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Abstract: On-road carbon dioxide (CO2) emissions from light-duty diesel trucks (LDDTs) are greatly
affected by driving conditions, which may be better predicted with the sequence deep learning model
as compared to traditional models. In this study, two typical LDDTs were selected to investigate the
on-road CO2 emission characteristics with a portable emission measurement system (PEMS) and a
global position system (GPS). A deep learning-based LDDT CO2 emission model (DL-DTCEM) was
developed based on the long short-term memory network (LSTM) and trained by the measured data
with the PEMS. Results show that the vehicle speed, acceleration, VSP, and road slope had obvious
impacts on the transient CO2 emission rates. There was a rough positive correlation between the
vehicle speed, road slope, and CO2 emission rates. The CO2 emission rate increased significantly
when the speed was >5 m/s, especially at high acceleration. The correlation coefficient (R2) and the
root mean square error (RMSE) between the monitored CO2 emissions with PEMS and the predicted
values with the DL-DTCEM were 0.986–0.990 and 0.165–0.167, respectively. The results proved that
the model proposed in this study can predict very well the on-road CO2 emissions from LDDTs.

Keywords: vehicle emission model; deep learning; light-duty diesel truck (LDDT); CO2 emissions;
portable emission measurement system (PEMS); long short-term memory network (LSTM)

1. Introduction

With the development of the global economy and the increasing demand for energy,
the use of fossil fuel, the world’s main energy source, has been increasing yearly [1].
High growth of fossil fuel consumption has led to large amounts of carbon dioxide (CO2)
emissions, which has resulted in a severe ‘greenhouse effect’ [2]. At present, more than 120
countries have proposed carbon neutrality commitments [3], and China has also announced
that it will peak carbon emissions in 2030 and achieve carbon neutrality by 2060 [4].

CO2 emissions from the transport sector have accounted for approximately 22–23% of
global anthropogenic CO2 emissions [5–7]. Road transport has become a major source of
transport sector CO2 emissions with the increase of the vehicle population [8]. A recent
study reported that CO2 emissions from the transport sector reached 930 million tons in
China in 2020 [9]. Developing an accurate vehicle CO2 emission model is a primary task for
correctly estimating transport CO2 emissions and also an important basis for formulating
policies to reduce transport CO2 emissions [10–12].

Vehicle emission models can be divided into macro- and micro-models according to
the input size of the model [13]. The macroscopic model can estimate the total amount
of gaseous emissions in a whole area through parameters such as the average speed of
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vehicles [14,15]. The microscopic model takes the relevant parameters of instantaneous
driving conditions of each vehicle as input, such as instantaneous speed and acceleration,
to estimate the instantaneous emission rate of pollutants [16,17]. In recent years, there have
been many studies of prediction models [18]. Due to the readily available relevant data such
as average velocity, macroscopic models have been widely studied [19]. However, such
models are not suitable for emission calculation at the micro-level. In order to accurately
capture the characteristics of CO2 emissions from road transport and further reductions in
road transport, more accurate micro-scale vehicle CO2 emission models are needed to be
developed [20].

Internationally, traditional micro-scale vehicle emission models have been developed
based on statistical methods with a large amount of test data. They have been widely
used in the past decades, such as CMEM [21], IVE [22], and MOVES [23]. These models
were established by polynomial models with different parameters. They require a great
number of parameters, such as the parameters of CMEM including vehicle/technology
type, fuel distribution system, emission control technology, vehicle age, vehicle mass,
engine displacement, aerodynamic coefficient, air drag coefficient, etc. The model also
requires localization of the parameters before it can be used. In practice, the lack of vehicle
information and inaccurate parameter localization may cause problems such as insufficient
prediction accuracy [24].

With the development of computer hardware, many studies in recent years have
focused on the use of machine learning and deep learning to predict exhaust emissions [25].
Junepyo used regression analysis to predict the CO2 emissions of light-duty diesel trucks
(LDDTs), while the determination coefficient (R2) between the regression equation-based
CO2 estimations and real CO2 measurements was 0.93 [26]. Maksymilian collected real
driving emission (RDE) data of hybrid electric vehicles, compared the prediction accuracy of
various machine learning models on CO2 emissions, and Gaussian process regression (GPR)
and achieved good results. It has also been found that CO2 emissions from hybrid electric
vehicles are not strictly correlated with speed and acceleration [27]. In recent years, much
of the literature adopted the artificial neural networks (ANN) to predict CO2 emissions
with high accuracy. Hashemi and Clark used three parameters, axle speed, torque, and
their derivatives, to train an ANN model and predicted CO2 emissions from heavy-duty
diesel vehicles with an accuracy of 0.97 [28]. Jigu et al. integrated an ANN model and a
vehicle dynamics model to predict the instantaneous CO2 emissions of light-duty diesel
vehicles [19]. However, the prediction of CO2 in the study only used two parameters,
respectively engine speed and torque, without considering the impact of actual driving
conditions on CO2 emissions. Some of the literature also used ANN to predict the pollutants
from vehicle exhaust emissions [29–31]. All these studies have a common problem that the
models only considered the current engine operating and road conditions in the prediction.
However, the exhaust emissions of motor vehicles have long-term temporal dependence. In
addition, there is a time error between the measured value of exhaust gas and the measured
value of engine operating conditions in the measurement, which still has an impact even
after time alignment. Therefore, it is not accurate enough for prediction by only considering
the current data.

Traditional ANN do not make inferences about subsequent information based on
previous information. Recurrent neural networks (RNN) address this issue, and they are
networks with loops in them, allowing information to remain. Since the backpropagation
method was adopted in the training of RNN, it might be cause the gradient approaching
zero or infinity when the networks were deep. Long short-term memory networks (LSTMs)
are a special kind of RNN which address the problem of gradient vanishing and gradient
clipping [32]. So, they are more suitable for the prediction of CO2 emissions of motor
vehicles. Tao developed an LSTM-based vehicle emission model to estimate the instanta-
neous CO2 emissions of taxicabs and achieved higher accuracy than the state-of-the-art
models [18]. Yang found that LSTM had better prediction capability for transient changes
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in NOx emissions [33]. However, there are few literature examples using sequence models
for the estimation of CO2 emissions from LDDTs.

In this paper, a portable emission measurement system (PEMS) was selected to mea-
sure the RDE of two test LDDTs and the vehicle speed, acceleration, and the road slope
were calculated based on the data obtained by the onboard global position system (GPS).
The second-by-second speed, acceleration, vehicle-specific power (VSP), and road slope
were used as the inputs to train an LSTM-based model for CO2 prediction. The previous
5-s monitored data were used as the input variables, and then transformed by the trained
model. Finally, the output of the predicted values of instantaneous rate of CO2 emissions
using the fully connected (FC) layer was carried out.

2. Materials and Methods
2.1. Test Vehicles and Routes

Two representative diesel trucks, LDDT1 and LDDT2, were selected for real-world
CO2 emission measurement in the experiment. The model years of LDDT1 and LDDT2
were 2016 and 2013, respectively. LDDT1 equipped with a diesel particulate filter (DPF)
complied with China IV emission standards and LDDT2 without DPF complied with
China III. These vehicles were both in good working conditions with odometer readings
of 28,918 km and 94,080 km respectively. More specifications for these test vehicles can
be found in our previous study [34]. The fuel used in this study was directly purchased
from a local gas station and met the corresponding Automobile diesel fuels (China VI)
(GB19147-2016). In order to eliminate the impact of driving habits on CO2 emissions, both
trucks were driven by the owner himself during the experiment.

The transient CO2 emissions are closely related to the road conditions such as the
route type (urban, rural, and highway) and road type (uphill, flat-road, and downhill) [35].
To better reflect the real CO2 emissions during the actual working in the Central Plains
region of China, a test route containing urban (12.4 km), suburban (17.6 km), and highway
roads (32.4 km) was designed, as shown in Figure 1. Both LDDT1 and LDDT2 were carried
out on the same route, departing from the urban area, circling, and returning to the initial
position. The red line represents the urban road, the blue line represents the suburban road,
and the yellow line represents the highway.
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2.2. Test System and Data Analysis

A SEMTECH ECOSTAR PLUS (Sensors Inc., Saline, Michigan, USA) system was used
to monitor the CO2 emissions in this study. The transient CO2 emissions were monitored
with the non-dispersive infrared red (NDIR) method. In addition, the SEMTECH FEM
module was used in conjunction with the HTF heating sampling tube to measure the
transient flow of the exhaust. Other regulated gaseous pollutants (CO, HC, NOx) were
also tested at the same time. This paper only focused on the emission characteristics and
the prediction of the CO2 emissions, and more details can be found in reference [34]. A
global positioning system (GPS) was used to record the instantaneous longitude, latitude,
and velocity of the vehicle during the test with a spatial resolution of 10 m and velocity of
±1 km/h, respectively. All data were collected at a resolution of 1 Hz and transmitted in
real time to a laptop which connected to a gas analyzer. The on-road CO2 emission data
from each truck were monitored by the PEMS, and DL-DTCEM model for each truck which
was trained with its own driving data. The on-road CO2 emission data were divided into
the training set and test set according to the ratio of 8:2. Namely, 80% of the data were used
for model training, and the remaining 20% of the data were used to evaluate the prediction
accuracy of the model. The physical drawing of the PEMS and a schematic of its installation
on a LDDT are displayed in Figure 2.
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Three running parameters, acceleration, grade, and vehicle specific power (VSP),
related to CO2 emissions could be obtained based on the data recorded by the GPS devices.
The acceleration ai was calculated using the 2-s average of the difference between the
previous and subsequent values of velocity Vi as follows.

ai =
1
2
· (Vi+1 − Vi−1) (1)

where Vi+1 is the speed of the previous second and Vi-1 is the speed of the subsequent second.
The grade was calculated by the segmented method [36,37], and the grade value was

calculated every 50 m in this work, as shown in Equation (2),

grade = ∑
i

∆hi (2)

where ∆h is the difference of the altitude, grade is the cumulated altitude gain.
For light-duty vehicles (LDV), Jiménez Palacios selected the values of parameters ac-

cording to the characteristics of LDV in his research [38], and simplified the VSP calculation
formula of LDV, as shown in Equation (3).

VSP = Vi · (1.1 · ai + 9.81 · grade + 0.132) + 0.000302V3
i (3)
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where Vi is the current vehicle speed, ai is the current vehicle acceleration, and grade
presents road slope.

2.3. Deep Learning Model

A deep learning-based CO2 emission model for LDDTs (DL-DTCEM) based on the
sequence model was developed. The input layer preprocessed the data, and the prediction
values were output through the dense layer. The input layers first perform data cleansing,
then convert the original data to a value between 0 and 1 to improve the prediction accuracy
and operation efficiency of the model. Finally, the input layers converted the data into a
data structure that could be read by the LSTM module. The LSTMs had a more efficient
chain-like structure based on a chain of repeating modules of RNN, as shown in Figure 3.
The key to LSTM was the cell state which is a kind of conveyor belt. The horizontal line
running through the top of the diagram transports long-term dependency of the data.
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Each cell used the forget gate, input gate, and output gate to preserve and update the
cell state. As shown in Figure 3, all the middle parts and the A, B, C, D parts had the same
cell structure, while the network layer of these cells used the same parameter values. In
fact, this was a cell that had been reused at different times. The forget gate was used to
decide what information would be discarded from the cell state. When the historical output
ht−1 moved to the time t, it combined with the input xt at the time t. The new vector was
operated by Sigmoid function, as shown in Equation (4). Then the result was element-wise
multiplicated with the previous cell state Ct−1 to update the cell state.

ft = Sigmoid
(

Wx f xt + Wh f ht−1 + b f

)
(4)

The input gate determined which new information should be stored in the cell state.
The Sigmoid layer determined which information would be updated operated by Equation
(5). Next the Tanh layer created a new candidate vector c̃t operated by Equation (6) that
could be added to the state according to Equation (7). Since the operations to update the
cell state were minored as linear interactions, the long-term characteristics of the data
were protected.

it = Sigmoid(Wxixt + Whiht−1 + bi) (5)

c̃t = Tanh(Wxc̃xt + Whc̃ht−1 + bc̃) (6)

Ct = ft � Ct−1 + it � C̃t (7)

The output gate could decide which information to be outputted. The output value ht
operated by Equation (8) could be obtained by element-wise multiplying Ot calculated by
Equation (9) and the hidden layer output value gt calculated by Equation (10). Finally, the
dense layer outputs the prediction value of CO2 emissions yt, as calculated according to
Equation (11).

ht = ot � gt (8)
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ot = Sigmoid(Wxoxt + Whoht−1 + bo) (9)

gt = Tanh(Ct) (10)

yt = Wyhht + by (11)

2.4. Performance Evaluation

To evaluate the prediction accuracy of the model, the root mean square error (RMSE)
and the correlation coefficient (R2) were used as the metrics to evaluate the effectiveness of
the DL-DTCEM. RMSE was calculated according to Equation (12).

RMSE =

√
1/n ∑n

t=1

(
xCO2

t − x̂CO2
t

)2
(12)

where xCO2
t is the observed value, x̂CO2

t represents the predicted value.

3. Results and Discussion
3.1. Impact of Driving Factors on CO2 Emissions

The CO2 emission rate of vehicles in real-world driving may be affected by many
factors. Figure 4 shows the relationship between different driving conditions and CO2
emission rates. As shown in Figure 4a, b there was a positive correlation between CO2
emission rate and vehicle speed. When the vehicle speed increased, the CO2 emission
rate increased obviously. Junepyo also measured the average CO2 emissions at different
vehicle speeds and found that the CO2 emission rates were the highest on the motorway
at the fastest speed [26]. At high speeds, the vehicle engine was in a rich combustible
state, consuming more fuel to provide enough power output, so the rate of CO2 emissions
rose rapidly.

Figure 4c, d shows the trend of CO2 emission rate change with VSP. It can be seen
that the change law of CO2 emission rate with VSP of different vehicles was basically the
same, mainly distributed in the interval of [−5, 10]. When VSP < 0, it corresponded to
the deceleration condition of the vehicle. In this case, the fuel injection was reduced, so
the CO2 emission rate was relatively slow. When VSP > 0, it meant a high concentration
air-fuel mixture, and the CO2 emission rate increased sharply with the increase of VSP. In
addition, it can be seen that the CO2 emission rate rises sharply with rapid acceleration.
This finding was consistent with that by Chong et al. conducted in Korea [6]. Therefore, a
gentle driving mode can also effectively reduce CO2 emissions.

The speed of vehicle had a significant influence on the CO2 emissions and the ex-
perimental route was chosen as similar as possible to real driving conditions without
deliberately designing the route with a large height drop. It was not appropriate to use
acceleration and slope alone to estimate its impact on the vehicle CO2 emissions. Figure 4e, f
shows the relationship between vehicle speed, acceleration, and CO2 emission rate. Its
vertical axes represent the CO2 emission rate, which is a function of the vehicle speed
and acceleration of LDDT1 and LDDT2. It was obvious that there was no clear linear
relationship between the vehicle speed, acceleration, and the CO2 emission rate. When the
vehicle speed was larger than 5 m/s and the acceleration was greater than 0.5 m/s2, the
CO2 emission rate increased significantly, and the acceleration further increased the CO2
emission rate as the vehicle speed was high. This result was similar to the finding reported
by Zhang with a slightly higher threshold of speed [39].

The vertical axes of Figure 4g,h also represents the CO2 emission rate, which is a
function of the vehicle speed and road slope. It was obvious to find from the figure that
when the vehicle speed was the same and the road slope was >0, the CO2 emission rate
increased with the increase of slope. When the road slope was <0, the CO2 emission rate
decreased with the increase of the road slope. This is because much more engine capacity
was needed when the vehicle went uphill while it did not need the higher power engine
output when the vehicle went downhill.



Atmosphere 2022, 13, 1466 7 of 12

Atmosphere 2022, 13, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 4. The typical relationship between different driving conditions and CO2 emission rate; (a,b) 
Relationship between vehicular speed and CO2 emission rate; (c,d) Relationship between vehicular 

Figure 4. The typical relationship between different driving conditions and CO2 emission rate;
(a,b) Relationship between vehicular speed and CO2 emission rate; (c,d) Relationship between
vehicular VSP and CO2 emission rate; (e,f) Relationship between vehicular speed, acceleration and
CO2 emission rate; (g,h) Relationship between vehicular speed, road slope and CO2 emission rate.



Atmosphere 2022, 13, 1466 8 of 12

3.2. Model Training

Vehicle speed, VSP, acceleration, road slope, and historical CO2 emission rate were
used as input variables for model training. Each piece of training data was a two-
dimensional array of values of variables in the past five seconds of the current moment.
The difference between the predicted value and the observed value at the current moment
was used as the basis for model backpropagation, and the model parameters were up-
dated accordingly. In addition, the hyperparameters are also important factors impacting
the training effect of the model. The algorithm inherent in Tensorflow, a deep learning
framework, was used to automatically select the hyperparameter with the best training
effect, then the model was exported as the final DL-DTCEM. The specific hyperparameter
information is listed in Table 1.

Table 1. Specific hyperparameters of DL-DTCEM.

Label Batch-Size Epochs Optimizer

LDDT1 8 18 Adam
LDDT2 8 8 Adam

Where, Batch-size denotes the number of training data groups at each training, Epochs
represents the iteration times of all training data, and the model Optimizer is used to
find the optimal parameters of the model. As shown in Figure 5, with the increase of
the number of Epochs, the gap between the predicted value and the observed value of
CO2 gradually decreased, which also meant that the prediction accuracy of the model was
gradually improved. The final loss value of prediction of LDDT1 and LDDT2 was 0.0012,
0.0022, respectively.
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3.3. Model Validation and Discussion

Comparison of the instantaneous CO2 emission rates of the test set and the predicted
values of DL-DTCEM are shown in Figure 6. As can be seen, the instantaneous CO2
emission rate calculated by our model is very close to the observed values. The RMSE
numbers between observed and predicted values of LDDT1 and LDDT2 were 0.1648 and
0.1465, respectively. This means a high prediction accuracy of DL-DTCEM. However,
there is a little difference between the predicted values and the observed values at several
abrupt points of the CO2 emission rate, especially in the prediction of LDDT2. This
phenomenon could be contributed to the different post-processing for LDDT1 and LDDT2.
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However, because of the lack of relevant studies, the exact cause of this situation should be
investigated further. This also shows that the DL-DTCEM did not learn sufficient about the
sudden changing regularity of the CO2 emission rate.
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Figure 7 shows a linear regression analysis of observed CO2 emissions versus DL-
DTCEM predicted CO2 emission results. The R2 values of the CO2 emission rate prediction
values of LDDT1 and LDDT2 are 0.986 and 0.990, respectively. The fit line regression
slopes of LDDT1 and LDDT2 are 0.9953 ± 0.005 and 0.9962 ± 0.004, respectively. The
R2 values between observed and predicted values of traditional, machine learning and
other deep learning models with the CO2 emission rate range from 0.93 to 0.96 [14,18,26].
Through the validation of the CO2 emission rate prediction results, the DL-DTCEM shows
high prediction accuracy, which verifies that the DL-DTCEM can calculate reliable CO2
emission rates.
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4. Conclusions

A PEMS was adopted to investigate the on-road CO2 emissions from two typical
LDDTs, while the information of the longitude, latitude, and elevation data were also
collected by a GPS, which was used to calculate the acceleration, VSP, and slope data.
The relationship between CO2 emissions and driving conditions such as vehicle speed,
acceleration, VSP, and road slope was also analyzed. A deep learning vehicle CO2 emission
model was developed with the data of the on-road CO2 emissions and running conditions
based on a sequence model. The main findings are as follows.

The vehicle speed, acceleration, VSP, and road slope had obvious impacts on the
real-world CO2 emissions. There was a rough positive correlation between the vehicle
speed and CO2 emission rate. The CO2 emission rate increased sharply when the vehicle
speed was greater than 5 m/s and the acceleration was greater than 0.5 m/s2. There was
a trend that the instantaneous CO2 emission rates increased when vehicles accelerated
rapidly. The CO2 emission rates when test vehicles were running uphill was significantly
higher than those running downhill. Therefore, driving LDDTs in a smooth way with
respect to acceleration and deceleration on the flat road would be beneficial to reduce the
transport CO2 emission.

The DL-DTCEM proposed in this study was able to predict the on-road CO2 emission
rates of vehicles very well. The R2 between the CO2 emission values of LDDT1, LDDT2 pre-
dicted by DL-DTCEM and those monitored by the PEMS were 0.986 and 0.990, respectively.
The RMSEs for LDDT1 and LDDT2 were 0.1648 and 0.1465, respectively.

In this study, the model was developed based on only two typical vehicles, and the
calibration for more and different vehicles should be conducted in future studies. The
model achieved good results in CO2 prediction for LDDTs, and it should be similarly
trained to predict other tailpipe pollutants, such as NOx, HC, CO, and PM in future work.
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