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Abstract: The problem of air pollution has attracted more and more attention. PM2.5 is a key factor
affecting air quality. In order to improve the prediction accuracy of PM2.5 concentration and make
people effectively control the generation and propagation of atmospheric pollutants, in this paper, a
long short-term memory neural network (LSTM) model based on principal component analysis (PCA)
and attention mechanism (attention) is constructed, which first uses PCA to reduce the dimension
of data, eliminate the correlation effect between indicators, and reduce model complexity, and then
uses the extracted principal components to establish a PCA-attention-LSTM model. Simulation
experiments were conducted on the air pollutant data, meteorological element data, and working day
data of five cities in Ningxia from 2018 to 2020 to predict the PM2.5 concentration. The PCA-attention-
LSTM model is compared with the support vector regression model (SVR), AdaBoost model, random
forest model (RF), BP neural network model (BPNN), and long short-term memory neural network
(LSTM). The results show that the PCA-attention-LSTM model is optimal; the correlation coefficients
of the PCA-attention-LSTM model in Wuzhong, Yinchuan, Zhongwei, Shizuishan, and Guyuan are
0.91, 0.93, 0.91, 0.91, and 0.90, respectively, and the SVR model is the worst. The addition of variables
such as a week, precipitation, and temperature can better predict PM2.5 concentration. The concentration
of PM2.5 was significantly correlated with the geographical location of the municipal area, and the
overall air quality of the southern mountainous area was better than that in the northern Yellow River
irrigation area. PM2.5 concentration shows a clear seasonal change trend, with the lowest in summer
and the highest in winter, which is closely related to the climate environment of Ningxia.

Keywords: PCA-attention-LSTM; machine learning; PM2.5; prediction; meteorological elements

1. Introduction

Air quality in China has been growing worse in recent years. Urban residents need
to burn a lot of coal in their lives, especially in winter; rural residents burn the straw of
crops; people’s car exhaust produces a large number of atmospheric pollutants. According
to statistics, China’s coal use in 2020 will reach 3.9 billion tons, and coal combustion will
produce a large number of atmosphere pollutants. Atmosphere pollutants will not only
make the Earth’s environment worse and worse but also seriously affect human health.
Because of their small diameter, PM2.5 particles of atmosphere pollutants easily enter the
deep respiratory tract of the human body and even penetrate deep into the bronchi and
alveoli, which reduces the body’s immunity and forms chronic lung diseases, lung cancer,
and cardiovascular diseases [1–4]. In recent years, the country and the people have paid
more and more attention to the problem of air pollution, and the demand for fast, real-time,
and accurate prediction of PM2.5 concentration is increasing [5,6]. The prediction results
of PM2.5 concentration can better realize environmental management and formulate more
effective decision-making plans. The model with high prediction accuracy is also conducive
to the prediction of extreme events, thus further contributing to the prevention, preparation,
and treatment of extreme air pollution events. The results of this paper provide feasible
methods for global climate change and environmental degradation issues mentioned in the
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World Summit on Sustainable Development “RIO + 10” held in Johannesburg, and effectively
predict the concentration of atmospheric pollutants, which has important guiding significance
for global implementation policies and human life orientation.

At present, the methods of predicting PM2.5 concentration mainly include numerical
model forecasting methods based on atmospheric circulation forms and statistical forecast-
ing methods based on machine learning models. The numerical model forecasting method
fully takes into account the physicochemical reactions to various atmosphere pollutants
and meteorological factors in the form of atmospheric circulation, and mainly uses various
meteorological data and emission source data [7–9]. Due to the uncertainty of the emission
inventory and the complex response of the pattern, it is difficult for humans to accurately
quantify the physical and chemical reactions between various data, and the model is sus-
ceptible to the influence of the terrain of the study area, so the prediction error of PM2.5
concentration is large.

The statistical forecasting method based on machine learning models uses the real-time
measurement data for each air monitoring station and meteorological monitoring station,
which can predict the pollutant concentration in the study area [10–13]. In recent years,
many researchers have begun to study the problem of PM2.5 concentration prediction based
on statistical and machine learning models. Brokamp et al. used satellite, meteorological,
atmospheric, and land-use data to train a random forest model to predict daily urban
fine particulate matter concentrations, and the model performed well, with overall cross-
validation R2 = 0.91 [14]. Zhao et al. used multiple linear regression models to predict the
PM2.5 concentration in Beijing, China, and the results showed that the regression model
based on annual data had goodness-of-fit (R2 = 0.766) and (R2 = 0.875) cross-validity.
Regression models based on spring and winter seasonal data were more efficient, reaching
goodness-of-fit of 0.852 and 0.874, respectively [15].

Deep learning is a new research direction in the field of machine learning that has
risen rapidly since 2006, making significant advances in artificial-intelligence-related tech-
nologies. The motivation for deep learning is to build neural networks that simulate the
human brain for analytical learning. Compared with traditional machine learning methods,
it is more cutting-edge, the model is more complex, and the model understands the data
more deeply. Akbal et al. used the hybrid deep learning method to model PM2.5 in the
Turkish capital Ankara, and compared the results with those of random forest regression
and multiple linear regression ensemble machine learning methods. The results showed
that the proposed hybrid model had the best prediction performance, and the model also
performed well in classification tasks, with an accuracy rate of 94% [16]. Therefore, this
paper uses a long-term short-term memory neural network (LSTM) based on deep learn-
ing to predict PM2.5 concentration, but due to the complex structure of LSTM, after the
correlation analysis of the data, it is found that there is a strong correlation between some
input variables, and the information is hypertrophic, which increases the complexity of
the model. Therefore, this paper constructs a long short-term memory neural network
(PCA-attention-LSTM) model based on principal component analysis (PCA) and attention
mechanism, and uses PCA to remove excess information, eliminate the correlation effect
between indicators, and reduce the complexity of the model. After statistical analysis of
the data, it is found that working days and non-working days also have a certain impact
on PM2.5 concentrations, and this paper combines the daily meteorological element data,
air pollutant data, and weekday data of Ningxia Hui Autonomous Region from 2018 to
2020 to build a model. In order to compare the PCA-attention-LSTM model with the
traditional machine learning models, this paper uses the SVR model, AdaBoost model,
RF model, BPNN model, and LSTM model to predict the concentration of PM2.5, and
compares them with the PCA-attention-LSTM model, so as to establish a machine learning
model with good prediction effect of PM2.5 concentration. The final results show that the
PCA-attention-LSTM proposed in this paper has the best prediction results compared with
the basic machine learning models, and the correlation coefficient of the model is between
0.90 and 0.93.
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2. Data Presentation
2.1. Study Area Profiles

Ningxia is located in northwestern China. It is bordered by Shaanxi, Inner Mongolia,
and Gansu. It has five prefecture-level cities, namely, Yinchuan, Shizuishan, Wuzhong,
Guyuan, and Zhongwei. Ningxia is far from the ocean and is located inland, forming a more
typical continental climate, with the characteristics of long winter coldness, short summer
heat, warm spring, and early autumn; drought and little rainfall, sufficient sunshine, strong
evaporation, wind, and sand; cool south and warm north, wet and dry south, and more
meteorological disasters. The geographical location of the Ningxia Hui Autonomous
Region on the map of China and the distribution of sites in the Ningxia area are shown
in Figure 1. The red area on the left shows the geographical location of the Ningxia Hui
Autonomous Region in China, and on the right is the distribution map of topographic
and meteorological stations in the Ningxia Hui Autonomous Region.in the map. NYR
represents the northern Yellow River, CAZ represents the central arid zone, and SMA
represents the southern mountainous area. The three cities of Shizuishan, Yinchuan, and
Zhongwei are distributed in NYR District, Wuzhong City is distributed in CAZ District,
and Guyuan City is distributed in SMA District.
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Figure 1. China Ningxia regional division and site distribution.

2.2. Sources and Data Presentation

This article uses day-to-day data of PM2.5, PM10, NO2, SO2, O3, and CO from 1 January
2018 to 31 December 2020 in five municipal districts of Ningxia from the website of the
National Center for Environmental Information of the National Oceanic and Atmospheric
Administration (NOAA—National Centers for Environmental Information, https://www.
ncei.noaa.gov/ (accessed on 5 April 2021)). Day-by-day data are the result of arithmetic
averaging based on hourly data. Near-surface conventional meteorological data are derived
from the Copernicus Atmosphere Monitoring Service (EAC4-Copernicus Atmosphere
Monitoring Service, https://ads.atmosphere.copernicus.eu/ (accessed on 10 April 2021))
global atmospheric composition reanalysis dataset, which includes the monitoring results
of five stations in Ningxia, namely, Tongxin, Yinchuan, Zhongwei, Taole, and Guyuan.
Table 1 shows the basic information of the five selected meteorological monitoring stations.

https://www.ncei.noaa.gov/
https://www.ncei.noaa.gov/
https://ads.atmosphere.copernicus.eu/
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Table 1. Basic information of each monitoring station in Ningxia.

Site Number Monitor the Site Name Municipal Level Longitude Latitude Elevation (m)

53614 Yinchuan Yinchuan City 106◦12′ 38◦28′ 1110.9
53615 Taole Shizuishan City 106◦42′ 38◦48′ 1101.6
53704 Zhongwei Zhongwei City 105◦11′ 37◦32′ 1226.7
53810 Tongxin Wuzhong City 105◦54′ 36◦58′ 1336.4
53817 Guyuan Guyuan City 106◦16′ 36◦00′ 1752.8

2.2.1. Statistical Analysis of Data

According to the new air quality standard of the PM2.5 testing network, the air quality
is divided into six levels: excellent, good, light pollution, moderate pollution, heavy
pollution, and serious pollution, by using the daily average concentration of PM2.5. The
data were integrated, the proportion of air quality grades in five municipal areas were first
counted, and the results shown in Figure 2 show that the concentration of Guyuan PM2.5
in 0–35 accounted for the largest proportion of 28.47%, followed by Wuzhong accounting
for 20.1%, Zhongwei accounting for 19%, Yinchuan accounting for 17%, and Shizuishan
accounting for the smallest 14.7%. The PM2.5 dataset was then statistically analyzed, and
the results are shown in Table 2. The results showed that among the five cities, the average
value of Shizuishan City was 40.26, followed by Wuzhong City at 35.39, Zhongwei City
at 35.02, Yinchuan City at 33.90, and Guyuan City at 28.29; the minimum value of Guyuan
City was 2, the maximum value was 169, and the standard deviation was 18.79. After a
comprehensive comparison, the four statistical indicators of Guyuan City are significantly lower
than those of the other four cities. In summary, the overall indicators of Guyuan are better
than those of the other four cities, Shizuishan City is the worst, which has a clear correlation
with the geographical location of the municipal area, and the overall air quality in the southern
mountainous area is better than that in the northern Yellow River irrigation district.
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Figure 2. Five cities’ AQI grade percentage stacked chart.

Table 2. The main statistical indicators of PM2.5 in air quality monitoring stations.

Statistical Indicators Yinchuan Shizuishan Zhongwei Wuzhong Guyuan

Minimum (µg m−3) 9 8 4 4 2
Maximum (µg m−3) 240 207 217 239 169

average value (µg m−3) 33.90 40.26 35.02 35.39 28.29
standard deviation 20.90 28.03 24.61 26.16 18.79

2.2.2. Time Dimension Analysis of PM2.5 Concentration

Based on the dataset from 2018 to 2020, the three-year data of the five cities are divided
according to the four seasons of spring, summer, autumn, and winter. The three-year PM2.5
concentration data are divided into seasonal means and statistics, and the statistical results
are shown in Figure 3a. It can be seen that PM2.5 concentration is the lowest in summer
and the highest in winter. This suggests that the concentration of PM2.5 is affected by
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seasonal changes and may have some correlation with meteorological elements. Therefore,
the addition of meteorological factor data can better predict the concentration of PM2.5.

Atmosphere 2022, 13, x FOR PEER REVIEW 5 of 18 
 

 

tistical results are shown in Figure 3a. It can be seen that PM2.5 concentration is the low-

est in summer and the highest in winter. This suggests that the concentration of PM2.5 is 

affected by seasonal changes and may have some correlation with meteorological ele-

ments. Therefore, the addition of meteorological factor data can better predict the con-

centration of PM2.5. 

  

Figure 3. Statistics of seasonal and monthly mean value of PM2.5 concentration. (a) Seasonal mean 

statistics of PM2.5 concentration from 2018 to 2020 ;(b) Monthly mean statistics of PM2.5 concentra-

tion in 5 cities 

The monthly statistics of PM2.5 concentration data in five cities from 2018 to 2020 

were carried out. The average value of PM2.5 in each city in three years was calculated 

according to the month, and the statistical data were drawn as the line graph of Figure 

3b. It was found that the monthly variation trend of PM2.5 concentration was obvious. A 

monthly downward trend began in January until the lowest in June–September, fol-

lowed by a monthly upward trend from September. It further illustrates the seasonal 

variation of PM2.5 concentrations, with the lowest in summer and the highest in winter. 

First, since coal burning in winter is the main method of household heating and energy 

supply, this has a strong correlation with the soot emitted by coal and gas or fuel oil dur-

ing the winter heating process in Ningxia. Secondly, the spring and winter periods in 

Ningxia have greater wind and sandstorms, and wind disasters and sandstorms are af-

fected by the terrain; generally, there are more Yellow River irrigation areas in the north 

and fewer mountainous areas in the south. Wind and sand will increase the concentra-

tion of PM2.5 in the atmosphere and make the air quality worse. 

1.2.3. Variable Correlation Analysis 

Variable correlation analysis was performed on the data of five municipal districts 

to obtain a heat map of the correlation coefficient shown in Figure 4. The results showed 

a strong positive correlation between air pollution level and PM2.5 concentration, and the 

correlation coefficient was 0.78. Four atmospheric pollutants, PM10, NO2, SO2, and CO, 

also had a strong positive correlation with PM2.5 concentrations, with correlation coeffi-

cients of 0.37 to 0.74. O3 was inversely correlated with PM2.5 concentrations, with a corre-

lation coefficient of −0.32. In addition, there was an obvious negative correlation be-

tween surface air temperature and PM2.5 concentration among meteorological factors, 

and the correlation coefficient was −0.3~−0.35. There is a strong correlation between 

some input variables, and to eliminate the correlation effect between the variables, the 

experimental data need to be reduced by principal component analysis (PCA). 

Spring Summer Autumn Winter
15

20

25

30

35

40

45

50

55

60

ρ
(
P
M
2
.
5
)
/
(
μ
g
/
m
3
)

Season

 2018
 2019
 2020

(a)Quarterly average

0 2 4 6 8 10 12
10

20

30

40

50

60

70

80

ρ
(
P
M
2
.
5
)
/
(
μ
g
/
m
3
)

Month

 YinChuan
 ShiZuiShan
 ZhongWei
 WuZhong
 GuYuan

(b)Monthly average

Figure 3. Statistics of seasonal and monthly mean value of PM2.5 concentration. (a) Seasonal mean
statistics of PM2.5 concentration from 2018 to 2020; (b) Monthly mean statistics of PM2.5 concentration
in 5 cities.

The monthly statistics of PM2.5 concentration data in five cities from 2018 to 2020
were carried out. The average value of PM2.5 in each city in three years was calculated
according to the month, and the statistical data were drawn as the line graph of Figure 3b.
It was found that the monthly variation trend of PM2.5 concentration was obvious. A
monthly downward trend began in January until the lowest in June–September, followed
by a monthly upward trend from September. It further illustrates the seasonal variation of
PM2.5 concentrations, with the lowest in summer and the highest in winter. First, since coal
burning in winter is the main method of household heating and energy supply, this has a
strong correlation with the soot emitted by coal and gas or fuel oil during the winter heating
process in Ningxia. Secondly, the spring and winter periods in Ningxia have greater wind
and sandstorms, and wind disasters and sandstorms are affected by the terrain; generally,
there are more Yellow River irrigation areas in the north and fewer mountainous areas in
the south. Wind and sand will increase the concentration of PM2.5 in the atmosphere and
make the air quality worse.

2.2.3. Variable Correlation Analysis

Variable correlation analysis was performed on the data of five municipal districts to
obtain a heat map of the correlation coefficient shown in Figure 4. The results showed a
strong positive correlation between air pollution level and PM2.5 concentration, and the
correlation coefficient was 0.78. Four atmospheric pollutants, PM10, NO2, SO2, and CO, also
had a strong positive correlation with PM2.5 concentrations, with correlation coefficients
of 0.37 to 0.74. O3 was inversely correlated with PM2.5 concentrations, with a correlation
coefficient of −0.32. In addition, there was an obvious negative correlation between surface
air temperature and PM2.5 concentration among meteorological factors, and the correlation
coefficient was −0.3~−0.35. There is a strong correlation between some input variables,
and to eliminate the correlation effect between the variables, the experimental data need to
be reduced by principal component analysis (PCA).
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Figure 4. Correlation coefficient heat plot. (a) Wuzhong; (b) Yinchuan; (c) Zhongwei; (d) Shizuishan;
(e) Guyuan.

2.3. Data Preprocessing
2.3.1. Data Quality Control

The collected air pollutant data and meteorological factor data of the five cities are
subjected to quality control; each feature is checked, and first of all, all data for that day
need to be excluded for outliers that are not within the range of a feature value. Second,
for the treatment of a feature missing value, it needs to be filled with the average of the
two data values adjacent to the missing value. If the value adjacent to it does not exist, all
data for that day need to be excluded. Through the quality control of the original 1095 days
of data from 2018 to 2020 in five municipal areas, the data of 45 days were deleted and
the remaining 1050 days of data were used for research. A total of 26 data on atmospheric
pollutants and meteorological elements are available per day. Influencing factors are stated
as follows: week, air quality grade (AQG), air quality index (AQI), average temperature
(AT), maximum temperature (MaxT), minimum temperature (MinT), average relative
humidity (ARH), maximum relative humidity (MaxRH), average wind speed (AWS),
maximum wind speed (MaxWS), maximum wind speed (MaxWSD), maximum wind speed
(EWS), hours of sunshine (SH), precipitation, average air pressure (AAP), maximum air
pressure (MaxAP), minimum air pressure (MinAP), average surface temperature (AGST),
maximum surface temperature (MaxGST), and minimum surface temperature (MinGST).

2.3.2. Data Normalization and Data Segmentation

In order to avoid dimensional differences between various factors, this paper uses
min–max normalization for data normalization, and the specific functions are as follows:

xk = (xk − xmin)/(xmax − xmin) (1)

where xmax is the maximum number in the data series and xmin is the smallest number in
the data series. The dataset is then divided into 850 days of data to train the model as a
training set and 200 days of data to test the model as a test set.
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3. Research Methodology
3.1. Experimental Process and Evaluation Method

The experimental process of predicting PM2.5 concentration is shown in Figure 5,
including data preprocessing, model construction, model prediction, and analysis. Firstly,
the experimental data are preprocessed and normalized, and the data are divided into
training set and test set. Secondly, the training set is used to train multiple machine learning
models and save them. Finally, the prediction values of each model for PM2.5 concentration
are obtained by the test set, and the experimental results are compared and analyzed by
the evaluation method. The specific process is as follows:
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In this paper, three model evaluation methods were adopted for the statistical testing
index: correlation coefficient (R2), mean absolute error (MAE), and mean squared error
(MSE). The calculation method of each indicator is as follows:

R2 = 1−

n
∑

i=1
(Cm − C0)

2

n
n
∑

i=1
(Cm − C0)

2
(2)

MAE =
1
n
(

n

∑
i=1

(Cm − C0)
2) (3)

MSE =
1
n
(

n

∑
i=1
|Cm − C0|) (4)

where Cm is the simulated value, C0 is the observed value, and C0 is the observed mean.

3.2. Machine Learning Methods

The random forest model (RF) is a bagging method, which draws multiple samples
from the dataset randomly placed back at a set feature ratio, then trains each sample
by returning to the tree, and finally adopts a combined strategy for the prediction re-
sults obtained by each tree, then obtains the prediction results of the final random forest
model [17–19].

The support vector machine (SVM) uses the SMO or gradient descent method to solve
the parameters in the Lagrange dual function, and then finds the optimal classification
decision boundary. Generalized support vector regression (SVR) models can be used to
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solve regression problems; SVR models find a regression plane so that the data sample is
closest to the regression plane, thereby obtaining the predicted value [20–23].

The AdaBoost model improves model accuracy by automatically adjusting the weights
of each round. The model learns a weak classifier at a time by iterating and changing the
weights of each data in each iteration. The weak classifiers are then linearly combined to
obtain a strong classifier.

The BP neural network model (BPNN) is an iterative form, first using the forward
propagation of the signal to obtain the results of the first training, and then, according to
the error of the ideal and actual output, the signal is backpropagation, so that the process of
learning and training is learned and trained through continuous propagation and adjustment
of model parameters [24,25]. The input layer of the neural network in this paper is the air
pollutant data and meteorological feature data, the activation function of the implicit layer is
the sigmoid function, and the output layer is the predicted value of PM2.5.

3.3. PCA-Attention-LSTM
3.3.1. Principal Component Analysis (PCA)

PCA transforms multiple indexes into several comprehensive indexes, and the trans-
formed comprehensive indexes are transformed into principal components. The principal
components are not correlated with each other, which simplifies the research problem and
improves the analysis efficiency.

The total number of indicators studied in this paper is m = 26, which are represented
by x1, x2, · · · , xm, each prefecture-level city has n = 1050 samples, and the jth indicator of
the ith sample takes the value of xij, converting xij into a standardized indicator x̃ij,

x̃ij =
xij − xj

sj
, (i = 1, 2, . . . , n; j = 1, 2, . . . , m) (5)

where xj =
1
n

n
∑

i=1
xij, sj =

√
1

n−1

n
∑

i=1
(xij − xj)

2, (j = 1, 2, . . . m), i.e., xj and sj are the sample

mean and standard deviation of the jth indicator, respectively. Correspondingly, x̃i =
xi − xi

si
, (i = 1, 2, . . . , m) is called a standardized indicator variable.

Correlation coefficient matrix R = (rij)m×m, rij =

n
∑

k=1
x̃ki · x̃kj

n− 1
, (i, j = 1, 2, . . . m), where

rij is the correlation coefficient between the ith indicator and the jth indicator. We calculate
the eigenvalue λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 of the correlation coefficient matrix R, and the
corresponding eigenvector u1, u2, . . . , um, where uj = (u1j, u2j, . . . , unj)

T , consists of a new
indicator variable m by the eigenvectors

y1 = u11 x̃1 + u21 x̃2 + . . . + un1 x̃n,
y2 = u12 x̃1 + u22 x̃2 + . . . + un2 x̃n,
. . .
ym = u1m x̃1 + u2m x̃2 + . . . + unm x̃n

(6)

where y1 is the 1st principal component, y2 is the 2nd principal component, and ym is
the m principal component. Calculate the information contribution rate and cumulative

contribution rate of the eigenvalue λj(j = 1, 2, . . . , m). bj =
λj

m
∑

k=1
λk

(j = 1, 2, . . . , m) is the

information contribution rate of the jth principal component; αp =

p
∑

k=1
λk

m
∑

k=1
λk

is the cumulative
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contribution rate of the principal component y1,y2, . . . , yp, AP = 85~90% is selected, the
number of p main components is selected, and the p comprehensive variable replaces the
original m initial index. We bring p synthesis metrics into the BP neural network model. We
bring p synthesis metrics into the long short-term memory neural networks that incorporate
attention mechanisms.

3.3.2. Long Short-Term Memory Neural Network (LSTM)

Recurrent neural network (RNN) is a neural network for processing sequence data,
and long short-term memory neural network (LSTM) is a special kind of RNN, mainly
used to solve the gradient disappearance and gradient explosion problems in the long
sequence training process. Compared to ordinary RNNs, in longer sequence, LSTM has
better performance. On the basis of the original RNN, LSTM adds an additional unit that
can save the long-term state in the hidden layer, and the internal structure of the LSTM
unit is shown in Figure 6. LSTM and GRU are special RNN architectures used to solve
the gradient vanishing problem. GRU can be considered a simplified version of LSTM.
The performances of GRU and LSTM are indistinguishable in many tasks. The fewer
GRU parameters make it easier to converge, but LSTM has better expression performance
when the dataset is large. After comprehensive consideration, LSTM is selected as the
main algorithm for predicting PM2.5 concentration in this paper. At the top of Figure 6
is a long-term memory C line that runs horizontally to achieve the purpose of sequence
learning. Three neural network layers represent three doors.
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The forgetting gate determines the retention of past information by judging the im-
portance of the current input information, the gate reads ht−1, Xt−1, outputs a value
between 0 and 1 to each number in the cell state Ct−1, 1 means complete retention, 0 means
complete discard.

The input gate determines the retention of the input information by judging the
importance of the current input information, which determines how much new information
is added to the cell state, a sigmoid layer determines that the information needs to be
updated, and a tanh layer generates a vector, that is, the alternative content used to update,
merging the two parts to update the cell state. The output gate runs a sigmoid layer to
determine the part of the cell state that will be exported, and then the cell state is processed
by tanh to obtain a value between −1 and 1, and it is multiplied by the output of the
sigmoid gate to obtain the output result. The symbols in the figure are calculated as follows:

ft = σ(w f · [ht−1, xt] + b f ) (7)

it = σ(wi · [ht−1, xt] + bi) (8)

c̃t = tanh(wc · [ht−1, xt] + bc) (9)
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ot = σ(wo · [ht−1, xt] + bo) (10)

ht = ot ∗ tanh(ct) (11)

ct = ft ∗ ct−1 + it ∗ c̃t (12)

where ht−1 represents the output of the previous cell; xt represents the input of the current
cell; σ represents sigmod function; ct−1 is the output of the previous moment; ct is the
output of the current moment; ft is the output of forgetting gate; ot is the output of the
output gate; c̃t is an alternative content for updating; it is the update degree of input gate;
ht is the current cell output.

3.3.3. Attention Mechanism

The essence of the attention mechanism is the mental activity of the brain when
people observe things. When the brain sees something important that often appears in one
part of a scene, it will learn and then focus on this part when it sees a similar scene. In
the actual application process, the standard LSTM cannot be handled well in the face of
multidimensional and multivariable datasets, and some important time series information
may be ignored during the model training process, which will affect the accuracy of the
model. Therefore, attention mechanism is added on the basis of LSTM in order to better
judge the importance of information at each input moment. Attention mechanism gives
different weights to the input characteristics of LSTM, highlights the key influencing factors,
and improves the prediction accuracy of the model without increasing the calculation and
storage space of the model.

The attention model uses the attention mechanism to dynamically generate the weights
of different connections between the input and output of the same layer of network to obtain
the output model of the network. The self-attention model can be used as a layer of the
neural network, it can also be used to replace the convolution layer or loop layer, or it can
be cross-stacked with the convolution layer or loop layer. The mathematical formula is used
to express the self-attention mechanism. Assuming that the input sequence in a nerve layer
is X = [x1, x2, . . . . . . , xN ] ∈ Rd1×N , and the output sequence is H = [h1, h2, . . . . . . , hN ] ∈
Rd2×N with the same length, three groups of vector sequences are obtained through linear
transformation. Q is the query vector sequence, K is the key vector sequence, and V is the
value vector sequence.

Q = WQX ∈ Rd3×N (13)

K = WKX ∈ Rd3×N (14)

V = WV X ∈ Rd3×N (15)

where WQ,WK,Wv are learnable parameter matrices. We calculate the output vector:

hi = att((K, V), qi) =
N
∑

j=1
αijvj

=
N
∑

j=1
so f tmax(s(k j, qi))vj

(16)

where i, j ∈ [1, N] is the position of the output and input vector sequence, the connection
weight αi j is dynamically generated by the attention mechanism.

3.3.4. PCA-Attention-LSTM Forecasting Model

LSTM solves the problem of gradient disappearance and gradient explosion during
long sequence training very well. PCA is used to reduce the dimensionality of the data
to speed up the training speed of the model with the smallest amount of lost information.
Adding the attention mechanism can better capture important features of long time series
data. The model adopts the keras deep learning framework architecture network model,
integrates the three algorithms of PCA, attention mechanism, and LSTM, and establishes
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an LSTM model based on PCA and attention mechanism; the model framework is shown
in Figure 7.
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4. Experimental Results and Analysis
4.1. PCA-Attention-LSTM Model Building Results

According to the cumulative contribution rate of 85% to 90%, the number of principal
components corresponding to the data of the five prefecture-level cities in Ningxia was
determined, and the results are shown in Table 3. Wuzhong and Gu Yuan selected eight
main components, and Yinchuan, Zhongwei, and Shizuishan selected seven main compo-
nents. This turns the original 26 indicators into seven or eight comprehensive indicators,
so that while eliminating the influence of correlation between variables, the complexity of
the model can be reduced and the operation speed of the model can be improved. In the
process of the simulation experiment, the principal components are input into the LSTM
neural network based on the attention mechanism to build a PCA-attention-LSTM model.
The number of principal components selected in the five regions of this paper is seven or
eight, and the specific results are shown in Table 3.

4.2. Model Parameter Selection

Adaboost model parameters are base_estimator = None, n_estimators = 56, learn-
ing_rate = 0.1, algorithm = SAMME.R, random_state = None. SVR model parameters
are kernel = rbf, gamma = scale, tol = 0.001, C = 1.1, epsilon = 0.08, shrinking = True,
cache_size = 200, verbose = False, max_iter = −1. RF model parameters estimator = rf,
n_iter = 100, score = “neg_mean_absolute_error”, cv = 3, random_state = 42, n_jobs = −1,
param_distribution = random_grid. The parameters of BPNN model are num_iterations = 1000,
learning_rate = 0.01, n_h = 6, correct = 0.1. LSTM model parameters are time_step = 20,
rnn_unit = 10, batch_size = 60, input_size = 26, output_size = 1, lr = 0.006. In the PCA-
attention-LSTM model, the LSTM layer activation function is sigmoid, full connection layer
node number is 4, full connection layer node learning rate is 0.005, and full connection layer
activation function is sigmoid.

4.3. Model Prediction Results and Comparisons

Experiments were conducted using data of the five municipal districts to obtain a line
chart of the measured and predicted values of PM2.5 in the five municipal areas, as shown
in Figure 8. Three model evaluation methods, R2, MAE, and MSE, were used to analyze
the prediction accuracy of the models. The results are shown in Table 4. The correlation
coefficient (R2) values for the six models ranged from 0.75 to 0.93. The results showed that
Wuzhong, Yinchuan, Zhongwei, Shizuishan, and Guyuan all adopted the PCA-attention-
LSTM model as the best, and the correlation coefficients R2 were 0.91, 0.93, 0.91, 0.91, and
0.90, respectively, followed by the LSTM model, with the correlation coefficients R2 of 0.87,
0.91, 0.99, 0.99, 0.99, and 0.87, respectively, and the SVR model was the worst, with the
correlation coefficients R2 of 0.75, 0.79, 0.83, and 0.79, respectively.
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Table 3. Principal component analysis.

City Principal Component Eigenvalue Contribution Rate % Cumulative Contribution Rate %

Wuzhong

1 3.0824 0.3800 0.3800
2 1.8978 0.1441 0.5241
3 1.6590 0.1101 0.6342
4 1.4086 0.0794 0.7136
5 1.1236 0.0505 0.7640
6 1.0012 0.0401 0.8041
7 0.9901 0.0392 0.8434
8 0.9293 0.0345 0.8779

Yinchuan

1 3.1003 0.3845 0.3845
2 1.8770 0.1409 0.5254
3 1.6928 0.1146 0.6400
4 1.4783 0.0874 0.7274
5 1.0550 0.0445 0.7720
6 1.0200 0.0416 0.8136
7 0.9766 0.0381 0.8518

Zhongwei

1 3.0270 0.3665 0.3665
2 2.0319 0.1651 0.5317
3 1.6637 0.1107 0.6424
4 1.4807 0.0877 0.7301
5 1.1071 0.0490 0.7791
6 0.9926 0.0394 0.8185
7 0.9313 0.0347 0.8532

Shizuishan

1 3.1661 0.4010 0.4010
2 1.9037 0.1450 0.5460
3 1.6964 0.1151 0.6611
4 1.5811 0.1000 0.7610
5 1.0097 0.0408 0.8018
6 0.9549 0.0365 0.8383
7 0.9472 0.0359 0.8742

Guyuan

1 2.7533 0.3032 0.3032
2 1.9831 0.1573 0.4605
3 1.8137 0.1316 0.5921
4 1.4256 0.0813 0.6734
5 1.1952 0.0571 0.7305
6 1.0271 0.0422 0.7727
7 1.0165 0.0413 0.8141
8 0.9750 0.0380 0.8521

Table 4. Model evaluation results.

City Evaluation Methods BPNN SVR RF AdaBoost LSTM PCA-Attention-LSTM

Wuzhong R2 0.81 0.75 0.78 0.77 0.87 0.91
MAE 6.47 9.61 6.67 8.32 5.79 5.57
MSE 140.61 181.92 157.82 167.86 97.17 78.49

Yinchuan R2 0.90 0.79 0.89 0.87 0.91 0.93
MAE 4.85 8.12 5.10 6.50 4.35 4.07
MSE 54.15 107,34 56.01 64.15 43.57 39.59

Zhongwei R2 0.88 0.81 0.84 0.84 0.89 0.91
MAE 6.52 7.77 6.67 7.86 5.64 5.40
MSE 96.12 111.58 97.41 93.45 68.02 54.64

Shizuishan R2 0.89 0.83 0.89 0.87 0.90 0.91
MAE 5.98 8.11 6.08 6.95 5.28 4.92
MSE 86.96 101.03 89.42 96.84 64.30 67.81

Guyuan R2 0.87 0.79 0.85 0.81 0.87 0. 90
MAE 5.23 6.35 5.29 7.05 4.89 4.72
MSE 59.31 69.91 62.01 78.32 57.81 50.22
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Figure 8. True value versus predicted value.

In order to further compare the relationship between the predicted values and the
measured values of the six models, Figure 9 compares the true values of PM2.5 concen-
trations in five municipal areas with the predicted values of the models. It can be seen
from Figure 9 that the AdaBoost model in the Wuzhong area as a whole shows an over-
estimation phenomenon, SVR and RF show an underestimation phenomenon, and the
distribution of the PCA-attention-LSTM model and true values is the closest, but the peak
is underestimated. The AdaBoost model in Yinchuan showed an overall overestimation
phenomenon, the SVR showed an underestimation phenomenon, and the PCA-attention-
LSTM model and the LSTM model were close to the distribution of the measured values.
The LSTM model, BPNN model, and AdaBoost model in Zhongwei area showed an overall
overestimation phenomenon, the RF model showed an underestimation phenomenon,
and the PCA-attention-LSTM model was close to the overall distribution of the measured
values but the peak was underestimated. The Shizuishan area and the AdaBoost model
as a whole showed an overestimation phenomenon, the SVR and RF models showed an
underestimation phenomenon, and the range of predicted values became larger, and the
PCA-attention-LSTM model and LSTM model were close to the overall distribution of
the measured values. The AdaBoost model in the Guyuan area showed an overall over-
estimation phenomenon, and the PCA-attention-LSTM model was closest to the overall
distribution of the measured values.
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Figure 9. A plot of the distribution of predicted and true values.

5. Conclusions and Discussions

(1) Statistical analysis of the data shows that the overall indicators of Guyuan are better
than those of the other four cities, and the worst is Shizuishan City, which has a clear
correlation with the geographical location of the municipal areas, and the overall
air quality in the southern mountainous areas is better than that of the Yellow River
irrigation area in the north.

(2) The three-year data of five cities in Ningxia were integrated and divided into four
seasons and month by month. The results showed that the PM2.5 concentration
showed an obvious seasonal change trend, which was the lowest in summer and the
highest in winter. This was mainly related to the dust emission from coal combustion
and gas or fuel during winter heating in Ningxia.

(3) Through the analysis of variable importance, the results show that PM10 is the most
important, followed by air quality index, air quality grade, and CO having equal
importance, and precipitation in meteorological elements is also a relatively important
variable. For future studies of PM2.5 concentration prediction, the week can also
be used as an input variable, indicating that PM2.5 concentration generation is also
affected by weekdays and non-working days.
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(4) The concentration of PM2.5 was predicted by using six models, and the results showed
that the PCA-attention-LSTM model had the best prediction accuracy, and its correla-
tion coefficient was 0.91~0.93. The prediction accuracy of the SVR model was poor,
and its correlation coefficient was 0.75~0.83. The LSTM model and the BPNN model
also predicted better results.

(5) Experimental results show that the training evaluation results of the PCA-attention-
LSTM model are better than those of the LSTM model, which shows that the cu-
mulative variance contribution rate of the selected principal components reaches
85–90%, which reduces the data dimension and reduces the time complexity and
spatial complexity of the model. At the same time, the attention mechanism can better
capture important information.
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