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Abstract: With the rapid development of industrialization and urbanization, atmospheric pollu-
tion research is vital for regional sustainable development and related policies formulated by the
government. Previous studies have mainly studied a single evaluation method to analyze the air
quality index (AQI) or single air pollutant. This research integrated the Spearman coefficient (SC)
correlation analysis, a random search (RS) algorithm and an excellent extreme gradient boosting
(XGBoost) algorithm to evaluate the air pollution influence of industrialization and urbanization
(APIIU). Industrialization, urbanization and meteorological indicators were used to measure the
influence degree of APIIU on AQI and particulate matter 2.5 (PM2.5), respectively. The main findings
were: (1) the APIIU-AQI and APIIU-PM2.5 of Henan Province, Hubei Province and Hunan Province
had significant changes from 2017 to 2019; (2) the value of square of determination coefficient of real
value (R2), the root mean square error (RMSE) and the mean absolute percentage error (MAPE) of
APIIU-AQI and APIIU-PM2.5 in three provinces predicted by the SC-RS-XGBoost were 0.945, 0.103,
4.25% and 0.897, 0.205, 4.84%, respectively; (3) the predicted results were more accurate than using a
SC-XGBoost, RS-XGBoost, traditional XGBoost, support vector regression (SVR) and extreme learning
machine (ELM).

Keywords: air pollution; industrialization and urbanization; SC-RS-XGBoost; air quality; particulate matter

1. Introduction

Air quality has become a more significant problem with the development of industri-
alization and urbanization [1–4]. The remarkable economic growth has resulted in serious
environmental issues [5,6]. The emissions of air pollutants from industrial and motor vehi-
cles are currently the most important environmental risk to human health [7]. According to
an assessment report from the World Health Organization, urban air pollution has resulted
in more than two million deaths every year [8,9]. In the past 20 years, the European Union
has made great policy progress in atmospheric emissions and air quality. However, air
pollution continues to have a serious influence on the health of people who live in Europe’s
urban areas [10,11]. As one of the rapidly developing countries, China has experienced
rapid economy growth in the past several decades. As a result, industrial activities, urban
expansion and human engineering activities have produced a high intensity of air pol-
lutant emissions in China [12–16]. Hence, reducing air pollution is a critical measure for
environmental protection and sustainable development [17].

From 2010, China has actively implemented the Clean Air Action to deal with air
pollution, and many pollutants’ emissions have decreased since then [18]. To effectively
assess air quality and provide guidance for outdoor activities, the Chinese Ministry of
Environmental Protection (MEP) has adopted and developed an air quality index (AQI)
system in 2012 [19–21]. The existing related research works elaborately documented that
the six major air pollutants were particulate matter 2.5 (PM2.5), particulate matter 10 (PM10),
sulfur oxides (SO2), nitrogen oxides (NO2), carbon mono oxide (CO) and ozone (O3). The
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AQI converted six pollutants into a comparable and easily understandable index [22–24].
Despite improvements over several years, China, with a sizeable economic aggregate and
dense population, continues to cause air pollution. Additionally, the economic develop-
ment model with high energy consumption and low efficiency is an important factor that
leads to air pollution in China [25–28]. The MEP released the 2019 China Ecological and
Environmental Bulletin in June 2020, which reported that only 157 cities reached the air
quality standards among the 337 cities. Accordingly, a total of 1666 days of heavy pollution
and 452 days of severe pollution were reported in 337 cities during 2019. Air pollution has
caused an obviously serious impact on residents’ daily lives.

Considering the above existing problems, the prevention and prediction of air pol-
lution have become the focus of researchers all over the world. Nowadays, the related
research works have mainly focused on the precise prediction of AQI and other air pol-
lutant levels, which was important for the early air quality warning and policymakers’
work. Many AQI forecasting models have been presented in recent years, including phys-
ical models, statistical models and hybrid models. Among them, the physical methods
were more complicated and consuming too much time, and statistical models have been
proven to outperform the physical methods [29–33]. The hybrid models combined data
decomposition, feature extraction and optimization methods to improve the forecasting
performance. Munawar et al. [34] adopted a neuro-fuzzy inference system to forecast
AQI and presented a case study of Lahore city of Pakistan. Wang et al. [35] used a hybrid
forecasting model combining a two-phase decomposition technique and extreme learn-
ing machine (ELM) optimized by differential evolution (DE) algorithm to forecast AQI.
Li et al. [36] used hybrid models based on the auto regressive integrated moving average
model (ARIMA), optimized extreme learning machine (OELM) and fuzzy time series model
(FTSM) to forecast the reconstructed series in the dynamic integration forecasting module.
By employing time varying parameters to dynamically combine the forecasting results, the
accuracy was superior to other forecasting models. Phruksahiran [37] adopted an ensemble
prediction methodology and used the additional predictor variables for predicting AQI at
the hourly level, which combined the geographically weighted predictor method (GWP)
and the related machine-learning algorithms. The results showed that the hybrid model
enhanced the accuracy of AQI prediction. Despite the better accuracy of the above models
compared to the traditional prediction methods, they lacked the prediction of concentration
of a single pollutant [38–42].

With the rapid development of artificial intelligence, more accurate models have been
developed. Due to the advantages of robustness and self-adaptability, these models have
been regarded as effective and outstanding approaches for forecasting air pollutant concen-
trations. Feng et al. [43] analyzed and accurately forecasted the atmospheric pollutants in
Hangzhou using a hybrid model based on recurrent neural network (RNN) and random
forest (RF). Franceschi et al. [44] adopted a hybrid model based on artificial neural net-
works (ANN), principal component analysis (PCA) and K-means clustering to forecast the
concentrations of PM2.5 and PM10 in Bogotá, Colombia. The above model had the ability to
accurately predict air pollutants, which could be used for early warnings of high air pollu-
tion. Gao et al. [45] investigated the feasibility of using a hybrid model, which was based
on ANN and Monte Carlo simulations (MCS) with meteorological parameters to predict
the concentration of O3 in the urban area of Jinan, China. Li et al. [46] designed a novel long
short-term memory neural network (LSTM) extended model to predict air pollutant con-
centration. It considered historical air pollutant data, meteorological data and time stamp
data, which were merged into the model to enhance the accuracy. Liu et al. [47] proposed
a hybrid neural network model to forecast the concentration of PM2.5. To obtain a much
better performance and forecasting outputs, ELM with weighted regularization, whose
parameters were optimally determined by the ANN algorithm, was used. Pak et al. [48]
used a hybrid model based on convolutional neural networks (CNN) and LSTM (CNN-
LSTM) to efficiently extract the inherent features of huge air quality and meteorological
data; the model was proposed and used for predicting the concentration of O3 in Beijing
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City and exhibited a better stability and prediction performance. Zhou et al. [49] adopted
the Gaussian process mixture (GPM) model based on an iterative learning algorithm to
predict the air pollutants’ concentrations. Yu et al. [50] developed a dynamic model based
on ELM to forecast the concentrations of SO2 and NO2. Using the quantum genetic algo-
rithm (QGA) to optimize the connection weight threshold of the ELM, it contributed to
increasing the prediction performance. Middya et al. [51] found that several models, such
as the bi-directional LSTM (Bi-LSTM) and convolutional LSTM (Conv-LSTM), achieved
a high forecasting accuracy for the majority of air pollutants. Sun et al. [52] established a
new model based on the stacking-driven ensemble (SDE) and two kinds of input selection
methods to forecast the hourly concentration of PM2.5 and found that the proposed model
had a higher predicting accuracy, much better performance and more robust forecasting
ability. Ribeiro [53] used Bayesian, econometrics and machine-learning models applied
to predict the future concentration of SO2 emissions, respectively. Finally, the machine-
learning models had better generalization power than traditional methods. Although
previous research works had superiority in predicting the concentrations of air pollutants,
there were few studies of air quality based on analyzing the influence of relevant indicators
of air quality in the process of industrialization and urbanization. Rapid economic growth
and industrialization have decreased air quality in developing countries. The urbanization
scale and high population density have increased air pollutant emissions through various
human daily travel and life activities [54–58].

The above literature demonstrates the research on AQI and air pollutant concentrations
with different methods. Currently, there is no universally agreed method of constructing
an indicators system for the assessment of air pollution influence of industrialization and
urbanization (APIIU). The definition of an APIIU indicators system is variable, and it can
hold multiple dimensions and present different specificities depending on the province,
time span or assessment target variable for air pollution. This uncertainty makes it difficult
to identify consistent research methods for analysis and prediction. In this paper, consider-
ing the availability of data and the cumulative effect of development of industrialization
and urbanization, our approach was to choose annual data. Since the study area and
time span were selected from 49 cities in three provinces from 2017 to 2019, the above
data belonged to a small sample. Extreme gradient boosting (XGBoost), support vector
regression (SVR) and ELM have been proven to possess good prediction performance for
small samples in past research [59–65]. Additionally, since the construction of the indicators
system was mainly based on previous research, the Spearman coefficient (SC) was used
for analyzing the constituent indicators of APIIU of AQI and PM2.5 to select indicators
with a large correlation coefficient. When using XGBoost and SVR to predict data, internal
parameters affect the prediction accuracy. Hence, the parameters need to be optimized
to improve the performance results. XGBoost includes the general, booster and learning
task parameters. Many types and quantities of parameters needed to be optimized in this
research, and we adopted a random search (RS) algorithm to optimize the parameters
of XGBoost and SVR [66–68]. On the one hand, the algorithm was selected to consider
the efficiency of optimizing XGBoost. On the other hand, it was used for comparing the
prediction performance of RS-XGBoost and RS-SVR.

This study firstly considered the industrialization, urbanization, population, regional
gross domestic product (GDP) and meteorological indicators as the APIIU indicators. Then,
we constructed an APIIU indicators system from the aspects of economy, society and natural
environment. This research was divided into four sections. The first section introduces the
research review. The Materials and Methods section introduces the research region, data
sources, indicators system and the principle of the SC-RS-XGBoost. The Analytical Results
section introduces the determination of each indicator’s weight and calculation of APIIU,
and the final section offers a discussion, our conclusions and the limitations of this research.
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2. Materials and Methods
2.1. Data
2.1.1. Research Region

The research domain covers 49 cities composed of 18 cities in Henan Province, 17 cities
in Hubei Province and 14 cities in Hunan Province, which is shown in Figure 1. Henan
Province is located in the central part of eastern China and the middle and lower reaches of
the Yellow River. It is bounded by latitude 31◦23′–36◦22′ N and longitude 110◦21′–116◦39′ E,
with a total area of 167,000 square kilometers. Hubei Province is located in the central part
of China with a total area of 185,900 square kilometers, between latitude 29◦0′53′′–33◦03′ N
and longitude 108◦21′42′′–116◦07′50′′ E, in the middle reaches of the Yangtze River. Hunan
Province is located in the central part of China with a total area of 211,800 square kilometers,
between latitude 24◦38′–30◦08′ N and longitude 108◦47′–114◦15′ E. At the end of 2021, the
resident population of Henan Province was 98.8 million, and the regional GDP was over
CNY 58,887 billion. The resident population of Hubei Province was 58.3 million, and the
regional GDP was over CNY 50,012 billion. The resident population of Hunan Province was
66.2 million, and the regional GDP was over CNY 46,063 billion. In these three provinces,
the proportion of secondary industry is 41.3%, 37.9% and 39.4%, respectively. The related
research works showed that the economic scale and high proportion of secondary industry
had a significant impact on air quality and environmental pollution. In the 2021 census
data, the population of Henan Province, Hubei Province and Hunan Province, respectively,
ranked third, seventh and tenth in thirty-four provinces in China. The construction of
urbanization has resulted in a decrease in urban green vegetation coverage, which directly
contributed to air pollution. The higher proportion of secondary industry and the larger
population have resulted in more air pollutant emissions and AQI exceeding the standard.
Hence, it is necessary to study air quality in the three provinces. The geographic locations
of the research regions are shown in Figure 1.

Atmosphere 2022, 13, 1377 4 of 23 
 

 

and calculation of APIIU, and the final section offers a discussion, our conclusions and the 
limitations of this research. 

2. Materials and Methods 
2.1. Data 
2.1.1. Research Region 

The research domain covers 49 cities composed of 18 cities in Henan Province, 17 
cities in Hubei Province and 14 cities in Hunan Province, which is shown in Figure 1. 
Henan Province is located in the central part of eastern China and the middle and lower 
reaches of the Yellow River. It is bounded by latitude 31°23′–36°22′ N and longitude 
110°21′–116°39′ E, with a total area of 167,000 square kilometers. Hubei Province is located 
in the central part of China with a total area of 185,900 square kilometers, between latitude 
29°0′53″–33°03’ N and longitude 108°21’42″–116°07′50″ E, in the middle reaches of the 
Yangtze River. Hunan Province is located in the central part of China with a total area of 
211,800 square kilometers, between latitude 24°38′–30°08′ N and longitude 108°47′–114°15′ 
E. At the end of 2021, the resident population of Henan Province was 98.8 million, and the 
regional GDP was over CNY 58,887 billion. The resident population of Hubei Province 
was 58.3 million, and the regional GDP was over CNY 50,012 billion. The resident popu-
lation of Hunan Province was 66.2 million, and the regional GDP was over CNY 46,063 
billion. In these three provinces, the proportion of secondary industry is 41.3%, 37.9% and 
39.4%, respectively. The related research works showed that the economic scale and high 
proportion of secondary industry had a significant impact on air quality and environmen-
tal pollution. In the 2021 census data, the population of Henan Province, Hubei Province 
and Hunan Province, respectively, ranked third, seventh and tenth in thirty-four prov-
inces in China. The construction of urbanization has resulted in a decrease in urban green 
vegetation coverage, which directly contributed to air pollution. The higher proportion of 
secondary industry and the larger population have resulted in more air pollutant emis-
sions and AQI exceeding the standard. Hence, it is necessary to study air quality in the 
three provinces. The geographic locations of the research regions are shown in Figure 1. 

 
Figure 1. Regional geographic locations distribution map of APIIU research. Figure 1. Regional geographic locations distribution map of APIIU research.



Atmosphere 2022, 13, 1377 5 of 22

2.1.2. Data Sources

The data on the regional development of industrialization and urbanization used in
this study include regional GDP, the GDP of secondary industry, coal consumption, exhaust
emissions, population of city jurisdiction, total city population, city jurisdiction areas,
administrative land area, density of population and so on. Due to yearbook data generally
publishing the annual data of the previous year, the above data range was from 31 December
2018 to 31 December 2020 and was sourced from the National Statistics Administration
and the China City Statistical Yearbook (https://data.stats.gov.cn/index.html/ accessed
on 2 May 2022). The meteorological data included annual relative humidity, average
temperature, rainfall data and time length of sunshine (http://data.cma.cn/dataService/
cdcindex/datacodel/ accessed on 3 May 2022). The average annual AQI in 18 cities from
2017 to 2019 were calculated from the daily data from the air quality online monitoring
platform (https://www.aqistudy.cn/historydata/ accessed on 5 May 2022). The annual
average PM2.5 were calculated from the daily data, which were from the US Embassy’s Air
Quality Report (https://www.airnow.gov/ accessed on 5 May 2022). In this paper, by using
PyCharm 2021 in Python, Anaconda 3, SPSS Statistics 26.0 and ArcGIS 10.2, the average
annual AQI changing trend is shown in Figure 2a–c. In addition, the relevant statistical
analysis, including maximum value and standard deviation of the annual concentrations
of PM2.5 in every city in three provinces from 2017 to 2019, is shown in Tables S1–S3.
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On the whole, the annual average AQI of Henan Province, Hubei Province and Hunan
Province have slowly decreased year by year from 2017 to 2019 in some cities. However,
the AQI of some cities in Henan Province have not decreased significantly. For instance,
the annual average AQI in Zhengzhou, Anyang and Xinxiang in Henan Province have
consistently exceeded 100 in the past three years. The annual average AQI in Xiangyang
and inmen in Hubei Province have consistently exceeded 90 in the past three years. The
annual average AQI in Changsha, Yueyang, Xiangtan and Zhuzhou in Hunan Province
have consistently exceeded 70 in the past three years. Additionally, the annual average AQI
in Yiyang in Hunan Province increased year by year from 2017 to 2019. To clearly observe
the changing trend of PM2.5 in three provinces from 2017 to 2019, the annual average PM2.5
data of every city were collected and calculated. The annual average PM2.5 changing trend
is shown in Figure 3a–c.

The annual average concentrations of PM2.5 of Henan Province, Hubei Province and
Hunan Province have decreased year by year from 2017 to 2019. For Henan Province, the
past three years have witnessed the annual average concentrations of PM2.5 decrease by
more than 15% in Luoyang, Sanmenxia and Xinyang. However, other cities have consis-
tently exceeded 40 µg/m3 in 2019. For Hubei Province, Huangshi, Enshi and Shennongjia,
with relatively pleasant natural environment and low level of urbanization, had a concen-
tration less than 30 µg/m3 in 2019, which was the same as the change trend of AQI in
recent years. For Hunan Province, Zhangjiajie, Chenzhou and Xiangxi had a concentration
less than 30 µg/m3 in 2019. Among the three cities, the annual average concentration of
Zhangjiajie had dropped by more than 18% compared with 2017. Although China has
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issued related policies to protect the environment and manage air pollutant emissions in
recent years, with the development of industrialization and urbanization and the increase
in the population scale, the annual average concentrations of PM2.5 of most cities are still
more than 30 µg/m3, and even some cities have consistently exceeded 60 µg/m3 in 2019.
Hence, it is very necessary to carry out the relevant environmental research of AQI and
particulate matter, providing the government with a feasibility analysis report.
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Figure 3. The changing trend of APIIU-AQI from 2017 to 2019: (a) Henan Province: Zhengzhou—ZZ,
Kaifeng—KF, Luoyang—LY, Pingdingshan—PDS, Anyang—AY, Hebi—HB, Xinxiang—XX, Jiaozuo—JZ,
Puyang—PY, Xuchang—XC, Luohe—LH, Sanmenxia—SMX, Nanyang—NY, Shangqiu—SQ,
Xinyang—XY, Zhoukou—ZK, Zhumadian—ZMD, Jiyuan—JY; (b) Hubei Province: Wuhan—WH,
Huangshi—HS, Shiyan—SY, Yichang—YC, Xiangyang—XY, Ezhou—EZ, Jingmen—JM, Xiaogan—XG,
Jingzhou—JZ, Huanggan—HG, Xianning—XN, Suizhou—SZ, Enshi—ES, Xiantao—XT, Qianjiang—QJ,
Tianmen—TM, Shennongjia— SNJ; (c) Hunan Province: Changsha—CS, Zhuzhou—ZZ, Xiangtan—XT,
Hengyang—HY, Shaoyang—SY, Yueyang—YUY, Changde—CD, Zhangjiajie—ZJJ, Yiyang—YIY,
Chenzhou—CZ, Yongzhou—YZ, Huaihua—HH, Loudi—LD, Xiangxi—XX.

2.1.3. Indicators System

The regional assessment indicators system of APIIU constructed from the perspective
of four aspects is shown in Table 1.
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Table 1. Primary and secondary indicators.

Primary Indicators Secondary Indicators Reference Source

Industrialization indicators

X1: Regional GDP (CNY 100 million)
[1,2,4,54,57]

X2: Regional GDP of secondary industry (CNY 100 million)

X3: Proportion of secondary industry (%)

[1,2,4,54,57]

X4: Square of proportion of secondary
industry (%)

X5: Coal consumption (100 million ton)

X6: Coal consumption per land area (100 million ton/km2)

X7: Square of coal consumption
per land area

(100 million ton/km2)

X8: Exhaust emissions (ton)

X9: Density of exhaust emissions (ton/km2)

X10: Square of density of secondary industry (ton/km2)

Urbanization indicators

X11: Population of city jurisdiction (10 million people)

[1,12,33,58,68]

X12: Total city population (10 million people)
X13: Proportion of population (%)

X14: Square of proportion of population (%)

X15: City jurisdiction areas (km2)

X16: Density of population (10 million
people/km2)

X17: Square of density of population
(10 million people/km2)

X18: Per capita GDP (CNY 10,000/people)
X19: Administrative land areas (km2)

Meteorological indicators X20: Annual average relative humidity (%)
[45,46,48,58–66]

X21: Annual average temperature (°C)

Meteorological indicators

X22: Annual average rainfall (mm)

[45,46,48,58–66]

X23: Time length of sunshine (hour)

X24: Wind speed (m/s: Annual average
wind speed at

70 m–80 m altitude)

Type of APIIU X25: APIIU of AQI
[22–24,35–37,52]X26: APIIU of PM2.5

Based on the existing related research results, considering the current situation regard-
ing air pollution and the availability of data, this study constructed an indicators system of
APIIU assessment using the industrialization, urbanization and meteorological indicators.
The industrialization indicators were directly responsible for air pollutant emissions. Pre-
viously published studies have shown that the major air pollutant emissions were from
the daily industrial operation of the machines. Therefore, the regional GDP, GDP of the
secondary industry, coal consumption and exhaust emissions were used as direct or indirect
influencing indicators of APIIU. Urbanization indicators included the city’s development
level, scale and population. The occurrence of air pollution was closely related to the city’s
development level and scale. With population growth and urban development, more and
more building construction areas contributed to the decrease in the city’s green vegetation
areas, which increased the concentrations of dust and particulate matter in the air and
reduced the adsorption capacity of green plants for air pollutants. The higher density of the
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regional population living in urban areas caused more environmental pollution problems
and air pollutant emissions. The annual average air humidity and the annual average
rainfall could decrease air pollution to some extent. Higher emissions of industrial and
residential pollutants caused higher annual average temperature. PM2.5 refers to particulate
matter with aerodynamic equivalent diameter of less than or equal to 2.5 microns. Owing
to long residence time and conveying distance, it has a greater impact on human health
and the quality of the atmospheric environment. PM10 is inhalable particulate matter with
aerodynamic equivalent diameter of less than or equal to 10 microns, which refers to the
general term for solid and liquid particles floating in the air. PM10 can enter the upper
respiratory tract directly and endanger human lung health. PM10 in many cities were
positively correlated with PM2.5, but O3 was negatively correlated with PM2.5. Related
studies conducted in other regions also showed that the concentrations of SO2, NO2 and
CO have increased year by year with the formulation of relevant policies. For example, the
most obvious feature was that the occurrence of acid rain has reduced in the past many
years [69,70]. Hence, this research selected the AQI and PM2.5 as the objectives of APIIU;
industrialization indicators, urbanization indicators and meteorological indicators were
selected to evaluate the influence degree of APIIU on AQI and PM2.5.

2.2. The Hybrid SC-RS-XGBoost Model
2.2.1. The Principle of SC

In statistics, the SC is a nonparametric measure of the dependence of two variables. It
uses a monotonic equation to evaluate the correlation of two statistical variables. If there
are no repeated values in experimental data, the value of SC is 1, or −1 when the two
variables are in a perfect monotonical correlation. SC is also referred to as level correlation,
which is the observed data being replaced by the level. The SC indicates the direction
of correlation between independent variable x and dependent variable y. If y tends to
increase with x increases, the SC is positive. If y tends to decrease with x increases, the
SC is negative. When SC is zero, it indicates that y exhibits no trend with x increases. The
absolute value of SC increases when x and y become closer and closer [66–68]. The SC can
reflect the direction and degree of the change trend between the 2 random variables, which
is calculated as the difference of equal magnitude. The most notable feature is that it need
not consider the sample size or overall distribution characteristics of the variables; the SC
of two random variables can be expressed as Equation (1):

ρ(x, y) =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2(yi − y)2
(1)

where ρ is the SC between x and y, n is datasets sample size, x and y is the average value of
x and y.

In fact, the connection between the variables is irrelevant. The principle is to sort the
data of two variables and calculate the linear correlation analysis using the value of rank
difference obtained after sorting, as shown in Equation (2):

ρ =
6 ∑n

i=1 d2

n(n2 − 1)
(2)

where n is datasets sample size, d is the rank difference value sorted by 2 variables.

2.2.2. The Principle of RS

The grid search (GS) is an exhaustive optimization algorithm, and the searched pa-
rameters are defined in the space of the uniform grids. All the nodes in the grid are then
evaluated to identify the global minimum. Finally, the grid search finds the global mini-
mum of all the nodes in the parameter grid. By approaching the optimal point in the next
step, a finer grid is defined and gradually approaches the optimal point in the searching pa-
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rameter space. However, the optimization process is more time consuming and inefficient.
The RS algorithm selects the specific number of 1 random value per 1 hyperparameter
to reduce the computation of the hyperparameter search, shorten the optimization time
and improve the model performance. It is performed in a random manner in the spatial
distribution, and the RS algorithm samples it as 1 distribution [59–61]. In this research, RS
was applied to optimize XGBoost.

2.2.3. The Principle of XGBoost

The integrated learning method refers to combining multiple learning models to obtain
better results and a stronger generalization ability. XGBoost is a scalable tree boosting
system that is an ensemble method that aims to aggregate weak learning models to form a
stronger and more robust estimator in an iterative fashion. The residual of the previous
estimator will be used to learn and optimize the loss function during each iteration. A
binary decision tree called a classification and regression tree (CART) is selected as a basic
learner, and regularization is added to the loss function for improvement and to avoid
overfitting in XGBoost [62–65]. XGBoost is a highly flexible and versatile tool that can solve
most regression problems and objective functions created by users. The SC-RS-XGBoost
algorithm used in this paper is shown in Algorithm 1.

Algorithm 1: SC-RS-XGBoost

Input: Dm×n = {(Xi)} (Xi ∈ Rm, i = 1, 2, . . . , n), original data with n samples and m feature
variables
Output: Dl×n = {(Xi)} (Xi ∈ Rl , i = 1, 2, . . . , n), using SC to screen correlation coefficients greater
than 0.3 based on Dm×n (l < n)
Input: Objective function of RS, f (X,Y) = g(X) h(Y)

Set default values and value ranges of parameters to be optimized
Set the threshold of mean squared error (MSE)
Output: Every parameter value when f (X,Y) reaches the maximum value

Input: Dl×n = {(Xi)} (Xi ∈ Rl , i = 1, 2, . . . , n)
I, instance set of current node
d, feature dimension
Gain ← 0
G ← ∑

i∈I
gi , H ← ∑

i∈I
hi

for k = 1 to T do
GL ← 0, HL ← 0

for j in sorted(I, by xjk) do
GL ← GL gj, HL ← HL hj

GR ← G −GL, HR ← H −HL

score← max (score, G2
L

HL λ
G2

R
HR λ −

G2

H λ )
end

end
Output: Split with max score

The XGBoost algorithm includes three types of parameters: general, booster and
learning task. There are relatively many types of parameters, and the selection of parameter
combinations directly affects the accuracy of boosting tree regression prediction. In machine
learning, a reasonable parameter selection can improve the prediction accuracy of the model
to a large extent. In this study, the RS optimization algorithm was used to optimize some
parameters of XGBoost, and the other parameters selected appropriate default values
according to the training process. The range of parameter values and final parameter
determination optimized by the RS algorithm are shown in Table 2.
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Table 2. Optimized parameters and value range of XGBoost.

Parameter Name Parameter Type Parameter Definition Parameter Default Value Value Range

P1: max_depth Booster Maximum depth of tree 5 [1,20]
P2: learning_rate Booster Learning rate 0.2 [0,1]

P3: reg_gamma Booster

Adjusting the penalty term,
specifying the minimum loss

function decreases when the node
is divided

0.01 [0,0.5]

P4: reg_alpha Booster Regularization coefficient used to
adjust L1 0.01 [0,1]

P5: reg_lambda Booster Regularization coefficient used to
adjust L2 0.1 [0,2]

P6: min_child_weight Booster Minimum leaf node weight 1 [1,10]

P7: subsample Booster The sampling scale used for the
training set 1 [0,1]

P8: colsample_bytree Booster
The random sampling ratio of

features used to construct
each tree

1 [0,1]

P9: n_estimators Learning Task Controlling the number of trees 70 [30,200]

In this study, the objective function of RS was set to the mean squared error (MSE) as
the calculation error; the maximum number of iterations was set to 50; and the maximum
value of MSE was set to 3.00. In the general parameters of XGBoost, the parameter “booster”
was set to the “gbtree”; the parameter “n_thread” was set to not exceed the maximum
possible number of threads of the processor; and other parameters were set to the default
values. After the above optimized parameters were given the initialized default values,
the processed data set was input into the optimization function of the RS, and the partial
results of the optimization are shown in Table 3.

Table 3. Partial results of optimization of XGBoost.

Iteration Number P1 P2 P3 P4 P5 P6 P7 P8 P9 MSE

1 5 0.2 0.01 0.01 0.1 1 1 1 70 2.54
2 12 0.009 0.526 0.635 0.137 6.23 0.972 0.892 102 2.23
3 9 0.417 0.391 0.172 0.935 5.33 0.391 0.913 61 1.78
4 16 0.103 0.153 0.229 0.182 6.19 0.672 0.992 94 1.52
5 8 0.319 0.203 0.381 0.286 4.27 0.259 0.715 105 0.936
10 11 0.821 0.337 0.156 0.107 8.31 0.113 0.836 82 0.783
16 7 0.113 0.082 0.096 0.132 4.92 0.463 0.651 103 0.497
22 10 0.016 0.128 0.193 0.092 1.37 0.991 0.192 75 0.585
50 3 0.432 0.11 0.308 0.087 1.86 0.723 0.274 91 0.647

By calculating the MSE, a more suitable parameter combination was found when the
iteration number was 16th. However, the effect of the parameter combination gradually
deteriorated with the number of iterations continuing to increase. Therefore, the parameters
of the XGBoost were selected as the parameter combination in the 16th iteration to forecast
APIIU of AQI and PM2.5 in this research.

3. Analytical Results of APIIU

Before using SC analysis, based on the influence path of industrialization and ur-
banization on AQI and PM2.5, this research constructed the structural equation modeling
(SEM) using AMOS to evaluate the reasonableness of the model and preliminarily screen
the relevant indicators from the indicators system [71,72]. Additionally, the least square
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estimation method was selected to perform the parameter estimation of SEM. In this re-
search, the comparative fit index (CFI), Akaike information criterion (AIC) and root mean
square error of approximation (RMSEA) were selected as evaluation indicators. The model
had better performance when CFI was higher than 0.8, RMSEA was lower than 0.1, and
AIC was relatively small. Based on the structural equation and evaluation results, this
research finally deleted the indicators with a moderating effect, including the square of
coal consumption per land area, square of proportion of population and square of density
of population. Hence, the above three indicators were no longer considered when using SC
analysis. The SC correlation analysis results are shown in Figures 4 and 5.
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Before using SC to analyze the data, this research used the maximum and minimum
standardized method in data processing, and the value of each indicator was controlled
between 0 and 1. In order to obtain the weights of relevant indicators affecting the APIIU
of AQI (APIIU-AQI) and APIIU of PM2.5 (APIIU-PM2.5), taking AQI and PM2.5 as target
variables, respectively, the correlation coefficients are shown in Figures 4 and 5. The
indicators were from the indicators system shown in Table 1. In this research, the correlation
coefficients of AQI and PM2.5 were greater than 0.3, respectively. The correlation coefficients
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in the SC analysis results reflected the degree of importance of the role of each indicator
in the APIIU-AQI and AQPIIU-PM2.5. Hence, the correlation coefficient of each indicator
could be used to express the indicator weight. Using the weighting equation calculated
using the air pollution index according to principal indicators, the APIIU could be expressed
as in Equation (3):

Ii = ∑ SjXij (3)

where Ii is the APIIU of the ith unit with different principal indicators, Xij is standardized
values of the jth indicator of the ith unit, and Sj is the SC value of the jth indicator.

The APIIU-AQI and APIIU-PM2.5 in every city calculated from the SC results showed
that there were significant temporal and regional differences among the three provinces
from 2017 to 2019. The changing trends in the APIIU-AQI and APIIU-PM2.5 are shown in
Figures 6a–c and 7a–c over the past 3 years, respectively. Considering the development of
industrialization and urbanization, the APIIU-AQI and APIIU-PM2.5 showed a significant
changing trend from 2017 to 2019.

Based on the changing trend of APIIU-AQI and APIIU-PM2.5 of every city within
three provinces over the past 3 years, the following observations can be made. Hubei
Province was an area with higher APIIU-AQI among the three provinces, indicating that
the development of industrialization and urbanization had a more serious impact on AQI.
From 2017 to 2019, the APIIU-AQI in 2019 in every city increased by 20–30% compared to
2017. Hunan Province was an area with higher APIIU-PM2.5 among the three provinces,
indicating that the development of industrialization and urbanization had a more seri-
ous impact on PM2.5. From 2017 to 2019, the APIIU-PM2.5 of every city within the three
provinces over the past 3 years were higher compared to APIIU-AQI. In the past three
years, the APIIU of some cities in Hunan Province has declined; however, some cities in
Henan Province and Hubei Province have shown a trend of initial decline and then rise.
The data showed a slowly decreasing trend and indicated that Hunan Province was paying
attention to the protection and governance of the environment when developing its econ-
omy. Additionally, the industry has transformed into a new energy and environmentally
friendly direction; the population density has decreased; and the air pollutant emissions
emitted by human activities have decreased in Hunan Province. With an increasing trend
in Henan Province and Hubei Province, this phenomenon showed that the proportion of
secondary industry in the two provinces still occupied a major position. In addition, the
increasing population and the government’s control with a slow rate of environmental
governance made the industrial and human activities aggravate environmental pollution.
Through the assessment of APIIU-AQI and APIIU-PM2.5 of regional air pollution and the
descriptive analysis, the changing results of AQI and PM2.5 were generally consistent with
the findings published by the China Environmental Statistical Yearbook in Henan Province,
Hubei Province and Hunan Province, respectively.

Air pollution has caused a serious impact on the natural environment, human society
and residents’ health in recent years. Hence, it is vital to evaluate the influence of the devel-
opment of regional industrialization and urbanization on AQI and PM2.5, which could help
the government plan reasonable policies to a certain degree. For Henan Province, with a
large population and agricultural industry, importance should be attached to increasing the
development of environmental protection enterprises while transforming to heavy industri-
alization. It is necessary to avoid excessive population concentration during urbanization.
For Hubei Province, with a high GDP, the pace of development of traditional industries
can be slowed down while developing industrialization. The transformation to new energy
enterprises can be intensified, which can not only protect the environment but prevent
more population from outflowing. For Hunan Province, with the promotion of cleaner
production technology and increasing financial investment in environmental protection,
the environmental quality has been greatly improved. However, it should avoid repeating
the same predicament. Environmental governance should be processed simultaneously
while developing the economy and urbanization.
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Kaifeng—KF, Luoyang—LY, Pingdingshan—PDS, Anyang—AY, Hebi—HB, Xinxiang—XX,
Jiaozuo—JZ, Puyang—PY, Xuchang—XC, Luohe—LH, Sanmenxia—SMX, Nanyang—NY,
Shangqiu—SQ, Xinyang—XY, Zhoukou—ZK, Zhumadian—ZMD, Jiyuan—JY; (b) Hubei
Province: Wuhan—WH, Huangshi—HS, Shiyan—SY, Yichang—YC, Xiangyang—XY, Ezhou—EZ,
Jingmen—JM, Xiaogan—XG, Jingzhou—JZ, Huanggan—HG, Xianning—XN, Suizhou—SZ,
Enshi—ES, Xiantao—XT, Qianjiang—QJ, Tianmen—TM, Shennongjia— SNJ; (c) Hunan Province:
Changsha—CS, Zhuzhou—ZZ, Xiangtan—XT, Hengyang—HY, Shaoyang—SY, Yueyang—YUY,
Changde—CD, Zhangjiajie—ZJJ, Yiyang—YIY, Chenzhou—CZ, Yongzhou—YZ, Huaihua—HH,
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Xinyang—XY, Zhoukou—ZK, Zhumadian—ZMD, Jiyuan—JY; (b) Hubei Province: Wuhan—WH,
Huangshi—HS, Shiyan—SY, Yichang—YC, Xiangyang—XY, Ezhou—EZ, Jingmen—JM, Xiaogan—XG,
Jingzhou—JZ, Huanggan—HG, Xianning—XN, Suizhou—SZ, Enshi—ES, Xiantao—XT, Qianjiang—QJ,
Tianmen—TM, Shennongjia— SNJ; (c) Hunan Province: Changsha—CS, Zhuzhou—ZZ, Xiangtan—XT,
Hengyang—HY, Shaoyang—SY, Yueyang—YUY, Changde—CD, Zhangjiajie—ZJJ, Yiyang—YIY,
Chenzhou—CZ, Yongzhou—YZ, Huaihua—HH, Loudi—LD, Xiangxi—XX.

4. Discussion
4.1. Evaluation Indicator

To reasonably evaluate the prediction model, the square of determination coefficient of
real value (R2), the root mean square error (RMSE) and the mean absolute percentage error
(MAPE) were selected to test the prediction result. In statistical experiments, RMSE actually
describes a degree of dispersion, which reflects the size of the average prediction error.
MAPE can be used to evaluate different models on the same data source, which actually
reflects the median relative error. The evaluation indicators can be shown as follows:

R2 = 1− ∑n
i=1
(
y∗i − yi

)2

∑n
i=1(yi − y)2 (4)
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RMSE =
1
n

√
n

∑
i=1

(
y∗i − yi

)2 (5)

MAPE =
n

∑
i=1

∣∣∣∣y∗i − yi

yi

∣∣∣∣× 100
n

(6)

where n represents the total number of test samples, y∗i , yi and y represent the predicted
value, the real value and the average real value in Equations (4)–(6), respectively.

4.2. Result Analysis Based on SC-RS-XGBoost

To verify the performance of the SC-RS-XGBoost model in predicting APIIU-AQI and
APIIU-PM2.5, this model was compared with the SC-XGBoost model, RS-XGBoost model
and XGBoost model. For the SC-RS-XGBoost model and SC-XGBoost model, this research
used SEM to screen the indicators and adopted the maximum and minimum method
to standardize the indicators as the training data. Additionally, the original data were
multiplied by the weights after SC analysis as the final training data. For the RS-XGBoost
model and XGBoost model, this research used SEM to screen the indicators as the training
data. Data were collected from 49 cities from 2017 to 2019, and the number of samples was
147. After the data were preprocessed, the feature data and target data were input into the
different models, and the ratio of training data and testing data was set to 3:1. APIIU-AQI
and APIIU-PM2.5 were selected as the target variables, respectively. Industrialization,
urbanization and meteorological indicators were selected as the characteristic variables.
The predicted values of different models are shown in Figures A1 and A2 in Appendix A.
Collecting the prediction results and calculating the evaluation indicators, the results are
shown in Table 4.

Table 4. Evaluation indicators of APIIU of each model.

Variable
SC-RS-XGBoost SC-XGBoost

R2 RMSE MAPE R2 RMSE MAPE

APIIU-AQI 0.945 0.103 4.25% 0.886 0.149 6.08%
APIIU-PM2.5 0.897 0.205 4.84% 0.515 0.443 6.34%

Variable
RS-XGBoost XGBoost

R2 RMSE MAPE R2 RMSE MAPE

APIIU-AQI 0.856 0.167 6.36% 0.753 0.218 13.7%
APIIU-PM2.5 0.823 0.269 5.74% 0.366 0.646 16.8%

Variable
SC-RS-SVR SC-SVR

R2 RMSE MAPE R2 RMSE MAPE

APIIU-AQI 0.503 0.285 7.13% 0.377 0.514 8.83%
APIIU-PM2.5 0.419 0.912 10.7% 0.283 2.63 14.6%

Variable
RS-SVR SVR

R2 RMSE MAPE R2 RMSE MAPE

APIIU-AQI 0.412 0.393 13.5% 0.461 0.427 17.2%
APIIU-PM2.5 0.318 1.51 7.32% 0.252 2.74 16.6%

Using SC, reducing the input variables and reducing the target function convergence
value effectively solved the correlation between the input variables and the defection of
excessive input data. In this paper, RF was used to optimize the parameters of XGBoost
to reduce local overfitting, showing better prediction performance. It can be seen from
the results that SC-RS-XGBoost performed better than SC-XGBoost. As shown in Table 4,
we found that the traditional XGBoost model had the largest prediction error. As seen
from the comparison of R2, RSME and MAPE of APIIU-AQI, the prediction accuracy of
the SC-RS-XGBoost model improved by 6.24%, 30.9% and 30.1% upon the SC-XGBoost
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model on the R2, RMSE and MAPE, respectively. It improved by 8.90%, 38.3% and 33.1%
upon the RS-XGBoost model on the R2, RMSE and MAPE, respectively, and it improved by
20.3%, 52.8% and 68.9% upon the traditional XGBoost model on the R2, RMSE and MAPE,
respectively. For a comparison of R2, RSME and MAPE of APIIU-PM2.5, the prediction
accuracy of the SC-RS-XGBoost model improved by 42.6%, 53.7% and 23.7% upon the
SC-XGBoost model on the R2, RMSE and MAPE, respectively. It improved by 8.24%, 23.8%
and 15.7% upon the RS-XGBoost model on the R2, RMSE and MAPE, respectively, and it
improved by 59.2%, 68.3% and 71.2% upon the traditional XGBoost model on the R2, RMSE
and MAPE, respectively. Based on these findings, the prediction accuracy was significantly
improved, which verified the effectiveness and feasibility of the SC-RS-XGBoost model
compared with the other three models. To further verify the performance and accuracy,
the evaluation indicators with the SC-RS-SVR model, SC-SVR model, RS-SVR model and
SVR model are shown in Table 4. The comparisons of R2, RMSE and MAPE of the SC-
RS-SVR model, SC-SVR model, RS-SVR model, SVR model and ELM model are shown in
Figures S1–S3. It can be seen from the calculation results of evaluation indicators that other
models did not perform as well as the SC-RS-XGBoost model.

Additionally, through the calculation results of evaluation indicators, we found that
the prediction accuracy of APIIU-AQI was higher than APIIU-PM2.5. In terms of RMSE
and MAPE, the difference between the APIIU-AQI and APIIU-PM2.5 was also basically
inconspicuous. However, the values of R2 were all higher than 0.89, showing that the
SC-RS-XGBoost model had a good fitting performance on APIIU-AQI and APIIU-PM2.5. By
verifying the effectiveness and feasibility of the proposed model, the SC-RS-XGBoost model
accurately predicted the APIIU-AQI and APIIU-PM2.5 and provided helpful insights for
the government’s environmental protection and air pollution governance. This could make
regional governments pay more attention to air pollution when developing industrialization
and urbanization.

5. Conclusions

Most previous research works have analyzed AQI and PM2.5 spatiotemporal distri-
bution using statistical methods and regression analyses to evaluate the air quality. The
goal of the current research was to analyze and determine the influence of the development
of industrialization and urbanization on AQI and PM2.5. In this period of artificial intelli-
gence, a SC-RS-XGBoost model for air pollution assessment could effectively improve the
assessment accuracy and provide a new reference source for future air pollution manage-
ment. Based on previous relevant research works, this research constructed a regional air
pollution assessment indicators system to evaluate APIIU-AQI and AQIIU-PM2.5 using
data from Henan Province, Hubei Province and Hunan Province. The indicators system of
this research adopted three aspects, including industrialization indicators, urbanization
indicators and meteorological indicators. The following conclusions were drawn from our
findings:

(1) The principal indicators were screened using SC, and the weights of each indicator
were determined according to the correlation coefficients. From the correlation analysis,
there were differences in the impact of different indicators on AQI and PM2.5. The indicators,
including regional GDP, proportion of secondary industry, coal consumption, density of
exhaust emissions, total city population, proportion of population, density of population
and several relevant meteorological indicators, had a high influence on AQI. However, the
proportion of secondary industry, coal consumption, exhaust emissions, density of exhaust
emissions, population of city jurisdiction, total city population, administrative land areas
and other related indicators had a high influence on PM2.5.

(2) Using the weights equation to calculate the APIIU-AQI and APIIU-PM2.5 of each
region from 2017 to 2019, we identified that 17 cities from Hubei Province, which has
the largest regional GDP and the largest proportion of the population, had the largest
APIIU-AQI in the past three years. Moreover, APIIU-AQI increased sharply compared with
2017 in the three provinces. Fourteen cities from Hunan Province, which has the largest
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proportion of secondary industry and the largest administrative land area, had the largest
APIIU-PM2.5 in the past three years. APIIU-PM2.5 has gradually increased compared with
2017 in the three provinces.

(3) This research verified that the SC-RS-XGBoost could be used as a method of air
pollution assessment. Analyzing the influence of industrialization and urbanization on
AQI and PM2.5 is of great significance for future regional sustainable development. It
is necessary for carrying out more advanced research and constructing a more accurate
indicators system and prediction models for the various different regions to deliver useful
information for the government officials and policymakers.

The present research contributed to the limited knowledge in the regions regarding
the influence of industrialization and urbanization on spatiotemporal variations of AQI
and PM2.5 in three Chinese provinces, and it is important to conduct additional research
in other regions on this topic. AQI and the concentration of PM2.5 in different regions are
affected by wind speed and direction at different altitudes to some extent. It is worth noting
that this research was focused only on static and mild wind conditions, and the annual
average wind speed was only observed at 70 m–80 m altitude. The result was limited,
since the data selected for discussion were monitored under specific climate conditions.
Hence, long-term continuous monitoring under various weather conditions is needed in
future research. Due to differences in industrial and human activity emissions in different
seasons, in order to explore the seasonal changes, it is necessary to consider the influence
of industrialization and urbanization indicators on AQI and PM2.5 in different seasons in
future research.
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