past 10 years, specifically in 2011. The LSTM and CEEMD-LSTM model
prediction results of 32 meteorological stations in 2011 were visualized by the Empirical
Bayesian Kriging (EBK) in ArcGIS, as shown in Figure 10. From the figure, we can see that
the prediction of the hybrid CEEMD-LSTM model for the spatial distribution of drought is
closest to the actual situation. Based on the advantage of CEEMD in non-stationary signal
processing, the hybrid model has better performance in SPI prediction.
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Table 3. Comparison of the observed and predicted values of the two models using statistical criteria.

Example Stations SPI Series Model MAE RMSE NSE WI

Fuhai

SPI1
LSTM 0.790 1.028 −32.371 0.255

CEEMD-LSTM 0.675 0.815 −0.633 0.721

SPI3
LSTM 0.551 0.681 −0.112 0.781

CEEMD-LSTM 0.474 0.578 0.247 0.850

SPI6
LSTM 0.389 0.491 0.498 0.885

CEEMD-LSTM 0.295 0.378 0.714 0.934

SPI9
LSTM 0.275 0.360 0.682 0.924

CEEMD-LSTM 0.219 0.291 0.790 0.951

SPI12
LSTM 0.219 0.294 0.773 0.946

CEEMD-LSTM 0.169 0.219 0.873 0.970

SPI24
LSTM 0.152 0.198 0.836 0.960

CEEMD-LSTM 0.119 0.152 0.895 0.976

Kuerle

SPI1
LSTM 0.648 0.868 −46.280 0.168

CEEMD-LSTM 0.568 0.739 −0.904 0.688

SPI3
LSTM 0.604 0.791 −0.217 0.778

CEEMD-LSTM 0.502 0.674 0.214 0.850

SPI6
LSTM 0.471 0.660 0.451 0.890

CEEMD-LSTM 0.412 0.540 0.717 0.934

SPI9
LSTM 0.386 0.573 0.670 0.933

CEEMD-LSTM 0.284 0.408 0.866 0.969

SPI12
LSTM 0.308 0.486 0.794 0.957

CEEMD-LSTM 0.225 0.342 0.915 0.981

SPI24
LSTM 0.270 0.427 0.842 0.967

CEEMD-LSTM 0.196 0.312 0.930 0.984

Yutian

SPI1
LSTM 0.541 0.711 −28.523 0.307

CEEMD-LSTM 0.509 0.615 −1.257 0.678

SPI3
LSTM 0.525 0.692 −0.184 0.796

CEEMD-LSTM 0.486 0.612 0.117 0.842

SPI6
LSTM 0.419 0.560 0.445 0.889

CEEMD-LSTM 0.324 0.439 0.740 0.942

SPI9
LSTM 0.368 0.541 0.513 0.903

CEEMD-LSTM 0.296 0.418 0.777 0.949

SPI12
LSTM 0.239 0.393 0.805 0.956

CEEMD-LSTM 0.196 0.300 0.889 0.975

SPI24
LSTM 0.178 0.323 0.863 0.967

CEEMD-LSTM 0.177 0.260 0.908 0.979

Hami

SPI1
LSTM 0.661 0.806 −194.885 0.115

CEEMD-LSTM 0.517 0.650 −0.614 0.724

SPI3
LSTM 0.532 0.673 −0.208 0.787

CEEMD-LSTM 0.470 0.583 0.231 0.851

SPI6
LSTM 0.397 0.574 0.479 0.884

CEEMD-LSTM 0.352 0.466 0.654 0.924

SPI9
LSTM 0.342 0.501 0.578 0.904

CEEMD-LSTM 0.286 0.406 0.722 0.937

SPI12
LSTM 0.263 0.420 0.687 0.925

CEEMD-LSTM 0.216 0.315 0.819 0.958

SPI24
LSTM 0.159 0.244 0.790 0.950

CEEMD-LSTM 0.139 0.201 0.852 0.966
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4. Conclusions

In this study, the LSTM and CEEMD-LSTM models were used to forecast SPI at six
timescales in the Xinjiang Uygur Autonomous Region, China. Four statistical criteria were
selected to evaluate the prediction accuracy of the two models, and the spatial distribution
of the prediction results of the LSTM and CEEMD-LSTM models were visualized using the
EBK method.

Based on the values of the statistical criteria (Table 3), the performance of both models
increased gradually with increasing timescale. They were lowest at the 1-month scale and
highest at the 24-month scale. Moreover, the prediction accuracy of the hybrid model was
higher than that of the single model at different timescales. At SPI24, the NSE values of
the hybrid model were all greater than 0.85, which shows that CEEMD has advantages in
dealing with non-stationary and non-linear data. Through CEEMD decomposition, the
original time sequence becomes stable and the predictability of the sequence is improved.
Based on Figure 10, we can see that the spatial distribution of drought predicted by the
hybrid CEEMD-LSTM model is more consistent with the actual situation. As the prediction
accuracy of the hybrid model is better than that of the single model at each timescale, the
hybrid model composed of CEEMD and LSTM can contribute to improving the prediction
accuracy of meteorological drought.

There are some limitations to this study. In this study, the SPI was chosen to reflect
the drought conditions based on its multi-timescale application characteristics and can
be calculated by precipitation alone. However, in recent years, both the precipitation
and temperature in the Xinjiang Uygur Autonomous Region have shown an increasing
trend, and thus the drought characteristics cannot be fully reflected by precipitation. In
the subsequent study on the applicability of the combined model, the prediction of several
drought indices, such as the SPEI, should be considered.
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Nomenclature

SPI standardized precipitation index
SPEI standardized precipitation evapotranspiration index
RDI reconnaissance drought index
PDSI Palmer drought severity index
EMD empirical mode decomposition
EEMD ensemble empirical mode decomposition
CEEMD complementary ensemble empirical mode decomposition
ARMA autoregressive and moving average
ANNs artificial neural networks
RNNs recurrent neural networks
LSTM long short-term memory
NSE Nash–Sutcliffe efficiency
WI Willmott index
RMSE root mean square error
MAE mean absolute error
MSE mean squared error
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