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Abstract: The monitoring of droughts is practically important yet challenging due to the complexity of
the phenomena. The occurrence of drought involves changes in meteorological conditions, vegetation
coverage and soil moisture. To advance the techniques for detecting and monitoring droughts, this
study explores the usage of a suite of vegetation and water indices derived from high-resolution
images produced by geostationary satellite Himawari-8. The technique is tested on the detection of
the drought event in Spring 2021 across Taiwan due to deficit of precipitation in that season. It is
found that the time series analysis of green chlorophyll index (CIgreen) and normalized difference
vegetation index (NDVI) helps detect the initiation of drought before its severity intensifies. The
vegetation condition index (VCI) and vegetation health index (VHI) derived from GIgreen and NDVI
are similarly useful for the early warning of a drought event. In addition to vegetation indices, the
normalized difference water index (NDWI) is adopted for quantifying the deficit in precipitation. It
is found that NDWI provides a better early warning system of drought compared to the vegetation
indices. Combining the vegetation and water indices allows a more complete description of the
evolution of drought for the Spring 2021 event. The potential for using the new framework for the
early warning of future drought events is discussed.

Keywords: drought monitoring; Himawari-8; drought indexes

1. Introduction

Drought is a complicated phenomenon that involves multiple physical processes and
spatiotemporal scales. Four types of droughts are classically defined [1]: Meteorological
drought pertains to the condition with a deficit in precipitation; Agricultural drought de-
velops when the shortage of water affects root-zone soil moisture and impacts agricultural
production; Hydrological drought commences when the broader hydrological system—
river, stream, reservoir levels and groundwater levels—are affected; Socioeconomic drought
is declared when the aforementioned physical changes begin to affect human lives. Re-
cently, a new type of flash drought has been considered [2,3]. It can intensify very rapidly
from the onset of meteorological drought to fully developed agriculture drought, as the
precipitation deficit is compounded by abnormally high temperatures, strong winds and
an elevated level of sunshine all in the same area. A rapidly developing drought event can
be particularly impactful to agriculture and human lives. Monitoring this type of event is
of particular interest in this study.

The occurrences and societal impacts of flash droughts are major concerns in Tai-wan.
Although the annual mean of precipitation in Taiwan is relatively high, around 2500 mm,
a significant portion of the rainfall is concentrated in summer to fall, related to Mei-yu
fronts and tropical cyclones. Rainfall in spring exhibits a greater degree of uncertainty. This
fact, combined with steep topography over Taiwan which facilitates quick runoffs, makes
spring a high-risk season for drought. Given that spring is the major plant growing season
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in Taiwan, the impacts of springtime droughts on agriculture and human lives are often
particularly severe. Due to complicated terrains and strongly heterogeneous vegetation
coverage over Taiwan, monitoring early drought conditions is difficult when using ground-
based observational methods. Thus, satellite remote sensing provides a potential alternative.
To monitor rapidly developing droughts, measurements from geostationary satellites are
particularly appealing due to their high spatiotemporal resolution.

Given this background, this study aims to develop techniques for sensing vegetation
cover and hydrological properties to improve the early warning of droughts, using the
newly available data from a geostationary satellite. This will be a pilot study to demonstrate
the application of the geostationary satellite data. For this purpose, we apply the satellite-
based indices to the study region over the island of Taiwan (cf. maps shown in Figures 1–5).
The techniques will be tested by detecting and monitoring the evolution of the spring 2021
drought event in Taiwan.
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Figure 2. The anomaly of percentage of NDVI over Taiwan from January to June 2021 (from (a–f)). 
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The key innovation of this work is in the application of geostationary satellite obser-
vation in a realistic setting of extreme drought. Conventionally, data from polar-orbiting
satellites were more widely used for surveying land surface properties. With advances in
instrumentation and improvement in algorithms, observation from a geostationary satellite
has emerged as a desirable alternative. Our study focuses on detecting rapid changes in
land cover using multi-channel geostationary satellite observation. This reflects a newer
development of technology which complements the classical applications of geostationary
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satellite data such as the monitoring of cloud maps over a broad area. With this back-
ground, our work will be based on the data from Himawari-8, an advanced geostationary
satellite [5]. Further detail about the satellite is given in Section 2.

This study contributes to the latest research trend in implementing techniques that
were previously used for a polar-orbiting satellite into their equivalents for a geostationary
satellite, specifically for monitoring changes in land surface properties (e.g., [6]). With
the increased number of observational channels on Himawari-8, such an implementation
is now possible. In this context, the key parameters to be analyzed will include NDVI
and green chlorophyll index (CIgreen) [7], both are used to further derive the vegetation
condition index (VCI) and vegetation health index (VHI) [8]. Given the time lag between
the response in surface vegetation and the initial shortage of rainfall [9], we also include
the normalized difference water index (NDWI) to detect the hydrological condition that
complements the vegetation indices. While our focus is on the 2021 drought event, six
years of AHI data from 2016 to 2021 are used in order to define the anomalies for that
particular event. Thus, we establish a framework of drought detection using the observation
from a geostationary satellite alone. The potential future applications of the technique for
monitoring flash droughts are discussed.

2. Data and Methodology
2.1. Study Area and Geostationary Satellite Observation

The study domain was the island of Taiwan, approximately bounded by 120–122◦ E
and 22–25.5◦ N (the domain is shown through Figures 1–5). The key qualities to analyze
concerning droughts are vegetation and water coverage at the surface. Due to the lack of
high-resolution in situ observation network over the complex terrains of the island, the
analysis relies exclusively on satellite remote sensing. Key indices for vegetation and water
will be deduced from satellite measurements, as detailed in the following section.

Himawari-8 is a new-generation geostationary meteorological satellite launched by
the Japan Meteorological Agency on 7 October 2014, which became fully operational on 7
July 2015. The satellite is located at 140.70E over the equator. It covers most of East Asia
and the Western Pacific Ocean, and its counterpart in the southern hemisphere. Being
geostationary, the instrument onboard the satellite has a high-temporal resolution of 10 min,
superior to what is available with polar-orbiting satellites. The key instrument, Advanced
Himawari Imager (AHI), has 16 channels, 3 which are visible, 3 which are near-infrared
and 10 which are infrared [5], which is a significant upgrade from its predecessor, the
geostationary Multifunction Transport Satellite-2 (MTSAT-2). In addition to the visible (red)
channels at 0.63 µm already on MTSAT-2, the AHI is equipped with two visible (blue and
green) channels at 0.47 and 0.51 µm, with a resolution of 1 km, 1km and 0.5 km, respectively,
and three new near-infrared channels at 0.86, 1.6 and 2.3 µm with a resolution of 1 km, 2 km
and 2 km, respectively. The availability of the new channels on AHI allows a more versatile
construction of the vegetation and water indices. The ten infrared channels on AHI also
have improved spatial resolution at 2 km, compared to 4 km for its predecessor. The two
channels at 10.4 and 12.4 µm can be used to estimate the land surface temperature [10].

As a tradeoff of using the data from the newest satellite, the available record from
Himawari-8 is relatively short. Our analysis is based on 6 years of observation data,
collected since the launch of the satellite. Keeping this in mind, this work focuses on the
proof of concept in establishing a technical framework for drought detection. We anticipate
that the technique can be used more widely in the future when longer observations by
geostationary satellite become available.

2.2. Overview of Vegetation and Water Indices

To account for multiple physical processes associated with droughts, we analyze a
set of indices for vegetation and hydrological conditions, derived from measurements by
AHI. The usage of similar indices for monitoring land cover has a long history [11]. For
satellite remote sensing, classical indices such as normalized difference vegetation index
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(NDVI) and its variations are well known (e.g., [12,13]). While following similar ideas for
the construction of those indices, we customize the definitions for them based on available
observations from the geostationary satellite.

The application of vegetation and water indices draws inspiration from previous
studies (mostly based on polar-orbiting satellite observation), which we now briefly review.
Vegetation indices for drought monitoring have long been used (e.g., [11]), starting from
the well-known NDVI which uses near-infrared and red reflectance to measure the concen-
tration of chlorophyll in the canopy. Variations in the index have since been considered.
For example, enhanced vegetation index (EVI) enhances the ability to detect higher levels
of biomass ([12,13]). Several indices are defined to incorporate the effect of soil moisture,
for example soil-adjusted vegetation index (SAVI) [14], modified soil-adjusted vegetation
index (MSAVI) [15] and optimized soil-adjusted vegetation index (OSAVI) [16]. Amid the
proliferation of those definitions, a universal normalized vegetation index (UNVI) has also
been recently proposed [17]. The study suggests that UNVI, NDVI and EVI have a similar
nonlinear behavior in response to chlorophyll content. Namely, saturation occurs in UNVI,
NDVI and EVI when the chlorophyll content reaches a critical level. Related works have
been carried out to define alternative indices, notably CIgreen and its variants, which behave
linearly and are not subject to saturation at a high concentration of chlorophyll ([18,19]).
Thus, in terms of nonlinear vs. linear behavior, there are two groups of indices—NDVI
and its variants and GIgreen and its variants—which serve as the candidates for our study.
While the definitions of the vegetation indices vary among existing studies, they follow
similar principles of extracting the surface properties from the contrast between different
channels. In this work, we follow the same principles but define the relevant indices with
necessary adjustments (detailed below), taking into account the available channels in AHI
on the Himawari-8 satellite.

To prepare for the analysis of the drought-detecting indices, the data from AHI obser-
vations are first processed by the Clavr-x package to generate the cloud mask product. This
helps classify the data pixels into clear, probable clear, probable cloudy and cloudy condi-
tions. Only the data identified under a clear-sky condition are selected for the computation
of the vegetation and water indices. We process the data from 2016 to 2021, using the mean
from this period to contrast the anomalies in 2021.

For the vegetation indices, we first generate NDVI and CIgreen, then use them to derive
VCI and VHI. The NDVI is used because of its long history of success in applications for
detecting vegetation growth. As surveyed above, CIgreen is chosen for its linear relationship
to the chlorophyll concentration in vegetation. This will complement NDVI which is more
prone to saturation at a high concentration. For this purpose, the high concentration of
chlorophyll can indeed be frequently encountered over Taiwan, due to the subtropical
climate and vegetation types in the region. The AHI on Himawari-8 has enough channels
of observation to allow the construction of both NDVI and CIgreen. Together with VCI and
VHI, the set of four indices are used for monitoring vegetation. A water index, NDWI, is
also computed to aid in the detection of drought. The details for the indices are given in
the following.

2.3. Normalized Difference Water Index (NDWI)

Following [20], the normalized difference water index (NDWI) is computed by

NDWI =
ρGREEN − ρNIR
ρGREEN + ρNIR

(1)

where ρGREEN is the reflectance at visible green spectral band and ρNIR is the reflectance
at near-infrared band. The Himawari-8 data on channel 2 with central wavelength of
0.51 µm and channel 4 with central wavelength of 0.86 µm are chosen to represent ρGREEN
and ρNIR, respectively. The value of NDWI ranges from −1 to 1. A higher positive
value means a higher ratio of coverage of wet surfaces over the observational area. The
definition in [20] sets zero as a threshold for interpreting that the coverage by wet surfaces is
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everywhere. Since the threshold could vary with data resolution and surface characteristics,
other studies have considered a non-zero threshold. For example, it is set to 0.1 in [21] to
account for severe flooding events and set to 0.3 in [22] for other general applications.

Another widely adopted version of NDWI was considered by [4]. This index is
sensitive to changes in liquid water content in the vegetation canopies. It is defined by

NDWI =
ρNIR − ρSWIR
ρNIR + ρSWIR

(2)

where ρNIR is the reflectance at near infrared band with the central wavelength of 0.86 µm
and ρSWIR is the reflectance at short-wave infrared band with the central wavelength of
1.24 µm. We used Himawari-8 data on channel 4 with central wavelength of 0.86 µm to
represent ρNIR . Since Himawari-8 measurement does not include a channel at 1.24 µm, we
used a slightly modified definition by using the nearby channel 5 with central wavelength
of 1.61 µm to represent ρSWIR.

2.4. Normalized Difference Vegetation Index (NDVI)

The normalized difference vegetation index (NDVI) has been extensively used for
monitoring vegetation dynamics from space [11]. It is computed by

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(3)

where ρNIR and ρRED are the reflectance in near-infrared band and visible red band. The
Himawari-8 data on channel 4 with central wavelength of 0.86 µm and channel 3 with
central wavelength of 0.64 µm are chosen to represent ρNIR and ρRED, respectively. For
detecting the vegetation condition over land, the value of NDVI ranges from 0 to 1. It is
close to zero over rock or bare soil. Higher values NDVI represent more extensive coverage
of vegetation under less stressed conditions.

2.5. Green Chlorophyll Index (CIgreen)

The green chlorophyll index (CIgreen) can be used to estimate the total chlorophyll
content that indicates the physiological status of vegetation [18]. A highly linear relationship
is found between CIgreen and canopy chlorophyll content, which makes the former an
accurate estimator of the latter [23]. The index is computed by

CIgreen=
ρNIR

ρGREEN
− 1 (4)

where ρNIR and ρGREEN are the reflectance at near-infrared band and visible green band.
Similar to the treatment of the other indices, the Himawari-8 channel 2 (0.51 µm) and
channel 4 (0.86 µm) data are used to represent ρGREEN and ρNIR, respectively.

2.6. Vegetation Condition Index (VCI)

The vegetation condition index (VCI), formulated by [24], represents the value of
NDVI for a specific observation normalized by the difference between maximum and
minimum values of NDVI from long-term observations. It is computed by

VCIm = 100
(

NDVIm − NDVImin
NDVImax − NDVImin

)
(5)

where NDVIm is the averaged value of NDVI over a focused period (which will be one
month for our later applications) and NDVImin and NDVImax are the minimum and
maximum values of NDVI from long-term observations (which will be from 2016 to 2021).
We affix the subscript “m” to VCI in Equation (5) as a reminder that the index characterizes
the vegetation condition over the particular month of our focus. The VCI indicates the
level of water-related stress on the plants, assuming that other non-water related factors
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are in normal conditions (for example, no damages to the plants by pests). The value of
VCI ranges from 0 to 100. A higher value indicates a lower level of water-related stress
endured by the plants.

2.7. Temperature Condition Index (TCI)

The temperature condition index (TCI) is analogous to the VCI but for quantifying the
stress level for vegetation related to land surface temperature [25]. It is computed by

TCIm = 100
(

LSTmax − LSTm

LSTmax − LSTmin

)
(6)

where LSTm is the land surface temperature (LST) averaged over a focused period (one
month) and LSTmin and LSTmax refer to the minimum and maximum values of LST from
long-term observations (2016 to 2021). Here, land surface temperature is readily available
as a direct output of the Clavr-x pre-processing package and does not require additional
calculations. With its value ranging from 0 to 100, a higher value of TCI indicates that
the plants are under less thermal stress. Following [24,26], the LST in Equation (6) can be
replaced by brightness temperature from satellite observations.

2.8. Vegetation Health Index (VHI)

The vegetation health index (VHI) is a linear combination of VCI and TCI, computed by

VHIm = α (VCIm) + (1 − α)(TCIm) (7)

where α is a constant between 0 and 1. As a weighted average of VCIm and TCIm, this
index combines the influence of wetness and thermal stresses on the plants. The most
appropriate value of α to take depends on the type of vegetation and other background
physical conditions. As this aspect has not been extensively investigated, for this study we
choose α = 0.5 based on [27,28].

3. Results

After the suite of vegetation and water indices are computed, we apply the derived
data to the monitoring of the spring 2021 drought event in Taiwan. This event commenced
in the beginning of 2021 and reached its most severe phase in April that year. A moderate
amount of rainfall at the end of April and the beginning of May provided relief to the
drought condition. The evolution of the event is illustrated in Figures 1 and 2 by the maps
of the anomaly of percentage of CIgreen and NDVI from January to June 2021. Hereafter,
the anomaly is defined with respect to the 2016–2021 mean. The brown color indicates a
negative anomaly. It can be seen that a negative anomaly of vegetation coverage occurred
over the whole Taiwan area, with a weak but noticeable anomaly already occurring in
January. The decrease in vegetation indices accelerates in March, with the minimum
reached in April. As a check of robustness, the two sequences of maps based on CIgreen and
NDVI are consistent with each other. As a reference to the mean hydrological condition
of this period, the bottom row of Figure 3 shows the maps of the NDWI based on [4] as
computed from Equation (2). Up until April, the baseline level of wetness is moderate.
Then, it picks up significantly in May and June.

To supplement the description of drought based on vegetation indices, we show the
evolution of precipitation over spring 2021. Figure 4 is the monthly cumulative rainfall
from January to June. Figure 5 shows the corresponding percentage anomalies. The peak
drought condition in April can be seen as the response to the deficit in precipitation since the
beginning of 2021 (particularly in January, March and April). Interestingly, while there was
a negative anomaly in precipitation (particularly over the mountains) in May, the drought
condition eased in that month. This reflects a crucial point we mentioned in the Introduction:
In spring, with an already low climatological rainfall, a deficit in precipitation can greatly
suppress plant growth. In contrast, in summer, when the climatological precipitation is



Atmosphere 2022, 13, 1374 11 of 15

abundant, a moderate deficit does not damage the vegetation. In fact, in May 2021, the total
amount of rainfall in that month was enough to aid some recovery in vegetation. In June
2021, the precipitation anomaly finally turned positive with the arrival of Mei-yu fronts.
From Figures 1 and 2, in June, some clusters of positive vegetation anomaly began to emerge.
Nevertheless, there are also spots where vegetation indices become more negative compared
to May. This is not due to a new drought condition, but rather possibly damages to plants
caused by excessive rainfall and stormy conditions associated with the Mei-yu systems.
Again, this can also be inferred from the maps of NDWI in the bottom row of Figure 3.

To assess the strategy for monitoring the drought, we next analyze the time evolution
of the vegetation and water indices averaged over the island of Taiwan. To provide the
contrast between the spring season and the rest of the annual cycle, in Figures 6–8 we
show the area-averaged indices stepping through 12 months of the year. The blue line and
accompanying pair of gray lines represent the mean and plus/minus one standard deviation
of the monthly mean value of an index as derived from the data for 2016–2021. The black
line shows the corresponding value for 2021 alone. In this format, Figure 6a shows the
12-month evolution of the green chlorophyll index CIgreen. The climatological value of this
index reaches the minimum in March and maximum in July, then staying at the plateau
through the rest of the year. For the 2021 event, in March and April, the value of CIgreen dips
significantly below the already low climatological mean for the respective months. This
could be adopted as a criterion to declare a region-wide drought condition. In terms of the
tendency in time, the decreasing trend is the steepest from February to March. Such a steep
trend provides an early warning for the severe drought that is yet to come in April.

Atmosphere 2022, 13, 1374 11 of 15 
 

 

of Mei-yu fronts. From Figures 1 and 2, in June, some clusters of positive vegetation anom-
aly began to emerge. Nevertheless, there are also spots where vegetation indices become 
more negative compared to May. This is not due to a new drought condition, but rather 
possibly damages to plants caused by excessive rainfall and stormy conditions associated 
with the Mei-yu systems. Again, this can also be inferred from the maps of NDWI in the 
bottom row of Figure 3. 

To assess the strategy for monitoring the drought, we next analyze the time evolution 
of the vegetation and water indices averaged over the island of Taiwan. To provide the 
contrast between the spring season and the rest of the annual cycle, in Figures 6–8 we 
show the area-averaged indices stepping through 12 months of the year. The blue line and 
accompanying pair of gray lines represent the mean and plus/minus one standard devia-
tion of the monthly mean value of an index as derived from the data for 2016–2021. The 
black line shows the corresponding value for 2021 alone. In this format, Figure 6a shows 
the 12-month evolution of the green chlorophyll index CIgreen. The climatological value of 
this index reaches the minimum in March and maximum in July, then staying at the plat-
eau through the rest of the year. For the 2021 event, in March and April, the value of CIgreen 
dips significantly below the already low climatological mean for the respective months. 
This could be adopted as a criterion to declare a region-wide drought condition. In terms 
of the tendency in time, the decreasing trend is the steepest from February to March. Such 
a steep trend provides an early warning for the severe drought that is yet to come in April. 

 
Figure 6. The time series of monthly mean indices and variables stepping through the 12-month 
annual cycle (January to December, as marked on the abscissa). For each index, the blue line and the 
accompanying pair of gray lines are the mean and +/− one standard deviation derived from the data 
for 2016–2021. The black line is the value of the index for 2021. (a) CIgreen; (b) surface temperature; 
(c) VCI; (d) VHI. 

Figure 6. The time series of monthly mean indices and variables stepping through the 12-month
annual cycle (January to December, as marked on the abscissa). For each index, the blue line and the
accompanying pair of gray lines are the mean and +/− one standard deviation derived from the data
for 2016–2021. The black line is the value of the index for 2021. (a) CIgreen; (b) surface temperature;
(c) VCI; (d) VHI.



Atmosphere 2022, 13, 1374 12 of 15
Atmosphere 2022, 13, 1374 12 of 15 
 

 

 
Figure 7. The time series of NDVI presented in the same format as Figure 6. 

  
Figure 8. The time series of (a) the [4] version of NDWI and (b) the [20] version of NDWI. Presented 
in the same format as Figure 6. 

In Figure 6b–d, we further show the 12-month evolution of (b) surface temperature, 
(c) vegetation condition index (VCI) and (d) the vegetation health index (VHI). In spring 
2021, surface temperature was generally above normal which was a favorable condition 
for drought. The evolution of VCI in Figure 6c is similar to that of CIgreen in Figure 6a, as 
the former is derived from the latter. The VHI shown in Figure 6d combines the indices of 
surface temperature (TCI in Equation (6)) and vegetation (VCI). It also shows a negative 
anomaly through spring in 2021. Note that the range of plus/minus one standard devia-
tion for this index is relatively large in spring, implying a higher risk for droughts to occur 
in this season. In contrast, the standard deviation is small in summer, implying a less vol-
atile condition for the occurrence of droughts in the warm season. Since VCI and VHI 
depend on CIgreen, which is in turn computed from NDVI, we show the area-averaged time 
series of NDVI Figure 7. With the occurrence of a significantly negative anomaly in spring 
2021, the behavior of NDVI is broadly similar to VCI or VHI. All three indices are poten-
tially useful for monitoring drought. The particular choice might depend on applications. 
(For example, VHI includes the information on surface temperature and might be a 
sharper indicator for a hypothetical drought that is caused by severely elevated tempera-
ture). 

Figure 7. The time series of NDVI presented in the same format as Figure 6.

Atmosphere 2022, 13, 1374 12 of 15 
 

 

 
Figure 7. The time series of NDVI presented in the same format as Figure 6. 

  
Figure 8. The time series of (a) the [4] version of NDWI and (b) the [20] version of NDWI. Presented 
in the same format as Figure 6. 

In Figure 6b–d, we further show the 12-month evolution of (b) surface temperature, 
(c) vegetation condition index (VCI) and (d) the vegetation health index (VHI). In spring 
2021, surface temperature was generally above normal which was a favorable condition 
for drought. The evolution of VCI in Figure 6c is similar to that of CIgreen in Figure 6a, as 
the former is derived from the latter. The VHI shown in Figure 6d combines the indices of 
surface temperature (TCI in Equation (6)) and vegetation (VCI). It also shows a negative 
anomaly through spring in 2021. Note that the range of plus/minus one standard devia-
tion for this index is relatively large in spring, implying a higher risk for droughts to occur 
in this season. In contrast, the standard deviation is small in summer, implying a less vol-
atile condition for the occurrence of droughts in the warm season. Since VCI and VHI 
depend on CIgreen, which is in turn computed from NDVI, we show the area-averaged time 
series of NDVI Figure 7. With the occurrence of a significantly negative anomaly in spring 
2021, the behavior of NDVI is broadly similar to VCI or VHI. All three indices are poten-
tially useful for monitoring drought. The particular choice might depend on applications. 
(For example, VHI includes the information on surface temperature and might be a 
sharper indicator for a hypothetical drought that is caused by severely elevated tempera-
ture). 

Figure 8. The time series of (a) the [4] version of NDWI and (b) the [20] version of NDWI. Presented
in the same format as Figure 6.

In Figure 6b–d, we further show the 12-month evolution of (b) surface temperature,
(c) vegetation condition index (VCI) and (d) the vegetation health index (VHI). In spring
2021, surface temperature was generally above normal which was a favorable condition
for drought. The evolution of VCI in Figure 6c is similar to that of CIgreen in Figure 6a, as
the former is derived from the latter. The VHI shown in Figure 6d combines the indices of
surface temperature (TCI in Equation (6)) and vegetation (VCI). It also shows a negative
anomaly through spring in 2021. Note that the range of plus/minus one standard deviation
for this index is relatively large in spring, implying a higher risk for droughts to occur in
this season. In contrast, the standard deviation is small in summer, implying a less volatile
condition for the occurrence of droughts in the warm season. Since VCI and VHI depend
on CIgreen, which is in turn computed from NDVI, we show the area-averaged time series
of NDVI Figure 7. With the occurrence of a significantly negative anomaly in spring 2021,
the behavior of NDVI is broadly similar to VCI or VHI. All three indices are potentially
useful for monitoring drought. The particular choice might depend on applications. (For
example, VHI includes the information on surface temperature and might be a sharper
indicator for a hypothetical drought that is caused by severely elevated temperature).

While the vegetation indices represent an important aspect of the drought, particularly
its agricultural impacts, for the purpose of early warning, it is known that negative anoma-
lies in water indices emerge even before the decline in vegetation indices [9]. To supplement
the vegetation indices, we further show the time evolution of NDWI in Figure 8, using the
same format as Figures 6 and 7. Figure 8a is for the version of NDWI defined in [4]. It
shows a negative anomaly (at one standard deviation below normal) in wetness starting
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from January 2021. In this context, this index potentially provides a sharper indication of
early warning of drought compared to the vegetation indices. On the other hand, after
January–February, the negative anomaly in NDWI stays at about the same level through
the rest of the year. It does not show a steep decline in March as do the vegetation indices.
Thus, the vegetation indices provide a better representation of the rapid intensification
of drought leading to its peak in April. The insight here is that different indices reflect
different aspects of the drought. We may obtain a more complete picture of a drought event
by combining a hybrid set of those indices together.

We caution that a wetness index such as NDWI only quantifies the fractional coverage
of wet surfaces. It might not always reflect the amount of water (soil moisture) through
the depth of soil that is crucial for plant growth. As such, the decoupling between the
evolution of NDWI and vegetation indices is not surprising. The interpretation of NDWI is
further complicated by the fact that different versions of the index do not always behave in
a similar manner. For example, Figure 8b shows the evolution of NDWI defined by [20]
instead of [4] (see Equations (1) and (2) for definitions). This index is designed such that it is
negative for vegetation cover, zero for barren soil and positive for water [20]. In Figure 8b,
a significant increase in the index that occurs in March–April reflects the dominant change
in land cover from vegetation to barren soil as drought intensifies. Thus, for this event, this
version of NDWI tells us more about vegetation than water, and Figure 8b looks rather
similar to Figure 6a or Figure 7 flipped upside down.

This study relies exclusively on satellite remote sensing products. Ideally, validations
with in situ measurements would further strengthen the results. At the high resolution
over the heterogeneous landscape as illustrated in Figures 1–3, a comparable ground-based
observational network to cross-validate satellite data does not yet exist. It is expected
that such validations could be carried out in the future, perhaps through a dedicated
field experiment.

The preceding results demonstrate a framework of using a geostationary satellite
for monitoring drought. Thus, we achieve the goal of transforming relevant techniques
from the setting of a polar-orbiting satellite to a geostationary satellite. This new research
theme has emerged as the new generation of geostationary satellites, such as Himawari-8,
became available less than a decade ago. Given the relatively short record of data and few
extreme drought events within the observational period, what we have accomplished by
studying the 2021 event is a “proof of concept”. If longer observations including more
extreme drought events become available from Himawari-8 and its successors, future
studies can extend our framework to create a statistical model for not only monitoring but
also predicting drought. We envision that such a model will use the suite of parameters
analyzed in this paper, and their time derivatives, as the main input.

Lastly, we only analyzed monthly means despite the potentially higher resolution
in time for geostationary satellite. The relatively conservative choice is influenced by the
shortness of available record. With longer observations, future studies could consider
analyzing changes in surface conditions based on weekly or pentad means, which will be
particularly useful for monitoring rapidly developing droughts. We also note that while
the shortness of the data and smallness of samples for the extreme events do not yet allow
an extensive statistical analysis, such an analysis should be carried out in the future with
longer data. As an example of what kind of analysis can be carried out, let us consider a
statistical test for the significance of the anomaly of the vegetation index in Figure 6a (or
Figures 6c and 7). It drops outside one standard deviation for two consecutive months in
March and April. Given the typical time scale of synoptic weather system of about 1 week,
and quick runoff (due to steep topography) to flush away the influence of a rainfall event
on vegetation, one might nominally take 1 week as one independent degree of freedom.
This would give 8 degrees of freedom over two months, enough to establish an over 95%
level of significance for a shift in the mean of the index (See, e.g., Equation (1) in [29] for
the quick estimate for t-test; the criterion for 95% significance being N ≥ 8 (∆/σ)−2, where
N is degree of freedom, ∆ is the shift in the mean and σ is one standard deviation. Thus,
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with ∆/σ ≈ 1, we need N ≥ 8.). However, a more rigorous estimate of degrees of freedom
should be carried out through an analysis of the correlation in time (and possibly space)
using sufficiently long observations. It is in this context that longer data will be needed.
We look forward to pursuing this direction in the future.

4. Concluding Remarks

This study demonstrates the technique of using a suite of vegetation and water indices
to monitor droughts. Those indices are derived from measurements by the geostation-
ary satellite Himawari-8. The indices incorporate information on vegetation coverage,
surface temperature and surface wetness. They are used to reconstruct the evolution of
a major drought event in Taiwan in spring 2021. It is found that the vegetation indices
exhibit a sharp decline from February to March that year, corresponding to the rapid
development of the drought towards its peak in April. Moderate negative anomalies in
the vegetation indices are present in January–February. The water index NDWI shows
complementary behaviors: A more significant negative anomaly in the index already
appeared in January, making it a sharper indicator for the early warning of drought. How-
ever, in February–March, the water index does not exhibit a steep decline similar to the
vegetation indices. Surface temperature is also found to be above normal in spring 2021,
which plays a secondary role in exacerbating the drought condition. The key lesson learned
is that different indices reflect different physical aspects of the drought and combining
them together leads to a more complete picture of a drought event for its monitoring
and detection.

This study has focused on one major drought event in spring 2021. Through the
case study, the indices derived from geostationary satellite observations are proven useful
for monitoring the evolution of drought. With this encouraging result, we recommend
further applications of the technique to future drought events. With the accumulation of
longer observations from a geostationary satellite, we may be able to build a statistical
model that uses satellite-based vegetation and water indices to perform seasonal prediction
on droughts.
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