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Abstract: As a key parameter of land surface energy balance models, near surface air temperature
(NSAT) is an important indicator of the surface atmospheric environment and the urban thermal
environment. At present, NSAT data are mainly captured by meteorological ground stations. In
areas with a sparse distribution of meteorological stations, however, it is not possible to describe the
heterogeneity of NSAT in continuous space. With the rapid development of satellite remote sensing
technologies, there is now a significant method to retrieve NSAT from multispectral satellite images
based on machine learning methods. In the literatures published so far, there is little reported research
concerning the comprehensive evaluation and/or the systematic comparison of NSAT retrieval
performances based on different machine learning models. Hence, the three most commonly-used
machine learning models, Support Vector Regression (SVR), Multilayer Perceptron Neural Network
(MLBPN), and Random Forest (RF), have been employed for the NSAT retrieval from various
multispectral satellite images of MODIS daytime and nighttime data, Landsat 8 data, and Sentinel-2
data. Comparison of the NSAT retrieval results generated by the different machine learning models
from the different types of satellite images reveals that (a) the RF-based model has a better NSAT
retrieval performance than the SVR- or MLBPN-based models with respect to both the accuracy and
stability, and (b) the NSAT results retrieved from the MODIS data were generally better than those
from the Landsat 8 and Sentinel-2 data. To sum up, the conducted research in this article does not
only provide a reference for practical applications relevant to NSAT retrievals, but also proposes an
efficient RF-based model for NSAT retrieval from multispectral satellite images in continuous space.

Keywords: near surface air temperature; support vector regression; multilayer perceptron neural
network; random forest

1. Introduction

As a key parameter of land surface energy balance models, near surface air temperature
(NSAT) is not only an important indicator of the surface atmospheric environment and
the urban thermal environment but is also a significant parameter of land surface energy
balance models [1–3]. Because various land surface processes, such as photosynthesis
and respiration, are affected by NSAT, the continuous spatial distribution of the NSAT
with suitable temporal and spatial resolution is necessitated by various studies concerning
land–surface modelling, global environmental changes, urban heat island effect, etc. [4,5].
At present, NSAT data are primarily captured by meteorological ground stations. With the
successful launching of various multispectral satellite sensors, including MODIS, Landsat,
Sentinel, etc., satellite remote sensing technology has become one of the most efficient ways
to acquire NSAT data with high temporal and/or spatial resolution. Five methods have
been widely employed to retrieve the NSAT data from multispectral satellite images in
recent decades: the single-factor method, multi-factor method, temperature vegetation
index (TVX) method, surface energy balance method, and machine learning method.
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1.1. The Single-Factor Method

The single-factor method can be used to analyze the correlation between NSAT and
Land Surface Temperature (LST) based on a linear regression model [4]. The correlation
coefficients (R2) between the LST extracted from satellite data and the NSAT measured
by on-site monitors exceeded 0.95 in the experiments conducted by Basist et al. [6]. Fu
et al. used LST provided by MODIS to retrieve NSAT in the northern Qinghai-Tibet Plateau
based on a linear regression model, and they found that the daily NSATmin (minimum
NSAT) and the nighttime NSATavg (average NSAT) can be retrieved in cases where the
input LST data are accurate [7]. In a paper by Zhang et al., the NSAT results retrieved from
nighttime LST provided by MODIS were generally better than those from daytime LST [8].
Although the single-factor method has been widely employed by many researchers for
NSAT retrieval, the accuracy and stability of this method are highly dependent on the time,
location, and amount of the observational data.

1.2. The Multi-Factor Method

As an upgrade to the single-factor method, the multi-factor method has been de-
veloped and employed by researchers to improve the retrieval accuracy and enhance its
usability. Based on this method, Cresswell et al. used the temperature of Meteosat and
the Solar Zenith Angle (SZA) to retrieve NSAT, with an accuracy of 3 ◦C for over 70% of
the data [9]. Zhao et al. found that the linear regression model with monthly average LST,
elevation, and topographic factors outperformed the three statistical methods of spline,
inverse distance weight, and kriging [10]. Xu et al. developed a statistical model to retrieve
NSAT using LST, elevation, Normalized Difference Vegetation Index (NDVI), and albedo
as inputs [11]. In general, the accuracy of the multi-factor method is better than the single-
factor method, while the accuracy and stability are still limited by the time, location, and
amount of the observational data.

1.3. The Temperature Vegetation Index Method

Like the single- and multi-factor methods, the temperature vegetation index (TVX)
method can also be employed for NSAT retrieval, based on the negative correlation between
the atmosphere temperature and spectral vegetation index [12]. With the observed LST
and the NDVI, for instance, Prihodko and Goward et al. implemented the TVX method
to retrieve the NSAT—the R2 reached 0.93 and the Mean Error (ME) was 2.92 ◦C [13].
Nieto et al. compared the accuracy between the previous maximum NDVI (NDVImax) and
the current NDVImax, which used the observed NSAT to calibrate the NDVImax for each
vegetation type [14]. Zhu et al. improved the TVX method by lowered the threshold of the
negative correlation coefficient of NDVI, which revealed the result with RMSE from 7.45 ◦C
to 3.79 ◦C, the MAE from 6.21 ◦C to 3.03 ◦C, and R2 equal to 0.83 [15]. However, the TVX
method is unsuitable in areas with low vegetation and bare soil.

1.4. The Surface Energy Balance Method

In the research conducted by Pape et al., the surface energy balance model was estab-
lished to simulate the LST and NSAT changes in a high temporal resolution alpine region,
based on the measured NSAT and satellite remote sensing data [16]. Analogously, Hou
et al. proposed an Energy Balance Bowen Ratio model to retrieval the NSAT from Landsat
5 TM images in Beijing, where the ME of the retrieval result was equal to 2.21 ◦C [17]. The
surface energy balance method has been implemented in various regions and has revealed
satisfactory results in cases where sufficient amounts of observation data were available.

1.5. Machine Learning Methods

Since the 2010s, more and more researchers have started to employ machine learning
methods for the task of NSAT retrieval. For instance, Xu et al. employed the Random
Forest (RF) model to retrieve maximum NSAT (NSATmax) from MODIS data in British
Columbia, which revealed that the RF model had higher accuracy than the linear regression
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method [18]. Similar to Xu et al., Ho et al. found that the NSAT retrieval results based on the
RF model were generally better than the ordinary least squared regression and the support
vector machine models [19]. Based on the M5 model, Emamifar et al. retrieved the NSAT
in Khuzestan province in southwestern Iran, with the LST calculated from MODIS, solar
radiation, and Julian day as inputs. The results showed that the RMSE was 2.3 ◦C and the
R2 reached 0.96 [20]. In the MBR-LST model proposed by Zhang et al., the back-propagation
neural network was employed to retrieve the land surface temperature (LST) based on the
inputs of the band reflectance from Landsat 8 OLI/TIRS images, NDVI, elevation, latitude,
meteorological parameters, and time parameters, which revealed a significantly better
performance than the traditional Radiative Transfer Equation (RTE) method [21].

The reported work mentioned above indicates that satellite remote sensing technology,
together with the proper machine learning methods have become an efficient way for the
retrieval of NSAT in continuous space. In the literatures published so far, however, there
are few studies concerning the comprehensive evaluation and/or systematic comparison
of the NSAT retrieval performance of the various machine learning models. Hence, the
three most commonly-used machine learning models in the environmental field, Support
Vector Regression (SVR), Multilayer Perceptron Neural Network (MLBPN), and Random
Forest (RF), have been employed for NSAT retrieval from the various multispectral satellite
images of MODIS daytime and nighttime data, Landsat 8 data, and Sentinel-2 data. By
comparing the NSAT retrieval results generated by the different machine learning models,
the ‘optimal’ NSAT retrieval model, together with the ‘best’ satellite data as inputs will be
sufficiently investigated in this research.

2. Study Area and Data Sources
2.1. Study Area

The Guanzhong area has been selected as the study area in this article and is located
in the central part of Shaanxi Province between latitude 33◦39′N to 35◦52′ N, and longitude
106◦56′ E to 110◦22′ E, with an area of 55,500 square kilometers.

As illustrated in Figure 1, the Guanzhong area is surrounded by the Qinling Mountains
to the south, the Loess Plateau to the north, and the Weihe River Plain in the center. The
Guanzhong area includes five cities, Xi’an, Baoji, Xianyang, Weinan, and Tongchuan, and it
has a total population of more than 20 million and a warm temperate continental monsoon
climate with an average annual temperature of 12 ◦C to 14 ◦C and an average annual
rainfall of 500–700 mm. The Weihe River runs through the central part of the plain from
west to east and joins the Yellow River from Tongguan [22,23].
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2.2. Data Sources
2.2.1. MODIS Data

MODIS data were captured by the Terra and Aqua satellites, including 36 spectral
bands from 0.4 µm (visible light) to 14.4 µm (thermal infrared), with spatial resolutions
from 250 m to 1000 m. The revisit cycle in mainland China is 1–2 times/day. In addition to
MODIS raw data, there are different categories of data products that can be downloaded
for free [24]. This study used daily land surface temperature product (MOD11A1) captured
at daytime (MODISTD) and nighttime (MODISTN), and daily surface reflectance product
(MOD09GA) from 2010 to 2021.

2.2.2. Landsat 8 OLI Data

The Landsat 8 satellite was launched by National Aeronautics and Space Administra-
tion (NASA) on 11 February 2013, and it has two sensors, including an Operational Land
Imager (OLI) and a Thermal Infrared Sensor (TIRS). Landsat 8 is mainly consistent with
Landsat 1–7 in terms of spatial resolution and spectral characteristics, and it can achieve
global coverage every 16 days [25]. In this study, the Landsat 8 images from 2013 to 2021 in
the Guanzhong area were chosen as the original data.

2.2.3. Sentinel-2 Data

The “Sentinel” series of satellites are dedicated satellites of the European “Copernicus”
Earth Observation Program. Sentinel-2 consist of Sentinel-2A and Sentinel-2B, which carry
MSI imaging sensors with 13 bands from the visible light band to the shortwave infrared
band. The spatial resolutions are 10 m, 20 m, and 60 m, respectively, and the revisit period
of one satellite is 10 days [26]. This study used Sentinel-2A images captured from 2018
to 2021.

2.2.4. CMA-NOAA Data

The National Oceanic and Atmospheric Administration (NOAA) is the governing
body for weather operations in the United States. In 2013, the China Meteorological
Administration (CMA) signed a cooperation agreement with NOAA, authorizing NOAA
to publicly publish meteorological data for mainland China on the Internet, termed as
CMA-NOAA data. The CMA-NOAA data is published every three hours and mainly
includes atmospheric pressure, humidity, temperature, wind direction, wind speed, etc.
The dependent variable used in this study is NSAT data from CMA-NOAA, which applies
to NSAT retrieval rather than LST retrieval. There are 372 CMA-NOAA stations in mainland
China, including four stations in this study area (Figure 1).

2.2.5. SRTM-DEM Data

NASA and the National Imagery and Mapping Agency (NIMA) jointly completed the
Shuttle Radar Topography Mission (SRTM). SRTM terrain data can be divided into SRTM1
and SRTM3, according to the spatial resolution [27]. In this study, SRTM1 data were used
as the elevation of the study area. A total of 14 SRTM1 DEM 30 m images were obtained
(Figure 1).

As illustrated in Table 1, there are four primary data groups employed by the proposed
models. The remote sensing images data come from the GEE, the elevation data come
from the USGS, and the measured NSAT data come from the CMA-NOAA meteorological
ground station.
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Table 1. List of the primary data employed by the proposed models.

Category Unit Resolution Data

Satellite images data
MOD11A1 Band 1 Day GEE
MOD09GA Band 1 Day
Landsat 8 Band 16 Day
Sentinel-2 Band 10 Day

Julian Day Day 1 Day

Geo-spatial
parameter
Elevation m 30 m USGS

Slope 0~90◦ 30 m
Aspect 0~360◦ 30 m

NSAT Measured data ◦C 3 h CMA-NOAA

2.3. Data Preprocessing

Because the sample data are from different sources, the format and distribution charac-
teristics of the data could be different to one another. Therefore, the sample data need to be
preprocessed before applications, which can be characterized by the following two steps.

(1) Removing the sample data heavily affected by clouds using the quality control tools
provided by GEE. With the MODIS data, the data with QC larger than 0 were deleted,
and a total of 1342 MODISTD samples and 1489 MODISTN samples were retained.
With the Landsat 8 data, a total of 284 samples with BQA equal to 2720 were obtained.
With the Sentinel-2 data, a total of 556 samples with QA60 equal to 0 were selected for
further processing.

(2) Satellite remote sensing images, temporal parameters, geo-spatial parameters, and the
measured NSAT from ground stations were matched. In this way, the links between
different sample data can be established so that the data from different sources can be
fused together.

3. Methods
3.1. Support Vector Regression (SVR)

Support Vector Machine (SVM) is developed on the basis of statistical learning theory,
which was proposed by Vapnik in the 1990s [28,29]. According to different applications,
SVM is divided into Support Vector Classification (SVC) and Support Vector Regression
(SVR). The theory of SVR is Structural Risk Minimization (SRM) rather than Empirical Risk
Minimization (ERM). SVR can map the samples to high-dimensional space through the
nonlinear mapping function, and can then use the kernel function to replace the vector
inner product in high-dimensional space [29]. The Radial Basis Function (RBF) was chosen
in this study. The formula is as follows [30]:

K(x, xi) = exp

{
−‖x− xi‖2

σ2

}
(1)

In this study, the retrieval accuracy of SVR mainly depends on C (Penalty Coefficient)
and gamma. C represents the tolerance of model error. Gamma determines the distribution
of the data after mapping to the new feature space.

3.2. Multilayer Perceptron Neural Network (MLBPN)

The Multilayer Perceptron Neural Network (MLBPN) model is based on an artificial
neural network (ANN) [21]. The established MLBPN model is composed of one input
layer, several hidden layers (L), and one output layer (see Figure 2). All the cells in the
adjacent layers are connected to each other, while the cells of the same layer do not have
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any connection.
⇀
x = [x1, x2, . . . xi, . . . xm] represents the input vector, sl is the number of

neurons in layer l, and hl =
[

hl
1, hl

2, . . . , hl
i , . . . , hl

sl

]
, (i = 1, 2, . . . , sl). Y is the output vector

recording the NSATs derived from CMA-NOAA stations, W(l)
ij is the connection weight

between the jth neuron in layer l − 1 and the ith neuron in layer l, and b(l)i is the bias of the

ith neuron in the layer l. net(l)i represents the input value of the ith neuron in the l layer and
f (·) is the transfer function. The Tansig function is utilized for transmitting the neurons
between different hidden layers [31], and the Purelin function is employed as the transfer
function of the output layer [32,33].

b(l)i = f
(

net(l)i

)
(2)

net(l)i =
s(l−1)

∑
j=1

W(l)
ij h(l−1)

j + b(l)i (3)
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3.3. Random Forest (RF)

Random Forest (RF) was developed by Leo Breiman and Culter Adele in 2001 [34]. RF
combines multiple decision trees into a decision tree forest, which is a new type of machine
learning technology that can perform classification and regression analysis. The accuracy
of RF is determined by each decision tree.

The Random Forest Regressor in scikit-learn is used for NSAT retrieval. The accuracy
of the RF model depends on three important parameters: n_estimators (the number of trees
in RF), max_depth (the maximum depth of tree in RF), and max_features (the maximum
number of features to consider when dividing each tree in RF). In the optimization stage,
the three parameters can be adjusted to improve the accuracy of the NSAT retrieval.

3.4. Validation

In this study, in spite of the data from the multispectral satellite images, the geospatial
parameters, together with the time parameters, have been also considered to enhance
the accuracy of the NSAT retrievals. To evaluate the NSAT retrieval accuracy of the
three models, the following four statistical indicators of regression fitting determination
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coefficient (R2), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean
Error (ME) are employed.

R2 =
cov
(

xsi − x f i

)
√

Var[xsi]Var
[

x f i

] (4)

RMSE =

√
1
n

n

∑
i=1

(
xsi − x f i

)2
(5)

MAE =
1
n

n

∑
i=1

∣∣∣(xsi − x f i

)∣∣∣ (6)

ME =
1
n

n

∑
i=1

(
xsi − x f i

)
(7)

where n is the number of samples, xsi is the measured NSAT of the ith sample, and x f i is
the retrieved NSAT of the ith sample.

4. Results
4.1. Model Performance

Figure 3 compares the measured NSATs from the ground observation stations with
the retrieved values from MODISTD data, based on the SVR, MLBPN, and RF models,
respectively. The R2 of the regression line based on all three models are close to 1 (see
Figure 3a). To further analyze the accuracy of the retrieved NSATs, several samples
(number = 269) captured from 2010 to 2021 have been randomly selected from all the
collected data. The retrieved and measured values were then compared to one another (see
Figure 3b). With the SVR-based model, the R2, RMSE, MAE, and ME are respectively equal
to 0.9635, 1.70 ◦C, 1.31 ◦C, and 0.20 ◦C. With the MLBPN-based model, the R2, RMSE, MAE,
and ME are 0.9721, 1.56 ◦C, 1.25 ◦C, and −0.08 ◦C. Compared to the SVR and MLBPN-
based models, the RF-based model reaches an overall better NSAT retrieval results, with
R2, RMSE, MAE, and ME equal to 0.9697, 1.48 ◦C, 1.17 ◦C, and 0.05 ◦C, respectively (see
Table 2).

Table 2. Accuracy evaluation of the proposed NSAT retrieval models.

Model Satellite Data R2 RMSE MAE ME

SVR

MODISTD 0.9637 1.67 1.33 0.05
MODISTN 0.9802 1.31 0.97 0.20
Landsat 8 0.9601 2.91 2.23 1.98
Sentinel-2 0.9018 3.52 2.63 −0.09

MLBPN

MODISTD 0.9721 1.56 1.25 −0.08
MODISTN 0.9800 1.26 0.99 −0.04
Landsat 8 0.9675 1.80 1.45 −0.05
Sentinel-2 0.8575 4.21 2.87 0.93

RF

MODISTD 0.9697 1.48 1.17 0.05
MODISTN 0.9820 1.21 0.95 −0.01
Landsat 8 0.9763 1.54 1.27 0.05
Sentinel-2 0.9438 2.51 1.92 0.10

Figure 4 compares the results of the measured NSATs from the ground observation
stations with the retrieved values from MODISTN data, based on the SVR, MLBPN, and RF
models, respectively. All the R2 based on the three models are close to 1 (see Figure 4a). In
Figure 4b, several samples (number = 298), captured from 2010 to 2021, have been randomly
selected for further analysis. With the SVR-based model, the R2, RMSE, MAE, and ME are,
respectively, equal to 0.9802, 1.31 ◦C, 0.97 ◦C, and 0.20 ◦C. With the MLBPN-based model,
the R2, RMSE, MAE, and ME are 0.9800, 1.26 ◦C, 0.99 ◦C, and −0.04 ◦C. Compared to the
SVR and MLBPN-based models, the RF-based model has revealed comprehensively better
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NSAT retrieval result, with R2, RMSE, MAE, and ME equal to 0.9820, 1.21 ◦C, 0.95 ◦C, and
−0.01 ◦C, respectively (see Table 2).
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Figure 4. Comparison between the measured and retrieved NSATs from MODISTN data: (a) Scatter-
plots of the measured and retrieved values, where the solid line is the fitting line obtained by line
regression and the dashed line is the reference line of y = x. (b) Measured NSATs (blue line) versus
retrieved NSATs (red lines) of the randomly selected samples from 2010 to 2021.
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Figure 5 compares the measured NSATs from the ground observation stations with
the retrieved values from Landsat 8 data. The R2 of the regression lines based on MLBPN
and RF models are close to 1 (see Figure 5a). In Figure 5b, several samples (number = 57)
captured from 2013 to 2021 have been randomly selected for further analysis, where the
RF-based model reaches the best NSAT retrieval result with R2, RMSE, MAE, and ME equal
to 0.9763, 1.54 ◦C, 1.27 ◦C, and 0.05 ◦C (see Table 2).

Atmosphere 2022, 13, x FOR PEER REVIEW 9 of 19 
 

 

Figure 5 compares the measured NSATs from the ground observation stations with 
the retrieved values from Landsat 8 data. The R2 of the regression lines based on MLBPN 
and RF models are close to 1 (see Figure 5a). In Figure 5b, several samples (number = 57) 
captured from 2013 to 2021 have been randomly selected for further analysis, where the 
RF-based model reaches the best NSAT retrieval result with R2, RMSE, MAE, and ME 
equal to 0.9763, 1.54 °C, 1.27 °C, and 0.05 °C (see Table 2). 

 
Figure 5. Comparison between the measured and retrieved NSATs from Landsat 8 data: (a) Scatter-
plots of the measured and retrieved values, where the solid line is the fitting line obtained by the 
line regression and the dashed line is the reference line of y = x. (b) Measured NSATs (blue line) 
versus retrieved NSATs (red lines) of the randomly selected samples from 2013–2021. 

Figure 6 compares the measured NSATs from the ground observation stations with 
the retrieved values from Sentinel-2 data. The R2 of the regression line based on the RF 
model is larger than those based on the SVR and MLBPN models (see Figure 6a). Figure 
6b randomly selected several samples (number = 112) captured from 2018 to 2021, where 
the RF-based model has higher NSAT retrieval accuracy with respect to all the four statis-
tical indicators of R2, RMSE, MAE, and ME (see Table 2).  

Figure 5. Comparison between the measured and retrieved NSATs from Landsat 8 data: (a) Scatter-
plots of the measured and retrieved values, where the solid line is the fitting line obtained by the line
regression and the dashed line is the reference line of y = x. (b) Measured NSATs (blue line) versus
retrieved NSATs (red lines) of the randomly selected samples from 2013–2021.

Figure 6 compares the measured NSATs from the ground observation stations with
the retrieved values from Sentinel-2 data. The R2 of the regression line based on the RF
model is larger than those based on the SVR and MLBPN models (see Figure 6a). Figure 6b
randomly selected several samples (number = 112) captured from 2018 to 2021, where the
RF-based model has higher NSAT retrieval accuracy with respect to all the four statistical
indicators of R2, RMSE, MAE, and ME (see Table 2).
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4.2. Validation Analysis

To further prove that the proposed RF-based model has the best performance, four
study cases were randomly chosen for more precise qualitative analysis. Due to the influ-
ence of clouds, some data from the meteorological station FENGXIANG were deleted before
each model was trained. Figures 7–10 show the results of each model in the Guanzhong
area using MODISTD data from 31 October 2018, MODISTN data from 28 August 2012,
Landsat 8 data from 17 June 2016 and 7 April 2019, and Sentinel-2 data from 19 March 2020,
respectively. At the same time, as illustrated in Tables 3–6, the retrieval NSAT based on
each model are also compared.
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Table 3. Comparison of the NSATs of four different monitoring stations on 31 October 2018.

Station Measured NSAT
Retrieved NSAT

SVR MLBPN RF

FENGXIANG 17.65 20.24 19.55 19.37
XIANYANG 19.5 17.84 18.82 18.74

JINGHE 18.52 20.46 20.03 19.18
HUASHAN 11.48 10.15 10.73 10.15

Table 4. Comparison of the NSATs of three different monitoring stations on 28 August 2012.

Station Measured NSAT
Retrieved NSAT

SVR MLBPN RF

XIANYANG 21.8 18.59 20.21 21.13
JINGHE 26.53 28.37 28.95 26.22

HUASHAN 16.03 17.2 17.21 16.67

Table 5. Comparison of the NSATs of two different monitoring stations on 17 June 2016 and 7
April 2019.

Date Station Measured
NSAT

Retrieved NSAT
SVR MLBPN RF

20160617
XIANYANG 31.82 32.02 31.39 29.41

JINGHE 32.65 36.72 36.78 31.50

20190407
XIANYANG 22.73 22.67 22.84 22.72

JINGHE 23.64 24.90 25.17 24.68

Table 6. Comparison of the NSATs of four different monitoring stations on 19 March 2020.

Station Measured NSAT
Retrieved NSAT

SVR MLBPN RF

FENGXIANG 19.28 16.87 15.94 16.74
XIANYANG 16.41 14.9 14.93 17.25

JINGHE 18.25 17.2 19.2 17.08
HUASHAN 9.81 1.52 2.72 11.6

In the case of MODISTD data, the RMSE of the SVR- and MLBPN-based models are
1.94 ◦C and 1.31 ◦C, the MAE are 1.88 ◦C and 1.21 ◦C, and the ME are −0.39 ◦C and
−0.50 ◦C, respectively (see Table 7). When the measured NSATs are compared with the
retrieved NSATs by the RF-based model, the RMSE is 1.20 ◦C, which is 0.74 ◦C smaller than
the SVR model and 0.11 ◦C smaller than the MLBPN model. The MAE is 1.12 ◦C, which is
0.76 ◦C smaller than the SVR model and 0.09 ◦C smaller than the MLBPN model. The ME
is −0.07 ◦C, which is 0.32 ◦C smaller than SVR and 0.43 ◦C smaller than MLBPN.

In the case of MODISTN data, the RF-based model shows a significantly better per-
formance than the SVR and MLBPN-based models. The RMSE of the SVR and MLBPN
models on 28 August 2012 are 2.24 ◦C and 1.81 ◦C, the MAE are 2.07 ◦C and 1.73 ◦C, and
the ME are 0.07 ◦C and −0.67 ◦C, respectively (see Table 7). The RMSE of the RF model is
0.56 ◦C, which is 1.68 ◦C smaller than the SVR model and 1.25 ◦C smaller than the MLBPN
model. The MAE of the RF model is 0.54 ◦C, which is 1.53 ◦C smaller than the SVR model
and 1.19 ◦C smaller than the MLBPN model. The ME of the RF model is 0.11 ◦C, which is
0.04 ◦C higher than the SVR model and 0.56 ◦C smaller than the MLBPN model.
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Table 7. Comparison of the NSATs on 19 March 2020, respectively generated by the measurements,
the SVR model, the MLBPN model, and the RF model and located at the positions of four different
monitoring stations in the Guanzhong area.

Date Data Model RMSE MAE ME

20181031 MODISTD

SVR 1.94 1.88 −0.39
MLBPN 1.31 1.21 −0.50

RF 1.20 1.12 −0.07

20120828 MODISTN

SVR 2.24 2.07 0.07
MLBPN 1.81 1.73 −0.67

RF 0.56 0.54 0.11

20160617
&

20190407
Landsat 8

SVR 2.13 1.40 −1.37
MLBPN 2.21 1.55 −1.34

RF 1.43 1.15 0.63

20200319 Sentinel-2
SVR 4.41 3.32 3.32

MLBPN 4.02 3.22 2.74
RF 1.71 1.59 0.27

In the case of Landsat 8 data, as illustrated in Table 7, the RMSE of the SVR and
MLBPN models on 17 June 2016 and 7 April 2019 are 2.13 ◦C and 2.21 ◦C, the MAE are
1.40 ◦C and 1.55 ◦C, and the ME are −1.37 ◦C and −1.34 ◦C, respectively. The RMSE of the
RF model is 1.43 ◦C, which is 0.70 ◦C smaller than the SVR model and 0.78 ◦C smaller than
the MLBPN model. The MAE of the RF model is 1.15 ◦C, which is 0.25 ◦C smaller than the
SVR model and 0.40 ◦C smaller than the MLBPN model. The ME of the RF model is 0.63 ◦C,
which is 0.74 ◦C smaller than the SVR model and 0.71 ◦C smaller than the MLBPN model.

In the case of Sentinel-2 data, the RF-based model shows a significantly better perfor-
mance than the SVR and MLBPN-based models. The RMSE of the SVR and MLBPN-based
models on 19 March 2020 are 4.41 ◦C and 4.02 ◦C, the MAE are 3.32 ◦C and 3.22 ◦C, and
the ME are 3.32 ◦C and 2.74 ◦C, respectively (see Table 7). The RMSE of the RF-based
model is 1.71 ◦C, which is 2.70 ◦C smaller than SVR and 2.31 ◦C smaller than MLBPN. The
MAE of the RF-based model is 1.59 ◦C, which is 1.73 ◦C smaller than SVR and 1.63 ◦C
smaller than MLBPN. The ME of the RF model is 0.27 ◦C, which is 3.05 ◦C higher than SVR
and 2.47 ◦C smaller than MLBPN. In addition, the retrieval results of Sentinel-2 with the
SVR-based model shows some errors — the lowest NSAT is −40.92 ◦C. By comparing the
relevant ground-truth NSAT data, it can be concluded that the accuracy and stability of the
SVR-based model is not satisfactory.

Based on the analysis mentioned above, it is concluded that the RF-based model
has the best performance with respect to both accuracy and stability. Meanwhile, the
experiments employing the MODIS data revealed better NSAT retrieval results than the
Landsat 8 and Sentinel-2 data.

5. Discussion

For further analysis, the residuals of the retrieval NSAT values have been calculated
as well as compared in Figure 11.

Figure 11a shows the histograms of the NSAT-retrieval residuals, using the MODISTD
data and based on different models. With the SVR-based model, there are 44.78%, 78.73%,
and 94.40% of the residuals smaller than 1 ◦C, 2 ◦C and 3 ◦C respectively. With the MLBPN-
based model, 49.25%, 80.60%, and 94.03% of the residuals are smaller than 1 ◦C, 2 ◦C,
and 3 ◦C. With the RF model, the three proportions mentioned above have increased to
52.42%, 83.65%, and 95.17%, i.e. the RF-based model has revealed the best NSAT-retrieval
performance in case of using the MODISTD data.
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Figure 11b shows the histograms of NSAT-retrieval residuals using the MODISTN data.
With the SVR-based model, there are 66.11%, 86.92%, and 96.65% residuals smaller than
1 ◦C, 2 ◦C, and 3 ◦C respectively. With the MLBPN-based model, 61.08%, 88.26%, and
98.32% of the residuals are smaller than 1 ◦C, 2 ◦C, and 3 ◦C. With the RF-based model,
more residuals are located in the range of 0 ◦C ~ 3 ◦C − there are respectively 60.73%,
91.94%, and 98.99% of residuals in the range of 0 ◦C ~ 1 ◦C, 2 ◦C and 3 ◦C. Similar to
the experiments using the MODISTD data, the RF model has revealed the best retrieval
performance comparing to the SVR and MLBPN -based models.

Figure 11c shows the histograms of NSAT-retrieval residuals using the Landsat 8 data.
With the SVR-based model, there are merely 35.09%, 54.38%, and 70.17% residuals smaller
than 1 ◦C, 2 ◦C, and 3 ◦C respectively. With the MLBPN-based model, the corresponded
proportions have increased to 40.35%, 70.18%, and 89.48%. With the RF-based model, the
performance of the RF-based model becomes much better than the other two models, with
more than 42.11%, 77.20% and 96.50% residuals located in the range of 0 ◦C~1 ◦C, 2 ◦C,
and 3 ◦C.
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Figure 11d shows the histograms of the retrieval residuals using the Sentinel-2 data
and based on different models. With the SVR-based model, there are 30.63%, 53.15% and
64.84% of the residuals smaller than 1 ◦C, 2 ◦C, and 3 ◦C. With the MLBPN-based model,
there are 27.93%, 47.75% and 66.67% of the residuals smaller than 1 ◦C, 2 ◦C and 3 ◦C. With
the RF-based model, the residuals smaller than 1 ◦C, 2 ◦C and 3 ◦C increase to 40.18%,
59.83%, and 78.58%.

Based on the above analysis concerning on NSAT-retrieval residuals, it can be con-
cluded that the RF-based model shows comprehensively better performance than the other
two models.

Table 8 conducts further analysis of the NSAT retrieval residuals at different CMA-
NOAA meteorological ground stations and in different seasons, produced by the RF-based
model. With the MODISTD data, (a) the retrieval results in autumn are better than the other
seasons and (b) the retrieval results at the XIANYANG meteorological ground station seem
better than the other stations. With the MODISTN data, however, the spring becomes the
‘best’ season and the HUASHAN meteorological ground station become the ‘best’ station
for the NSAT-retrievals. With the Landsat 8 data, the ‘best’ season goes back to autumn
while the ‘best’ station changes to FENGXIANG. With the Sentinel-2 data, the retrieval
results at JINGHE station/in winter have reached the highest accuracy. Thereby, it has not
been found that there is a clear spatial or seasonal pattern concerning on the NSAT-retrieval
residuals although the NSAT-retrieval performances of the RF-based model are very stable
and satisfactory.

Table 8. The analysis of retrieval residuals based on the RF model at different meteorological ground
stations and in different seasons.

MODISTD MODISTN Landsat 8 Sentinel-2
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Stations

FENGXIANG 1.60 1.23 -* -* 1.05 0.92 2.23 1.82
XIANYANG 1.24 0.96 1.50 1.18 1.73 1.39 2.44 1.86
HUASHAN 1.62 1.33 0.93 0.77 1.71 1.45 3.25 2.76

JINGHE 1.46 1.16 1.26 0.99 1.59 1.34 1.90 1.46

Season

Spring 1.53 1.23 1.13 0.89 1.35 1.13 3.07 2.42
Summer 1.48 1.17 1.20 0.90 2.09 1.81 2.38 1.84
Autumn 1.40 1.12 1.16 0.95 1.17 0.96 2.93 2.39
Winter 1.56 1.16 1.69 1.40 1.58 1.31 2.16 1.81

-*: The MODISTN data measured by the FENGXIANG station have been eliminated in the preprocesses due to the
negative data quality.

6. Conclusions

In this study, three machine-learning models based on SVR, MLBPN, and RF werte
established to retrieve the NSAT from various multispectral satellite images in terms of
MODIS daytime and nighttime data from 2010 to 2021, Landsat 8 data from 2013 to 2021,
and Sentinel-2 data from 2018 to 2021. As well as the satellite images, the geospatial param-
eters, together with the time parameters, were also considered to enhance the accuracy of
the NSAT retrieval.

The conducted experiments demonstrated that the RF-based model has better NSAT
retrieval performance than the SVR- and MLBPN-based models with respect to both the ac-
curacy and stability. With the MODISTD data, the RF-based model revealed a retrieval result
with R2, RMSE, MAE, and ME equal to 0.9697, 1.48 ◦C, 1.17 ◦C, and 0.05 ◦C, respectively,
where the RMSE and MAE are smaller than the NSAT retrieval model based on either SVR
or MLBPN. With the MODISTN data, the RF-based model revealed a retrieval result with R2,
RMSE, MAE, and ME equal to 0.9820, 1.21 ◦C, 0.95 ◦C, and −0.01 ◦C, respectively, where
the R2 is larger and the RMSE, MAE, and ME are smaller than the SVR- and MLBPN-based
models. With the Landsat 8 data, the RF-based model revealed a retrieval result with R2,
RMSE, MAE, and ME equal to 0.9763, 1.54 ◦C, 1.27 ◦C, and 0.05 ◦C, respectively, where
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R2 is larger and the RMSE and MAE are smaller than the other two models. With the
Sentinel-2 data, the NSAT result retrieved by the RF-based model has the largest R2 and
the smallest RMSE and MAE. Moreover, several samples were randomly selected for more
precise qualitative analysis, and the results also proved that the proposed RF-based model
revealed the best NSAT retrieval performance.

Meanwhile, in the conducted experiments, as depicted in Tables 2 and 7, the NSAT
results retrieved from the MODIS data are generally better than those from Landsat 8 and
Sentinel-2 data. Employing the MODISTN data, for instance, the R2 reaches 0.9820 and the
RMSE and MAE are only slightly larger than 1.0 ◦C. In addition, it was also found that
the RF model does not show significant pattern differences for the NSAT retrievals, which
indicates that this model is stable and can thereby be widely utilized.

To sum up, the proposed RF-based model, together with the MODIS data, has the best
NSAT retrieval results, which provides a reference for practical applications relevant to
NSAT retrievals. Taking advantage of its high accuracy and stability, the RF-based model
has the potential to be widely utilized in various applications concerning climate research
and environmental studies. For example, the retrieved NSAT results can not only help to
select the optimal location for the new meteorological ground stations to be constructed,
but can also provide necessitated data for the correlation analysis between the NSAT and
topographic changes, population distribution, land use, and climatic conditions, etc.

There are only four qualified CMA-NOAA stations located in the study area, which
restricted the amount of sample data for model training and validation. In further research,
the data from more CMA-NOAA stations could be involved to enhance the accuracy and/or
the generic nature of the established NSAT retrieval models. In addition, although most of
the clouds were removed through the quality control products in the data preprocessing,
the remaining clouds still affected the retrieval accuracy. In the future, different algorithms
need to be investigated to overcome the influence of clouds.
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