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Abstract: Accurate extreme precipitation information is crucial for disaster risk management, social
and economic development security, and climate change research. Taking the Yangtze River Delta
(YRD), China, a high-impact area of extreme precipitation, as an example, this study evaluates the spa-
tiotemporal performance of extreme precipitation in the latest fifth-generation reanalysis dataset from
the European Centre for Medium-Range Weather Forecasts (i.e., ECMWEF ERAS5) for 1961-2018 based
on surface observational precipitation data. The results showed that the 90th-percentile threshold of
extreme precipitation extracted from ERA5 data with a daily precipitation amount >1 mm is closer to
the actual observations. The ERA5 data can effectively capture the spatiotemporal patterns of the
observed extreme precipitation in the YRD. The ERAS5 data can successfully represent the seasonal
cycle and interannual variability of daily, daytime, and nighttime extreme precipitation. However,
the daytime (nighttime) extreme precipitation frequencies and amounts tend to be overestimated
(underestimated) for the period 1961-2000, whereas they were significantly underestimated for the
period 2000-2018. The trend estimation of seasonal and annual extreme precipitation in ERA5 needs
to be improved. The ERAS data revealed that the extreme precipitation in the YRD was dominated
by large-scale precipitation, followed by convective precipitation, but their long-term trends were not
clear. This study has conducted a detailed and reliable evaluation of the ERA5 extreme precipitation
data. The findings serve as valuable guidance and provide accurate references to extreme climatic
variables for data users and algorithm developers.

Keywords: climate change; extreme precipitation; convective precipitation; large-scale precipitation;
Yangtze River Delta; China

1. Introduction

The Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC
ARG6) has reported that the global surface mean temperature in the first two decades of the
21st century (2001-2020) has increased by 0.99 (0.84-1.10) °C compared to 1850-1900 [1]. A
warming temperature generally holds more moisture and intensifies the hydrological cycle,
which can increase regional and even global mean precipitation as well as extreme precipi-
tation [2—4]. Precipitation extremes are expected to increase under global warming [4-7],
which can cause severe impacts on ecosystems, social property, and human health [8-10].
For example, a rare record-breaking extreme precipitation event occurred in Henan, China,
in July 2021 [11], and the summer extreme rainfall in 2020 along the Yangtze River Basin
was the heaviest since 1961 [8], both events of which caused tremendous disaster to humans
and triggered devastating socioeconomic impacts. In 2013 /2014, winter storms hit southern
England, causing severe floods and costing GBP 451 million in insured losses [12]. Thus,
extreme precipitation events have received wide research attention from weather—climate
scientific communities, the insurance industry, and the financial sector in recent years due
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to their serious adverse effects and great dangers [1,13-16]. These effects are especially
severe in densely populated and economically developed regions, such as the Yangtze
River Delta (YRD), China, which is a high-impact region of extreme precipitation [17,18].

Accurate identification of extreme precipitation from reliable precipitation data is
of great importance for climate model extreme-value verification and calibration, ur-
ban disaster risk management, water resource management, and agricultural produc-
tion safety [19-23]. Currently, precipitation data are provided by surface meteorological
stations [24], remote sensing satellite observations [25], and climate reanalysis data [26].
Although surface observational data have better accuracy, they are often restricted by
uneven spatial distribution and a limited number of meteorological stations [24,27]. Com-
pared with ground observations, satellite-based precipitation data can compensate for
the lack of spatial continuity and have relatively higher temporal resolutions [25,28], but
they still have some shortcomings, e.g., short temporal coverage [25] and lack of other
vertical atmospheric variables, which are crucial to understanding the physical processes
of precipitation [26,29]. Reanalysis data are generally produced by blending surface ob-
servational datasets and forecasts from numerical simulation prediction systems across
the world [30]. These products typically contain different atmospheric variables at various
vertical pressure levels and provide a long-term estimate of climate variables, widely used
in climate change sciences [30-32].

Currently, widely used reanalysis data include the Japanese 55-year Reanalysis (JRA-
55) data released by the Japan Meteorological Agency [33]; Modern-Era Retrospective
analysis for Research and Application, Version 2 (MERRA-2) [34]; global reanalysis prod-
ucts (NCEP-DOE Reanalysis II and NCEP-NCAR Reanalysis I) from the National Cen-
ters for Environmental Prediction and the National Center for Atmospheric Research
(NCEP/NCAR) [35]; and the fifth generation of the global climate reanalysis product
(ERAS5), released by the European Centre for Medium-Range Weather Forecasts
(ECMWEF) [36]. Among these reanalysis datasets, ERA5 has been recognized as the best or
nearly the best in depicting climate change [1,37-40]. The ERA5 dataset is also considered
a valuable resource for scientists in the fields of climate change and hydrological modeling
and beyond [41].

Due to the wide use of ERA5 reanalysis data, there have been many studies on
the performance evaluation of the ERA5 reanalysis data in precipitation. For example,
Jiang et al. [26] evaluated the accuracy of ERAS for estimating precipitation based on gauge
precipitation data over China Mainland during 2003-2015, and they found that ERA5
tended to overestimate (underestimate) light (moderate and heavy) precipitation events.
Jiao et al. [41] pointed out that ERA5 data can well reproduce the annual and seasonal
patterns of observational precipitation in China and eastern China, showing a higher
correlation between ERA5 and observations during 1979-2018. Previous studies have
mainly focused on the assessment of daily precipitation, but the systematic assessment of
daily extreme precipitation in ERA5 against surface observations is still rare, especially
with a long-term time series [19,41]. Moreover, precipitation has different mechanisms
during daytime and nighttime because of the diurnal variations in relative humidity, solar
radiation, and type of clouds with dominant precipitation [25,42]. Due to differences in
emergency management measures, the risk of extreme precipitation might vary during
daytime and nighttime. Thus, it is important to study extreme precipitation during daytime
and nighttime. Assessment of precipitation variations during daytime and nighttime is of
great importance for understanding the physical mechanisms of precipitation. At present,
there is a lack of systematic evaluation of the ERA5 data in extreme precipitation, especially
in the YRD, a densely populated and economically developed area. Hence, in this study,
the ability of the ERA5 dataset is evaluated in terms of its performance in reproducing
daily, daytime, and nighttime extreme precipitation events in the YRD. The assessment of
precipitation extremes is relevant for flood risk assessment and management [19], which
allows scientific emergency management measures to be taken in a timely manner and
improves the level of urban resilience construction [43].
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Total precipitation in the ERAS5 reanalysis data consists of convective and large-
scale precipitation [37]. Convective/large-scale precipitation is generated by the con-
vective/cloud scheme in the ECMWF Integrated Forecasting System. The convective
scheme refers to convection motion at a spatial scale smaller than the grid point. The
cloud scheme refers to the formation and dissipation of clouds and large-scale precipita-
tion caused by changes in atmospheric quantities at a spatial scale of the grid point or
larger. Convective precipitation is characterized by short-duration, intense, localized, and
sometimes violent precipitation, and large-scale precipitation is characterized by sustained,
steady precipitation and is associated with large-scale atmospheric forces [44,45]. These
two types of precipitation make a remarkable contribution to extreme precipitation. How-
ever, current methods for measuring convective and large-scale precipitation are more
challenging, mainly through manual and satellite observations [44]. The ERA5 dataset
provides convective and large-scale precipitation information with a high spatial and tem-
poral resolution, which is an important contribution to understanding the composition
of extreme precipitation [36]. Daily convective and large-scale precipitation character-
istics have been widely investigated in previous studies, but these studies have mainly
adopted manual observations or synoptic scale satellite observations with a short study
period [44—46]. Therefore, this study also explores the characteristics of convective and
large-scale precipitation during extreme precipitation events in the YRD region using ERA5
data with extended time series.

This study is organized as follows: Section 2 represents the materials and methods.
Section 3 evaluates the daily and sub-daily precipitation in the ERA5 data against surface
observation in terms of quantifying the precipitation frequency, amount, and intensity
during daily, daytime, and nighttime at different temporal scales and investigates the
spatiotemporal convective and large-scale characteristics that contribute to extreme precipi-
tation. Sections 4 and 5 cover the discussion and conclusions, respectively.

2. Materials and Methods
2.1. Study Area

The YRD region is located between 115-123° E and 27-35° N in eastern China and
consists of the Shanghai municipality as well as Zhejiang, Jiangsu, and Anhui provinces
(Figure 1). The YRD has an area of 3.58 x 10° km?, accounting for ~3.7% of China’s
land area, and has 227 million permanent residents, accounting for 16% of China’s total
population [47]. The YRD is one of the regions with the highest population density, most
active economic development, and highest degree of openness in China [48]. The YRD
region has an annual total precipitation of 1000-1600 mm and an annual mean temperature
of 14-18 °C and is prone to the East Asian summer monsoon [49]. Any anomalous variation
in precipitation, especially extreme precipitation, might cause serious threats to urban food
security, the safety of property and life, and social stability [50].
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Figure 1. Locations of 185 meteorological stations and 549 ERA5 grid points in the YRD.
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2.2. Datasets
Two types of datasets were used in this study:

(1) The surface observational sub-daily precipitation dataset was derived from the Na-
tional Meteorological Information Center of the China Meteorological Administration,
spanning 1961-2018. The dataset provides accumulated precipitation records ev-
ery 12 h, i.e., 8:00 and 20:00 Beijing Time (BT). Daytime denotes 8:00 to 20:00 BT,
whereas nighttime denotes 20:00 of the last day to 8:00 of the current day. This dataset
was released after strict quality control and homogeneity tests and is available from
http://data.cma.cn/ (accessed on 19 July 2022). Considering the reliability and in-
tegrity of the data, the stations with >3% of all daily or sub-daily values missing
during the study period were removed. Missing values for stations (<3% missing data)
were replaced by values of adjacent stations [51]. Ultimately, 185 surface observational
stations were used to evaluate the reanalysis data (Figure 1).

(2) The ERAS5, with a 0.25° spatial resolution and a 1-h temporal resolution, is the fifth-
generation reanalysis dataset of the European Centre for Medium-Range Weather
Forecasts, which includes detailed hydrometeorological reanalysis data for two time
periods (1950-1978 and 1978—present) [37]. The ERAS has relatively smaller errors than
the previous version ERA-Interim when compared to observations [41]. This reanaly-
sis product has been widely used in hydrometeorological studies [26,52,53]. It is avail-
able from https:/ /www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
(accessed on 19 July 2022).

To eliminate evaluation errors between the ERA5 and surface observations caused by
different time zones, the time of the ERA5 precipitation dataset was converted from UTC to
BT. Therefore, nighttime in ERA5 represents 12:00-24:00 UTC (corresponding to 20:00-08:00
BT) and daytime in ERA5 represents 0:00-12:00 UTC (corresponding to 08:00-20:00 BT).
The time-zone-adjusted ERAS precipitation time series has effectively improved evaluation
accuracy compared with surface observations, and the errors were mainly from nighttime
(Figure S1).

2.3. Statistical Analysis
2.3.1. Evaluation Metrics

New errors introduced by interpolation were avoided by using a comparison of the
meteorological stations and their corresponding ERA5 grid points, a method that has also
been used in previous studies [25,54]. Five statistical evaluation metrics were used in
this study to compare the spatiotemporal performance of ERA5 (extreme) precipitation
data against surface observation, including correlation coefficient (CC), mean bias (Bias),
relative bias (RB), root-mean-square error (RMSE), and the distance between the indices of
simulation and observations (DISO). These metrics were expressed as
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NRMSE = RMSE /O, (7)

where S; and O; represent the simulations (ERA5 data) and surface observations at each
time step i, respectively; 1 is the number of time steps; S and O are the mean values of
simulations and observations, respectively; NB is the ratio of Bias to O; and NRMSE is the
ratio of RMSE to O. CC, Bias, RB, and RMSE indicate the linear correlation, size of deviation,
systematic deviation, and overall level of error between the simulations and observations,
respectively. DISO is a more comprehensive index that combines CC, Bias, and RMSE
according to the distance between the simulations and observations. The values of CC
range from —1 to 1, with 1 (—1) indicating a completely positive (negative) correlation and
0 indicating no correlation. Positive (negative) values of Bias and RB denote overestimation
(underestimation). The closer Bias, RB, RMSE, and DISO are to zero, the smaller the errors
in the simulations and observations. Note that DISO is invalid when O equals 0.

2.3.2. Trend Calculation

Linear regression was employed in this study to analyze the long-term trends in
extreme precipitation frequency, amount, and intensity [55,56]. The formula was

yi=axi+b+e(i=1,2,3,...,n). (8)

where y represents the variables (i.e., extreme precipitation frequency, amount, and inten-
sity), x the time, 1 the sample size, a the trend, and b the regression constant. A two-tailed
Student’s t-test was applied to determine the trend significance.

2.4. Definition of Extreme Precipitation

Extreme precipitation events are defined as the daily (sub-daily) precipitation amount
exceeding the 90th-percentile threshold during wet days based on the local daily (sub-daily)
climatology [19,57]. Meteorological stations only record precipitation events with a daily
precipitation amount >0.1 mm. However, a large number of trace values (0.1 to 1 mm/day)
exist in the daily (sub-daily) precipitation data of the ERA5 that are generally not recorded
in surface observations. This result was consistent with the findings of Jiang et al. [26],
who pointed out that ERAS significantly overestimated light precipitation events in China.
These trace values of ERAS precipitation can cause the extracted 90th-percentile threshold
to be substantially smaller than surface observations, which can further contribute to the
overestimation of extreme precipitation as more precipitation events could exceed the
threshold. Thus, the 90th-percentile threshold of ERA5 precipitation with a daily amount
>1 mm was extracted to reduce the influence of these trace values. The adjusted threshold
was very close to that of surface observational stations, while the unadjusted threshold was
clearly lower, indicating that the threshold extraction of precipitation with a daily amount
of >1 mm in the ERAS5 data can capture extreme precipitation more accurately (Table 1).
Subsequent studies have used the adjusted threshold to extract extreme precipitation events.

Table 1. The 90th-percentile threshold for surface observational stations and the adjusted and
unadjusted threshold for station-corresponding ERA5 grid points.

Threshold Time Scale
Daily Daytime Nighttime
Threshold for observation 24.37 mm 18.17 mm 16.17 mm
Adjusted threshold for ERA5 24.75 mm 16.95 mm 17.97 mm
Unadjusted threshold for ERA5 19.33 mm 12.56 mm 13.57 mm

Note: Adjusted and unadjusted thresholds represent the threshold extracted using daily ERAS5 precipitation
amounts of >1 and 0.1 mm, respectively.
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Three extreme precipitation properties, i.e., frequency, amount, and intensity, were
analyzed in the current study. Extreme precipitation frequency is the number of days (sub-
days) of the extreme precipitation events in a given time step. Extreme precipitation amount
is the cumulative precipitation of all extreme precipitation events. Extreme precipitation
intensity refers to the ratio of extreme precipitation amount and the days. Previous studies
have provided similar interpretations of the extreme precipitation frequency, intensity, and
amount [25,30].

3. Results
3.1. Overall Evaluation of ERA5 Precipitation Data

The general performance of ERA5 precipitation data was first evaluated before evalu-
ating the accuracy of the ERA5 extreme precipitation. The daily, daytime, and nighttime CC,
Bias, RB, RMSE, and DISO for all-day and all-month precipitation from the observational
stations and their corresponding ERA5 grid points were examined for the period 1961-2018
(Figure 2). At the daily scale, the ERA5 precipitation reasonably captured the characteristics
of the observed values, with higher CC (0.943), lower RB (overestimated by 13.54%), lower
Bias (0.46 mm), lower RMSE (1.95 mm), and lower DISO (0.592) values (Figure 2a). The day-
time (nighttime) ERAS precipitation was similar to daily precipitation, showing relatively
high accuracy, with the corresponding CC, Bias, RB, RMSE, and DISO values of 0.928 (0.923),
0.35 (0.10) mm, 19.77% (5.9%), 1.26 (1.19) mm, and 0.739 (0.695) (Figure 2c,e). Notably, on
the all-day scale, the simulation effect of ERA5 precipitation during nighttime in ERA5 was
better than during daytime. Compared with all-day precipitation, the ERA5 precipitation
accuracy was significantly improved on the all-month scale (Figure 2b,d,f). Monthly total
precipitation from ERA5 and observation data was more highly correlated (CC = 0.966)
than that of daily precipitation (Figure 2b). On the all-month scale, nighttime precipitation
showed lower RB (5.9%), Bias (3.13 mm), RMSE (11.08 mm), and DISO (0.238) than those
during daytime (Figure 2d,f). In short, the ERAS5 precipitation data at the all-day and
all-month scales exhibited good performance and reproducibility compared with surface
observational stations.

The evaluation of ERAS5 extreme precipitation is shown in Figure 3. Consistent with
total precipitation, the ERA5 extreme precipitation also captured the observed extreme
precipitation characteristics well. For instance, the ERA5 extreme precipitation data showed
high consistency with observations on the daily scale, with higher CC (0.895), lower RB
(overestimated by 10.51%), lower Bias (0.17 mm), lower RMSE (2.07 mm), and lower DISO
(1.251) values (Figure 3a). The daytime (nighttime) ERA5 extreme precipitation was similar
to daily extreme precipitation, showing a relatively high accuracy, with the corresponding
CC, Bias, RB, RMSE, and DISO values of 0.865 (0.871), 0.14 (—0.03) mm, 16.87% (—3.84%),
1.29 (1.20) mm, and 1.542 (1.388), respectively (Figure 3c,e). Compared with all-day extreme
precipitation, ERAS5 extreme precipitation accuracy was better relative to the all-month
scale. Monthly total precipitation at the daily, daytime, and nighttime scales from ERA5
was highly correlated (CC = 0.925, 0.916, and 0.920, respectively) with observation data
(Figure 3b,d,f). In general, although the simulation effect of ERA5 total precipitation was
slightly better than the extreme precipitation, both (at the all-day and all-month scales)
exhibited good performance and reproducibility compared with observational data.



Atmosphere 2022, 13, 1416

7 of 23

Daily
ERAS (mm/day)

Daytime

ERAS (mm/day)

Nighttime

n [=a)
— =
T

e
=

[
=
T

=]

ERAS (mm/day)
[ 4
th

L7
=
T

o
—
T

(7]
=
T

o]
=
T

All days
(a) y=0991x+0.492
R?*=0.889, P<0.01
DISO=0.592 - .
21,184 match'points 57 . .
R
R X AR
e #7". RB=13.54%
BT CC=0.943
AT Bias = 0.46 mm
: RN RMSE =1.95 mm
0 10 20 30 40 50 60
Observed (mm/day)
| (c) y=0.991x+0.370
R2=0.860, P < 0.01
DISO=0.739
121,184 match points -
% RB=19.77%
Y . CC=0.928
" Bias=0.35mm |
RMSE=1.26 mm
0 10 20 30 40
Observed (mm/day)
| (e) y=0.912x+0.254
R2=0.853, P<0.01 -
DISO =0.695
21,184 match points
7 RB=5.90%
CC=0.923
Bias =0.10 mm
g RMSE=1.19 mm
0 10 20 30 40

Observed (mm/day)

ERAS (mm/month) ERAS5 (mm/month)

ERAS (mm/month)
2

All months

(b) y=1.135x+0.518
R?=0.933, P<0.01
DISO=0.297 -

| 696 match poings

(d) y=1.181x+1.580
R?=0.931, P < 0.01

)
wi#te " RB=13.54%
v CC=0.966
Bias=14.16 mm
RMSE =26.12 mm
0 100 200 300 400 500
Observed (mm/month)

DISO=0.402.. ./~
| 696 match poirits /"
W RB=19.77%
25 CC=0.965
Bias = 10.89 mm
RMSE = 17.44 mm
0 50 100 150 200
Observed (mm/month)

250

() y=1.057x+0.292
R2=0.905, P < 0.01

Observed (mm/month)

DISO=0.238
| 696 match points
oy RB=5.90%
- A0 CC=0.951
‘ Bias=3.13 mm
‘ ‘ RMISE =1 1:08 mm
0 50 100 150 200 250

Figure 2. Scatterplot of daily (a,b), daytime (c,d), and nighttime (e f) precipitation from surface

observational stations and their corresponding ERA5 grid points in the YRD for the period 1961-

2018. The left (right) column represents all-day (all-month) values, and solid red lines denote linear

regression lines. The 21,184 and 696 matching points on the all-day and all-month scales represent

the temporal comparisons over 21 and 184 days and 696 months, respectively.

In addition to the comparisons of regional averages, we also compared monthly and
yearly precipitation and extreme precipitation for each station and its corresponding grid
point for each month and year, respectively (Figures S2 and S3). The results show that
ERADS can roughly reflect precipitation and extreme precipitation in the YRD at the monthly

and annual scales.
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Figure 3. Scatterplot of daily (a,b), daytime (c,d), and nighttime (e f) extreme precipitation from
surface observational stations and their corresponding ERA5 grid points in the YRD for the period
1961-2018. The left (right) column represents all-day (all-month) values, and solid red lines denote
linear regression lines. The 21,184 and 696 matching points on the all-day and all-month scales
represent the temporal comparisons over 21 and 184 days and 696 months, respectively.

3.2. Climatological Patterns in Annual Total Extreme Precipitation

The spatial distribution of the annual mean extreme precipitation frequency and
amount in the YRD for the period 1961-2018 were investigated in observational and ERA5
data (Figure 4). As shown in Figure 4a, the annual extreme precipitation frequency in the
observational data displayed an evident south-north gradient, with high values in the
south (>16 days) and low values in the north (<10 days). The western parts of the study
area (mountainous region) also showed relatively high values (14-16 days). The spatial
distribution of extreme precipitation frequency had not only a zonal differentiation but also
appeared to have a high elevation dependence. Similar spatial patterns were found in the
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ERADJ data (Figure 4b). The spatial distribution of the annual mean extreme precipitation
amount in the observational data also had a clear south-north gradient, decreasing from
>720 mm in the south to <520 mm in the north (Figure 4c). The areas with high values of
extreme precipitation were mainly distributed in the southern and southwestern edge of
the YRD region. Similar spatial characteristics of extreme precipitation amounts were also
found in the ERA5 data, but the specific values were slightly smaller than the observational
data (Figure 4d).
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Figure 4. Spatial distribution of annual mean extreme precipitation days (a,b) and amount (c,d) in
the YRD for the period 1961-2018.

3.3. Seasonal Cycles of Daily/Sub-Daily Extreme Precipitation

ERADS reanalysis data can reasonably represent the seasonal shape of the extreme
precipitation frequency, amount, and intensity at the daily, daytime, and nighttime scales
(Figure 5). For extreme precipitation frequency at the daily scale, the ERA5 roughly re-
produced the seasonal shape of observations, with a higher CC of 0.96. However, ERA5
data significantly overestimated extreme precipitation frequency in June (Figure 5a). A
similar characteristic of extreme precipitation frequency was also found at the daytime
scale (Figure 5b). ERAS slightly overestimated the nighttime extreme precipitation fre-
quency from May to July and underestimated the rest of the months (Figure 5c). ERA5 can
generally represent the seasonal shape of the extreme precipitation amount at the daily,
daytime, and nighttime scales (CC > 0.95), performing especially well from January to June
but with an underestimation from July to December (Figure 5d—f). Extreme precipitation
intensity was the result of dividing the extreme precipitation amount by frequency. There-
fore, due to the characteristics mentioned above, extreme precipitation intensity showed
good performance from January to May, whereas it was underestimated from June to
December (Figure 5g—-i). Overall, ERA5 can well reproduce the seasonal cycles of extreme
precipitation characteristics.



Atmosphere 2022, 13, 1416

10 of 23

Frequency Amount Intensity
200

- @ =m © =

2

4
(a)

=c

n

m
=
&
n

n

50

CC=0.96 CC=0.95 CC=0.98

— R AS
2 4 6 8 1012
o =

Daily (days/month)
— o w
Daily (mm/month)
= 7
=} - -
[ =3
=
oo
=3
=3
Daily (mm/day/month)
= = B8 28 &

=N
| —

me

!

5@

o

Daytime (mm/day/month)

2 4 6 8 1012

3 100
® == @

80
60

2
1 .
0.5
CC=0.96 CC=0.95

un
=

ERAS

~

in
£y
=

(7]
=

Daytime (days/month)
i
(]
-

Daytime (mm/month)

40
20

—
=

CC=0.97

0 0 0
2 4 6 8 1012 2 4 6 8 1012 2 4 6 81012
3 100 50 —
P L =% R w2 |0 =R
£15 £ 80 Ew
=
=] =] E
£ g z
z. g 60 = 30
= g ‘é
=15 -
D o E
£ . g 40 T 20
05 = 20 -En 10
CC=0.97 CC=0.96 F4 CC=0.97
0 0
2 4 6 8 1012 2 4 6 8 1012 0 2 4 6 8 1012
Month Month Month

Figure 5. Seasonal cycles of extreme precipitation frequency (a—c), amount (d—f), and intensity (g—i) in
observations (OBS, red) and their corresponding ERA5 grid points (blue) at the daily, daytime, and
nighttime scales (top, middle, and bottom rows, respectively). CC denotes correlation coefficient.

3.4. Interannual Variations of Daily/Sub-Daily Extreme Precipitation

The interannual variations of extreme precipitation frequency, amount, and intensity
at the daily, daytime, and nighttime scales over the YRD for the period 1961-2018 showed
that the observation-based extreme precipitation increased significantly after the year
2000, whereas the ERA5-based extreme precipitation decreased slightly after the year 2000,
showing a divergence between the two datasets (Figure 6). Thus, the whole study period
was further subdivided into two periods: 1961-2000 and 2001-2018. Accordingly, the trends
for the periods 1961-2018, 1961-2000, and 2001-2018 were calculated (Table 2).

In general, ERA5 reanalysis data roughly reproduced the interannual variations in
extreme precipitation frequency and amount in the YRD during the study period with a
stronger correlation (0.66 < CC < 0.82). However, the correlation of extreme precipitation
intensity was relatively weak (0.56 < CC < 0.68). The correlations between ERA5 and
observational data in extreme precipitation frequency, amount, and intensity were found to
be higher during nighttime (0.82, 0.80, and 0.62, respectively) than during daytime (0.72,
0.62, and 0.56, respectively). This indicated that the ability of ERA5 to reproduce annual
extreme precipitation in the YRD region was better during nighttime than daytime.
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Figure 6. Time series of the annual extreme precipitation frequency (a—c), amount (d—f), and intensity
(g-i) in the observational stations (red) and their corresponding ERA5 grid points (blue) reanalysis
data at the daily, daytime, and nighttime scales (left, middle, and right columns, respectively).
Table 2. Trends of annual extreme precipitation frequency, amount, and intensity from observa-
tional stations and their corresponding ERA5 grid points, respectively, at the daily, daytime, and
nighttime scales.
. . Amount Intensity
T 1 P F Days/Decad
ime Scale eriod requency (Days/Decade) (mm/Decade) mm/Day/Decade
OBS ERA5 OBS ERA5 OBS ERA5
1961-2018 0.41 ** —0.09 24.69 *** —2.14 0.49 *** 0.16
Daily 1961-2000 0.49 * 0.92 ** 27.76* 43.64 ** 0.46 0.40
2001-2018 2.34 ** 0.85 127.37 *** 49.20 1.31 1.20
1961-2018 0.30 ** —0.12 12.82 *** —3.49 0.29 *** —0.01
Daytime 1961-2000 0.40* 0.71 ** 14.40 * 21.86 ** 0.11 0.20
2001-2018 1.65 ** 0.51 70.71 *** 18.45 1.40 ** 0.52
1961-2018 0.28 ** 0.04 10.98 ** 2.02 0.24* 0.14
Nighttime 1961-2000 0.29 0.57 ** 11.16 19.13 ** 0.24 0.28
2001-2018 1.75** 0.84 55.61 ** 25.82 —0.12 0.14

Note: *, **, and *** represent significance at 0.1, 0.05, and 0.01 level, respectively.

Annual extreme precipitation frequency at the daily scale was slightly underestimated
by ERAS reanalysis data, with Bias at —0.40 days and RB at —3.06% (Figure 6a). It is worth
noting that the time series of the regionally averaged annual total extreme precipitation
frequency at the daily scale from ERA5 and observational data were more consistent for
the period 1961-2000, whereas ERA5 tended to be significantly underestimated for the
period 2001-2018. There were diurnal differences in the estimation of the ERA5 extreme
precipitation frequency. For instance, ERA5 overestimated daytime extreme precipitation
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frequency for the period 1961-2000 and slightly underestimated the frequency for the
period 2001-2018. On the whole, this showed an overestimation, with Bias at 0.61 days
and an RB of 6.67% (Figure 6b). During the nighttime, ERA5 tended to underestimate the
extreme precipitation frequency for all study periods, with Bias at —1.98 days and RB at
—20.24% (Figure 6¢). The temporal characteristics of the extreme precipitation amount
were similar to the extreme precipitation frequency, but the extreme precipitation amount
in ERAb at daily, daytime, and nighttime scales showed underestimations, with Bias at
—70.42, —40.50, and —82.38 mm and RB at —11.59%, —13.14%, and —25.91%, respectively,
among which the amount during nighttime was most clearly underestimated (Figure 6d-f).
Notably, the extreme precipitation amount in ERA5 was underestimated significantly
after 2001. Compared with observations, the extreme precipitation intensity in ERA5 was
underestimated at the daily, daytime, and nighttime scales (Figure 6g-i); this was related to
the extreme precipitation amount and frequency.

The interannual variation trends in extreme precipitation were further calculated for
different periods based on the ERA5 and observational data (Table 2). The observed daily,
daytime, and nighttime extreme precipitation frequency increased significantly at the rates
of 0.41, 0.30, and 0.28 days/decade during the period 1961-2018, whereas no statistically sig-
nificant interannual trends during the same period were observed in ERA5. The observed
daily, daytime, and nighttime extreme precipitation frequency increased more significantly
at the rates of 2.34, 1.65, and 1.75 days/decade (p < 0.05) during the period 20012018,
respectively, whereas the ERA5 daily, daytime, and nighttime extreme precipitation fre-
quency increased significantly at the rates of 0.92, 0.71, and 0.57 days/decade (p < 0.05),
respectively, only during the period 1961-2000. Similar temporal characteristics were found
in the extreme precipitation amount. During the period 1961-2018, the observed daily,
daytime, and nighttime extreme precipitation amount increased significantly (24.69, 12.82,
and 10.98 mm/decade, respectively), and it increased even more rapidly during the period
2001-2018 (127.37, 70.71, and 55.61 mm/decade, respectively). However, the daily, day-
time, and nighttime extreme precipitation amount in ERA5 showed statistically significant
increasing trends only for 1961-2000 (43.64, 21.86, and 19.13 mm/decade, respectively). For
extreme precipitation intensity, increasing trends in daily, daytime, and nighttime extreme
precipitation intensity during the period 1961-2018 were found only in the observational
data as well as in the daytime during the period 2001-2018.

Some slight differences in the seasonal trend patterns were also found (Figures 54-57,
Tables 51-54). For example, ERA5 showed a weak decreasing trend in extreme precipita-
tion frequency (amount) in spring at the rate of —0.16 days/decade (—6.72 mm/decade)
for the period 1961-2018, whereas no evident trends were found in observational data
for the same period. Observational data showed an increasing trend in the extreme pre-
cipitation amount (intensity) at the rate of 20.76 mm/decade (1.60 mm/day/decade) for
the period 20012018, whereas no evident trends were found in ERA5 during the same
period (Figure S4, Table S1). The trend in summer was similar to those on the annual
scale because extreme precipitation in summer dominated the whole year’s precipitation
(Figure S5, Table S2). In autumn, observed daily, daytime, and nighttime extreme pre-
cipitation frequency (amount) increased at the rates of 1.24, 0.78, and 0.98 days/decade
(58.51, 28.22, and 30.55 mm/decade), respectively, for the period 2001-2018. However, the
extreme precipitation frequency and amount increased during the period 1961-2018 in
winter (Figures S6 and S7, Tables S3 and 54). In summary, ERA5 generally reproduced the
time series of the extreme precipitation in the YRD, but the estimation of interannual and
seasonal trends remains to be improved.

3.5. Spatial Patterns of Extreme Precipitation Evaluation

The spatial distribution of the CC, Bias, and RMSE of the monthly extreme precipitation
amount between the ERAS reanalysis data and observational data in the YRD for the period
1961-2018 was examined (Figure 7). In general, the monthly extreme precipitation amount
in ERAS displayed a higher correlation with observations at the daily scale (Figure 7a),
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with higher CC in the north (>0.70) and relatively lower CC in the south (0.50 < CC < 0.70).
This indicated that ERA5 extreme precipitation in the central and north parts of the YRD
better reproduced the monthly extreme precipitation characteristics. Similarly, daytime and
nighttime extreme precipitation amounts also had higher CC in the north and lower CC
in the south, but their values were lower than those on the daily scale (Figure 7b,c). Most
station-corresponding ERA5 grid points showed negative Bias ranging from —15 to 0 mm;
however, a small number of positive Bias were located south of the study area (Figure 7d—f).
The spatial distribution of RMSE at the daily scale had a south-north gradient, with higher
values in the south (>65 mm) and lower values in the north (<50 mm), indicating the
extreme precipitation data in ERAS5 had higher accuracy and reliability in the northern part
of the YRD (Figure 7g). The numerical values of the RMSE during daytime and nighttime
were relatively lower than the daily scale (Figure 7h,i).
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Figure 7. Correlation coefficient (CC) (a—c), Bias (d—f), and RMSE (g-i) between the monthly time
series of precipitation amount data of stations and their corresponding ERA5 grid points at the daily,
daytime, and nighttime scales (left, middle, and right panels, respectively) for the period 1961-2018
in the YRD.

The spatial distribution of the CC, Bias, and RMSE of the yearly extreme precipitation
amount between the ERA5 reanalysis data and surface observations was similar to that
at the monthly scale (Figure 8). The yearly extreme precipitation amount in ERA5 had
higher CC with observations at the daily scale (Figure 8a), with higher values in the north
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(CC > 0.60) and lower values in the south (0.45 < CC < 0.50). However, daytime and
nighttime extreme precipitation amounts had a lower CC in the northern and eastern parts
of the YRD (Figure 8b,c). On the whole, CC on the annual scale was not as good as that on
the monthly scale. Most station-corresponding ERA5 grid points showed underestimation,
with Bias ranging from —100 to 0 mm and a small number of positive Bias values located in
the south of the study area (Figure 8d—f). On the annual scale, the RMSE between ERA5 and
observational data had a small overall difference, showing a weak north-south gradient
(Figure 8g—i).
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Figure 8. Correlation coefficient (CC) (a—c), Bias (d—f), and RMSE (g-i) between the yearly time
series of precipitation amount data of stations and their corresponding ERA5 grid points at the daily,
daytime, and nighttime scales (left, middle, and right panels, respectively) for the period 1961-2018
in the YRD.

3.6. Patterns of Convective/Large-Scale Precipitation during Extreme Precipitation

Based on the above-mentioned evaluation of ERA5 extreme precipitation at different
spatiotemporal scales, it was found that ERA5 generally reproduced the characteristics of
extreme precipitation in the YRD region. In ERA5, precipitation consisted of convective and
large-scale precipitation. To reveal the influence of different precipitation components on
extreme precipitation, the spatiotemporal characteristics of convective and large-scale pre-
cipitation days and the amount when extreme precipitation occurred were further analyzed
(Figures 9 and 10). Notably, convection and large-scale precipitation, when mentioned
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below, refer to convection and large-scale precipitation when an extreme precipitation
event occurs.

Daily Daytime Nighttime
z (al) (a2)
N | L L
Lar]
- 5
E -
=z . ) -
O & < <6 <6
7 w1z C6to7 C6to7
o TI121014 F 17108 [ JJ7tes -
“ J14t016 . J8t0 9 . [ 18t09
Z |mi6i01s . | (w0 . 90 10 .
g .- s Unit: days - 10 Unit: days [ -0 Unit: days [
2 [(bD) (b2) (b3)
2 | - B
Lar]
£7 _ o _
s 9
2') | < 180 [ < 80 [ < 80
oz [ 180 to 200 180 10100 180 to100
® 1200 to 220 [ 1100 t0120 [ 1100 to120 i
1220 to 240 . 1120 to140 . 1120 to 140
Z. |mm 2400260 N | [mmd0 0160 - | 140 w0160 N I
2 > 260 Unit: mm - 160 Unit: mm - 160 Unit: mm
T T T T T v v T v T T v
(2) (c3)

LSP days
26°N 28°N 30°N 32°N 34°N

<6 <6
607 6te7

I T J7tes [ T 7te8 B
C18t09 I8to9
[ 9to 10 I 9to 10

[ Tem- 10 Unit: days [ 1!>10 Unit: days [
(d2) (d3)

<120
70120 to 140
[ J140to 160

[ < 120
1120 t0 140
1140 to 160

LSP amount
26°N 28°N 30°N 32°N 34°N

(d1)

I < 250 ’

[ 250 to 300

1300 t0 350 : r
1 350 to 400 :

[ 400 to 450 i

- 450 Unit: mm [0

Figure 9. Annual mean convective/large-scale precipitation days (al-a3, ¢1-¢3) and amounts

1160 to 180 . 1160 to 180 .

[ 180 t0 200 . [ 180 to 200 .

.- 200 Unit: mm [* g . 599 Unit: mm [
T T T

(b1-b3, d1-d3) contributing to extreme precipitation at the daily, daytime, and nighttime scales.

The annual mean convective precipitation days at the daily scale showed an evi-
dent south-north gradient, decreasing from the south (>16 days) to the north (<10 days)
(Figure 9(al)). The mean convective precipitation days at daytime and nighttime scales
also exhibited similar patterns to those at the daily scale. However, their numbers of days
were slightly lower, ranging from >10 days in the south to <6 days in the northern parts of
the YRD (Figure 9(a2,a3)). It should be noted that the daytime and nighttime conditions
here could not be directly compared because the numerical values of extreme precipitation
thresholds were different. The distribution of large-scale precipitation days was almost the
same as that of convective precipitation days (Figure 9(c1-c3)) because almost every extreme
precipitation event in ERA5 included convective and large-scale precipitation processes.
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For extreme precipitation amounts, the high values of convective precipitation (>260 mm)
at the daily scale were located in the southwestern part of the study area, whereas the
low values (<200 mm) were in the north and eastern parts of the YRD (Figure 9(b1)). The
values of daytime convective precipitation were greater than those during nighttime in
the southern part of the study area (Figure 9(b2,b3)). Large-scale precipitation also had
a similar spatial distribution, with high values in the south, low values in the north, and
higher values during daytime than those during nighttime (Figure 9(d1-d3)).
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Figure 10. Time series of convective and large-scale precipitation amounts at daily (a), daytime (b),
and nighttime (c) scales for the period 1961-2018 in the YRD.

The temporal characteristics of daily, daytime, and nighttime convective and large-
scale precipitation that led to extreme precipitation were further investigated (Figure 10).
ERADS reanalysis data clearly revealed that extreme precipitation in the YRD was domi-
nated by large-scale precipitation, with convective precipitation also playing an important
role. The annual mean values of large-scale (convective) precipitation reached 235 (205),
166 (105), and 145 (89) mm at daily, daytime, and nighttime scales, respectively. The sea-
sonal variations of convective and large-scale precipitation were also explored, and it was
found that, in spring, large-scale (convective) precipitation decreased significantly (p < 0.1)
at the daily scale, with rates of —3.7 (—2.9) mm/decade, whereas the trends were not statis-
tically significant at the daytime and nighttime scales (Figure S8a—c). In summer, large-scale
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(convective) precipitation had a weak, increasing trend (p > 0.1) at daily and nighttime
scales, with rates of 3.6 (1.1) and 3.1 (0.8) mm/decade, respectively, and negative trends
during daytime at a rate of —0.1 (—0.6) mm/decade (Figure S8d-f). In autumn, convective
and large-scale precipitation mainly decreased insignificantly during the study period
(Figure S8g—i). In winter, large-scale precipitation at the daily scale decreased significantly
at a rate of 1.6 mm/decade (p < 0.05), but the trend of convective precipitation was weak
(p > 0.1), with daytime and nighttime showing insignificant trends (Figure S8j-1). On the
whole, seasonal extreme precipitation was also dominated by large-scale precipitation, but
the trends of large-scale and convective precipitation were not evident.

4. Discussion

Accurate extreme precipitation information is of great importance for urban disaster
risk management and agricultural production safety [41]. The ERA5 reanalysis dataset
is widely used in climate change sciences, providing a long-term database for extreme
precipitation research [26,41]. In this study, the YRD, a highly populated and economically
developed region in eastern China (highly susceptible to extreme precipitation), was used
as an example for evaluating the reproducibility performance of spatiotemporal patterns of
daily, daytime, and nighttime ERA5 extreme precipitation based on surface observations.

In the evaluation method between observations and ERAS5, the general method used
was to generate grid data from the meteorological stations [26,41]. However, such a
spatial interpolation approach might introduce additional errors due to the uneven spatial
distribution of stations [25,58,59]. Thus, this study directly compared the stations and
their corresponding ERA5 grid points to avoid introducing new errors. This approach has
also been used in previous studies [25,53,54]. It should be noted that, to date, there has
been no unified comparison method, which is also one of the sources of uncertainty in
evaluating results.

In this study, the conversion from UTC to local time was used for evaluation, which
effectively improved the evaluation accuracy (Figure S1); however, many evaluation studies
have ignored this point [19,26,41]. It should be noted that long timescale data can be
evaluated directly using UTC time zones (with negligible error), while short timescale data,
such as the daily scale or synoptic scale, should be evaluated by converting time zones to
local time [16,30].

Meteorological stations only record precipitation events with daily precipitation
amounts >0.1 mm. However, there are a large number of daily trace precipitation val-
ues (0-1 mm) in ERAS that are not recorded by meteorological stations. This results in a
significant overestimation of light precipitation events in ERA5, which is consistent with
the findings of a recent study [26]. The percentile extreme precipitation threshold has
been extracted by ranking all wet-day precipitation values during the study period from
smallest to largest, with the values at the 90th-percentile being the 90th-percentile extreme
precipitation threshold and any precipitation value above this threshold defined as extreme
precipitation [57]. If the wet days in ERAS5 precipitation were used directly to calculate
thresholds, the presence of trace values would lead to a low threshold, resulting in a sig-
nificant overestimation of extreme precipitation [53]. Therefore, in this study, trace values
of wet-day precipitation in ERA5 were removed, and the corresponding mean threshold
(24.75 mm) was closer to the surface observation (24.37 mm) (Table 1), indicating that this
method was reasonable. It is suggested here that subsequent studies that use the percentile
threshold approach for studying extreme precipitation in ERA5 should use the value of
daily precipitation >1 mm.

This study systematically evaluated the spatiotemporal performance of daily, daytime,
and nighttime extreme precipitation in the ERA5 data against observational data at dif-
ferent temporal scales in the YRD for the period 1961-2018. ERA5 extreme precipitation
can generally capture the spatiotemporal patterns of the observed extreme precipitation
in the YRD; this is suitable for hydrological cycle and climate change research [2,26,41].
The present assessment results show that ERAS better reflects the spatial characteristics
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of the climatology of extreme precipitation in the YRD (Figure 4). Extreme precipitation
in the YRD had a clear spatial heterogeneity in ERA5 and observational data, with higher
values in the south and lower values in the northern parts of the study area. Notably, the
western, southern, and southwestern parts of the YRD had more extreme precipitation, cor-
responding to relatively higher elevations (Figure 1). These results indicate that, in addition
to the zonal differentiation of precipitation itself, the increased topographic elevation in
these areas may be an important reason for the occurrence of more extreme precipitation in
these mountainous and hilly areas rather than in low-lying plain areas [41]. However, the
promotion effect of topographic rise on extreme precipitation does not exist in the whole
region of China. For example, the Tibetan Plateau has a high and complex topography, and
extreme precipitation over the Tibetan Plateau is much less than that of the YRD because it
receives less moisture [26]. Considering that the YRD region is densely populated, more
attention should be paid to topographically related extreme precipitation in the southwest
of the YRD.

In general, the ERA5 can also effectively simulate the seasonal cycle characteristics of
extreme precipitation in the YRD, with CC > 0.95 (Figure 5). However, except at nighttime,
extreme precipitation at the daily and daytime scales was found to be slightly overesti-
mated from April to June, while it was underestimated from July to October (the period of
concentrated extreme precipitation). This was consistent with the conclusion of a previous
study that pointed out that ERA5 can underestimate heavy precipitation [26]. In addition,
ERAS was effective at simulating the annual and seasonal variations in extreme precip-
itation. For example, the CC of the extreme precipitation frequency (amount) between
ERADS and observational data were all greater than 0.71 (0.65) at the annual and seasonal
scales, respectively. The CC during nighttime was higher than that during daytime, but
the mean and relative bias were larger during nighttime than during daytime, suggesting
that nighttime simulations performed better on the interannual variability, but in terms of
average deviation, daytime simulations performed better. Daytime ERA5 extreme precipi-
tation frequency and amount displayed overestimation (underestimation) for the period
1961-2000 (2001-2018). Nighttime ERAS5 extreme precipitation was underestimated for
all study periods. It should be pointed out that ERA5 greatly underestimated extreme
precipitation in the YRD region after the year 2001, which thus requires special attention.

The interannual variation trends of the extreme precipitation in ERA5 and observa-
tional data were different to some extent. For example, the daily ERAS5 extreme precip-
itation frequency increased more significantly at a rate of 0.92 days/decade during the
period 1961-2000, whereas the observational data increased more significantly at a rate of
2.34 days/decade during the period 2001-2018. The daily extreme precipitation frequency
in ERA5 had no statistically significant trend during the period 1961-2018, but observations
did have an increasing trend during the period 1961-2000 (Table 2). Daytime and nighttime
extreme precipitation frequencies also showed the same characteristics. Similar patterns
were also observed in extreme precipitation amounts at daily, daytime, and nighttime
scales. Thus, the trend simulation of ERA5 extreme precipitation needs to be improved. For
instance, Hu and Franzke [19] have pointed out that precipitation extremes in reanalysis
datasets are less accurate compared to temperature extremes. A previous study has also
pointed out that interannual and seasonal precipitation changes in the ERA5 reanalysis
data are not entirely in agreement with surface observational data [41], which is consistent
with the findings in this current study. This might have been because reanalysis products
generally consider observational variables (e.g., 2 m air temperature, ground pressure,
2 m relative humidity, and 10 m wind speed) to obtain more mathematically and phys-
ically meaningful climate variability for improving data quality; however, uncertainty
remains [32,41]. The ability of ERA5 reanalysis data to capture the real climate would
be affected by errors in observational systems, numerical simulations, and assimilation
schemes [41]. Accordingly, it is still difficult to completely replace observational data with
reanalysis data to reflect the real state of the atmosphere [60]. Although the trend simulation
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effect needs to be improved, ERA5, as a new generation of reanalysis data, still provides a
good data source basis for the spatiotemporal characteristics of extreme precipitation.

This study also found that the spatial distribution of convective and large-scale precipi-
tation at the occurrence of extreme precipitation was similar to that of extreme precipitation,
presenting a north—south gradient, with a high value in the south and a low value in the
north (Figure 9). At first glance, both extreme convection and large-scale precipitation
might appear to be higher during daytime than nighttime. However, it should be noted
that the thresholds used for extreme precipitation extraction were different during daytime
and nighttime, such that they could not have a direct magnitude comparison. In this study,
the extreme precipitation in the YRD was dominated by large-scale precipitation through-
out the whole study period, and the interannual and seasonal large-scale and convective
precipitation showed almost no clear change trend (Figures 10 and S8). This was slightly
different from the findings of a previous study that used a different study area, time period,
and precipitation data. They pointed out that convective/non-convective precipitation
increased/decreased rapidly over Eurasia during the period 19662000, and convective
precipitation became the dominant precipitation type by the end of the study period [44].
In their study, large-scale precipitation and convective precipitation data mainly came
from ground observations, which could not accurately divide the proportion of convective
and large-scale precipitation in extreme precipitation. Generally, extreme precipitation
was divided into independent large-scale or convective precipitation or coexistence of the
two. However, almost every extreme precipitation in the ERA5 reanalysis data accurately
showed the joint participation of the two kinds of precipitation. These led to the differ-
ence between the findings of these two studies. Other studies on large-scale convective
precipitation have mainly focused on the synoptic scale (short time scale) and could not
obtain the changing characteristics of long time series [45,61]. Extreme convection and
large-scale precipitation are very important to the study of extreme precipitation, and more
accurate multisource datasets with longer time series are urgently needed for future studies
to provide more accurate information and improve the ability of regional defenses against
extreme precipitation.

5. Conclusions

Taking the YRD region as a case study, this study synthetically and systematically
examined the ability of ERA5 extreme precipitation data to reproduce the extreme pre-
cipitation frequency, amount, and intensity at different temporal scales based on surface
observational stations for the period 1961-2018 and also explored the spatiotemporal char-
acteristics of convective and large-scale precipitation when extreme precipitation events
occur. The conclusions were summarized as follows:

(1) The threshold obtained from the 90th-percentile extraction using the daily ERA5
precipitation amount of >1 mm was very close to the threshold based on observations.
Both the ERAS total precipitation and extreme precipitation data at the all-day and
all-month scales exhibited relatively good performance and reproducibility.

(2) A spatial comparison showed that ERAS5 effectively reproduced the spatial distribution
of climatological extreme precipitation frequency and amount in the YRD region. It
also showed higher correlations of the extreme precipitation amount between the
ERADS and surface observations at the monthly scale. ERAS successfully represented
the seasonal cycle and interannual variability of daily, daytime, and nighttime extreme
precipitation. Daytime (nighttime) ERAS5 extreme precipitation frequency and amount
tended to be overestimated (underestimated) for the period 1961-2000, whereas they
were significantly underestimated for the period 2000-2018. The estimation of annual
and seasonal trends in ERA5 extreme precipitation remains to be improved.

(3) ERAbS revealed that the annual mean convective/large-scale precipitation that con-
tributes to extreme precipitation in the YRD was more in the south and less in the
north. Extreme precipitation in the YRD was dominated by large-scale precipitation,
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with convective precipitation as an important supplement; however, their multiyear
trends were not clear.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13091416/s1, Figure S1: Scatter plots of time-zone-adjusted
(a—c) and unadjusted (d-f) ERA5 precipitation against surface observations at the daily, daytime, and
nighttime scales for the period 1961-2018. The 185 meteorological stations and their corresponding
ERADS grid points were compared in this study; Figure S2. Scatterplot of daily (a,b), daytime (c,d),
and nighttime (e,f) precipitation from observational stations and their corresponding ERA5 grid
points for each station for each month or year in the YRD for the period 1961-2018. The left (right)
column represents all-month (all-year) values, and solid red lines denote linear regression lines. The
matching points at the monthly and annual scales are 128,760 and 10,730, respectively (185 stations *
696 months/station and 185 stations * 12 years/station); Figure S3. Same as Figure S2, but for extreme
precipitation; Figure S4: Time series of the spring extreme precipitation frequency (a—c), amount
(d—f), and intensity (g—i) in the observation stations (red) and their corresponding ERA5 grid-point
(blue) reanalysis data at the daily, daytime, and nighttime scales (left, middle, and right columns,
respectively); Figure S5: Same as Figure 54, but in summer; Figure S6: Same as Figure 54, but in
autumn; Figure S7: Same as Figure S4, but in winter; Figure S8: Seasonal variations of convective and
large-scale precipitation contributed to extreme precipitation at the daily, daytime, and nighttime
scales in the YRD during the period 1961-2018; Table S1: Trends of spring extreme precipitation
frequency, amount, and intensity from observation stations and their corresponding ERA5 grid
points, respectively, at the daily, daytime, and nighttime scales; Table S2: Trends of summer extreme
precipitation frequency, amount, and intensity from observation stations and their corresponding
ERAS5 grid points, respectively, at the daily, daytime, and nighttime scales; Table S3: Trends of
autumn extreme precipitation frequency, amount, and intensity from observation stations and their
corresponding ERAS grid points, respectively, at the daily, daytime, and nighttime scales; Table S4:
Trends of winter extreme precipitation frequency, amount, and intensity from observation stations
and their corresponding ERA5 grid points, respectively, at the daily, daytime, and nighttime scales.
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