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Abstract: Based on the meteorological, ozone (O3), and vertical observation data of 2020, this study
sought to evaluate the daily variation in O3, particularly the characteristics of nocturnal ozone
pollution. We also discuss the effect of local and mesoscale horizontal transport and vertical mixing
on the formation of nocturnal O3 pollution. Distinct seasonal characteristics of the daily O3 variation
in Shenzhen were identified. In particular, significant nocturnal peaks were found to regularly occur
in the winter and spring (November–December and January–April). The monthly average of daily
variation had a clear bimodal distribution. During the period, O3 pollution frequently occurred at
night, with the maximum hourly O3 concentration reaching 203.5 µg/m3. Nocturnal O3 pollution
was closely associated with horizontal transport and vertical mixing. During the study period, the
O3 maximum values were recorded on 68 nights, primarily between 23:00 and 03:00, with occasional
observation of two peaks. The impact of horizontal transport and vertical mixing on the nocturnal
secondary O3 maximum values was elaborated in two case studies, where vertical mixing was mainly
associated with low-level jets, with strong wind shear enhancing turbulent mixing and transporting
O3 from the upper layers to the surface.

Keywords: secondary ozone maximum; advection; vertical mixing

1. Introduction

Ground-level ozone (O3) significantly harms human health and ecological conditions.
The continued deterioration of atmospheric conditions due to O3 pollution has become
an environmental issue of major concern. Due to urbanization and industrialization, O3
pollution has plagued many areas in China [1] and has become increasingly complex,
with regional characteristics [1]. In some cities, O3 concentrations are increased above the
national standard approximately 20% of the time throughout the year. Further, in other
areas, maximum hourly O3 concentrations have exceeded the European O3 alert threshold
of 240 µg/m3 [2–5]. O3 and several other pollutants can cause severe illnesses, such as
tracheitis and impaired lung functions, due to repeated exposure [6,7]. O3 pollution can also
cause a 10% decrease in the yields of major food crops (including wheat, rice, soybean, and
potato) [8] and has impacts in various ecosystems [9]. Therefore, the current atmospheric
O3 pollution is a threat to human health and food security and causes ongoing damage.

O3 pollution not only shows specific features varying with geographic location but also
displays significant daily variations [10]. Under clear weather conditions, O3 concentrations
displayed significant daily variation, with maximum values appearing in the afternoon and
minimums occurring from evening to early morning [11]. At night, there is no solar radia-
tion or source of O3. Nitrogen oxides (NO) emitted from local urban sources react with O3
to produce nitrogen dioxide (NO2), resulting in O3 depletion. This, combined with efficient
loss of O3 through surface deposition, results in minimum O3 concentrations during the
late evening/early night. The daily O3 variation pattern is almost the same in urban and
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rural areas. However, high nighttime O3 values have been observed in different parts of
Europe, North America, South America, and several regions in Asia [12–16]. These obser-
vations have indicated clear nocturnal O3 peaks, with concentrations exceeding 100 µg/m3

at certain times. Within a stable nocturnal boundary layer, with no known sources of O3
pollution and in the absence of photochemical processes, nocturnal O3 concentrations can
only be explained by meteorological conditions. High nocturnal O3 concentrations are
mainly explained by external transport and vertical mixing. For instance, Chung proposed
that downward transport by vertical mixing is the primary cause of nighttime O3 peaks [17].
Baumbach and Vogt’s observations in Freiburg, Germany, suggested that local nighttime O3
maximum values might be caused by valley breeze [18]. Recent numerical model sensitivity
tests indicated that nocturnal low-level jets (LLJ) may cause cracks in the nocturnal residual
layer (RL), resulting in high nighttime O3 concentrations [19]. By performing an extensive
literature review, Tong et al. [20] concluded that nocturnal O3 pollution is a weak link in
current O3 research, and more research should be carried out to elucidate its formation
and causes.

In recent years, O3 pollution has gradually become a major concern in air pollution
events in the Pearl River Delta (PRD) region. Favourable climatic conditions, combined with
abundant VOCs and NOx emissions from natural and anthropogenic sources [21–23], have
led to more serious O3 pollution in the region. O3 has gradually replaced PM2.5 to become
the dominant pollutant [24]. The maximum hourly O3 concentration is 428–470 µg/m3 [25],
and long-term observation data revealed an uptrend in O3 concentrations [26]. In this
context, nocturnal O3 pollution has attracted attention. However, due to limited observation
data, existing studies have primarily focused on the processes and causes of daytime
O3 [27], with little attention to nocturnal O3. Further, the limited studies were mainly case
studies [28,29]. In this study, we analysed nocturnal O3 maximums and meteorological
data of 2020 for Shenzhen, a representative city in the PRD region, to investigate the
extent, frequency, and time of nocturnal O3 pollution and the impact of local and mesoscale
weather systems on these factors. As a coastal city in southern China, Shenzhen is one of
the three national financial hubs in China and the core city of the PRD metropolitan region.
The city connects Hong Kong to mainland China and is surrounded by vast coastal sea
area leading to the South China Sea and the Pacific Ocean. Due to the special geographical,
topographical, and climatic characteristics of the region, pollution is influenced not only
by sea and land breezes but also by regional weather systems and typhoons [30–32]. In
previous decades, O3 and other pollutants have been monitored in the Shenzhen area,
and meteorological observations and studies have been sufficiently carried out [33,34].
Accordingly, the region is a good candidate for studying nocturnal O3 and the impact of
meteorological conditions on pollution.

2. Introduction to the Sampling Sites and Methodology

To analyse the frequency, level, and causes of O3 pollution at night, we selected
O3 concentrations, meteorological data, and meteorology tower observations obtained
in 2020. The distribution of stations is shown in Figure 1. Hourly O3 concentrations
were measured at the Zhuzilin monitoring station of the Shenzhen Meteorological Bureau
(22◦32′ N, 114◦0′ E, with 63 m elevation) using a dual-cell, UV photometric Model 49i O3
Analyser (ThermoFisher Scientific, Waltham, MA, USA) with a measurement range of
0–400 mg/m3, minimum detection limit of 1 µg/m3, zero drift of <2.14 µg/m3/24 h, and
response time of 20 s. The station is located next to the city park of Shenzhen, with primarily
commercial, business, and residential areas and no industrial sources in the vicinity.
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Figure 1. The geographical location of the Pearl River Delta region in China (a) and the research
station in Shenzhen (b) (marked as yellow dot).

Meteorological observation data were recorded at the meteorology tower (Shiyan) and
the automatic weather station (Zhuzilin) (Figure 1). The meteorology tower carried out
observations (wind, temperature and humidity) at 13 levels using Vaisala equipment [33].
The wind profile observations were obtained from the Longgang observation base with
Vaisala LAP-3000 equipment (Table 1). The vertical profiles of atmospheric O3 concentration
were observed by atmospheric ozone detection lidar on the Futian Archives building, with
a spatial resolution of 30 m and an effective detection height larger than 3 km. The ERA5
atmospheric reanalysis data, including 950 hPa horizontal wind vectors and ozone mixing
ratio, from the European Centre for Medium-Range Weather Forecasts (ECMWF), were
collected hourly on 14 March 2020 with a horizontal resolution of 0.25◦ × 0.25◦. All the
data used in this paper were reported in Local Time (LT).
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Table 1. Description of the equipment.

Parameter Measured Measuring Levels (m) Instrument Accuracy Observation Address

O3 2 m Thermo Scientific
Model 49i 2 µg/m3 Zhuzilin

Wind direction
Wind speed 10 m Vaisala WMT703 0.1 m/s Zhuzilin

Wind direction
Wind speed

10 m, 20 m, 40 m, 50, 80
m, 100 m, 150 m, 160 m,

200 m, 250 m, 300 m,
320 m, 350 m

Vaisala WMT703 0.1 m/s Shiyan
meteorology tower

Temperature Vaisala HMP155 <0.2 ◦C Shiyan
meteorology tower

Wind profile
Max altitude: 3–6 km

Vertical resolution:
60 m

Vaisala LAP-3000 ≤1.5 m/s (RMS)
≤10◦ (RMS) Longgang

Ultrasound wind 40 m Campbell CSAT3
50 Hz

Ux, Uy < ±0.08 m/s
UZ < ± 0.04 m/s

Shiyan
meteorology tower

Ozone profile
Max altitude: 3 km
Vertical resolution:

30 m

Wuxi Zhongke
Optoelectronics

Co., Ltd.
<6 µg/m3 Futian

Archives Building

According to the results of previous studies [17,35], nocturnal O3 pollution generally
occurred under stable atmospheric conditions. To select stable atmospheric conditions and
avoid sudden weather clear-up, we selected the period from 3 h before sunset until sunrise
with hourly average wind speeds of no more than 2 m/s. The data were collected from
the ground automatic meteorological observation station (Zhuzilin in Figure 1). Vertical
meteorological observation data from the meteorology tower at the Shiyan station were
used to analyse atmospheric stability and the variability characteristics of the horizontal
and vertical wind fields. Wind profile information was utilised to analyse low-level jets
(LLJs). An LLJ is defined by Whiteman criteria [36], namely, that (1) the maximum wind
speed is more than 10 m·s−1 in the lowest 3 km and (2) the wind speed must decrease
by at least 5 m·s–1 from the height of the wind maximum to the wind minimum below a
height of 3 km or to a height of 3 km when no minimum is found. Turbulent Kinetic Energy
(TKE) is calculated using the data from 40 m three-dimensional ultrasonic anemometer.
Atmospheric stability was assessed using the bulk Richardson number (Rib). Rib was
calculated using temperatures and wind speeds from two layers [37], which were collected
from the 10 m and 350 m meteorology towers in this study. Nocturnal O3 pollution describes
a process where the nighttime O3 concentrations under stable conditions stop decreasing
and instead increase by more than 10 µg/m3 relative to the point of trend change.

3. Results and Discussion
3.1. General Characteristics of O3

In 2020, the annual average concentration in Shenzhen was 65.5 µg/m3, with a maxi-
mum hourly concentration of 348.9 µg/m3. Although nighttime concentrations were rela-
tively low, some high O3 concentrations were observed at night, with a maximum hourly
concentration of 203.5 µg/m3. Figure 2 shows the daily variation in O3 concentrations in
each month in 2020. This variation reflects the seasonal changes in O3 concentrations in
Shenzhen, with the maximum recorded in autumn and the minimum recorded in summer.
During the summer, the daily variation cycle showed a daytime maximum and a night-
time minimum. The daily variation in autumn was similar to that in summer, although a
slight peak was observed during the concentration decrease around midnight. During the
wintertime, a clear bimodal structure was observed, despite a markedly lower nighttime
maximum relative to the daytime maximum. In spring, the daily variation in O3 concentra-
tions displayed a similar pattern to that in winter. During the study period, the highest
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nighttime hourly O3 concentration of 203.5 µg/m3 appeared in April, and the nighttime
maximum values gradually decreased from winter to summer. Similar daily O3 variation
cycles were observed in other regions, such as Montreal, Canada [17]; Portugal [38]; Hong
Kong [39]; and Beirut, Lebanon [40]. Kulkarni et al. [41] discovered a bimodal structure for
daily variations in ground-level O3 concentrations in the UK during the wintertime; this
structure was particularly pronounced between November and January, with nighttime
maximums even higher than the daytime maximums. Saliba et al. [40] reported that the
secondary ozone maximum is attributed to a regional source of ozone, but downward
transport by vertical mixing is the physical interpretation, as suggested by Chung [17] and
Leung et al. [39]. Corsmeier et al. [12] especially focus on the effect of enhanced mechanical
turbulence produced by a LLJ. Zhu et al. [28] analysed the O3 vertical distribution charac-
teristics, and they illustrated that the atmospheric turbulence led to correlative variation
characteristics of O3 concentration in different heights. He et al. [29] show that synoptic
processes such as convective storms and low-level jets can lead to the nocturnal ozone
enhancement event by aggravating vertical mixing. Additionally, horizontal transport of
ozone-rich plumes may also be a supplementary driver. The enhancement of nocturnal
surface ozone is most likely associated with horizontal transport and low-level jets in this
study, which will be described in detail later.
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3.2. Causes of Nighttime Ozone Maximums

To identify the possible causes of nighttime O3 maximums, we analysed the features of
nighttime O3 during the 2020 observation period and found a total of 68 days with nighttime
O3 maximums. When the nighttime O3 maximum occurred, the daily variation pattern
of O3 concentrations (Figure 3) displayed a clear bimodal structure, with the maximum
peak appearing between 12:00 and 14:00 LT during the day and the secondary peak mainly
occurring between 23:00 and 03:00 LT at night. Maximum nighttime O3 concentrations
ranged from 33.1 to 203.5 µg/m3, with hourly average concentrations exceeding 80 µg/m3

on 13 nights.
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Figure 3. Corresponding daily variation in O3 concentrations during the occurrence of nighttime
O3 maximums.

To investigate the causes of the nocturnal O3 maximum, Eliasson et al. [42] proposed
a method to analyse the role of horizontal transport and vertical mixing in the formation
of nocturnal O3 pollution based on various analytical methods. The method established
three criteria to determine and differentiate the contribution of the two processes. All three
conditions depicted in Table 2 should be satisfied to attribute the nighttime O3 maximum
to horizontal transport. On the contrary, if the second or the third criterion is not met, the
nighttime O3 pollution is caused by vertical mixing. Based on the three criteria listed in
Table 2 and the meteorological conditions, we found that 30 of the 68 nighttime O3 pollution
incidents were caused by vertical mixing, which transported high concentrations of O3 in
the upper levels to the ground. Further, 16 events were caused by horizontal advection
of O3. Twenty-two days could not be clearly explained by horizontal and vertical mixing.
However, it should be pointed out that the categories of cases identified by using the criteria
in Table 2 are not completely convincing. For example, in some cases identified as vertical
mixing ones, horizontal transportation actually made more important contribution. In
fact, to accurately identify which process plays a major role in the formation of nocturnal
ozone pollution, it is necessary to conduct in-depth analysis based on the observation
data in the boundary layer, which is of great significance for further understanding the
dynamic mechanism of nocturnal ozone concentration rise events. The analysis of the
identified cases clearly revealed the important roles of local weather and vertical mixing
in the formation of O3 pollution at night. Two case studies were carried out to further
elucidate the roles of horizontal and vertical processes in the nocturnal O3 maximums.

Table 2. Criteria for nighttime O3 pollution transport analysis.

No. Horizontal Transport Vertical Mixing

1 Average wind speed ≤ 2 m/s from 3 h before sunset to sunrise
and atmosphere in stable stratification (bulk Richardson number (Rib) > 0)

2 Rib > 1 Rib < 1

3
Wind direction at the beginning of or

before the increase in O3
concentration (W-NW to E-SE)

No change in wind direction during or
before the increase in O3 concentration

3.2.1. Origin of Nocturnal O3 Events: Horizontal Transport

From 8 April to 9 April, the upper 500 hPa level in the Shenzhen area was controlled
by westerly wind, the 850 hPa level existed in a weak ridge field, and the ground was
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controlled by a weak high-pressure ridge, with poor dynamic conditions in the entire
layer, stable weather, and weak wind. The observed hourly atmospheric O3 concentration
distribution is shown in Figure 4. At night, the O3 concentration increased from 61.3 µg/m3

to 107.5 µg/m3 between 17:00 and 00:00, followed by a gradual decline to 44.8 µg/m3 by
06:00. In order to understand whether horizontal advection or turbulent downward mixing
caused an increase in nighttime O3 concentration, turbulence was analysed, using Rib. The
increase in ground-level O3 was closely related to the increase in Rib, with Rib increasing
from 0.6 at 16:00 to 9.9 at 21:00 (Figure 4a), indicating stable atmospheric stratification.
During this time, vertical mixing was weak and horizontal transport was favoured. The
rapid shift in surface wind direction from southerly to easterly–northeasterly served as
additional evidence of horizontal transport in the atmosphere (Figure 4b). The change
in surface wind direction was preceded by a rapid decline in wind speed from >1 m/s
to approximately 0.4 m/s (Figure 4c). Wind speeds remained low throughout the night
until the next morning (06:00), when the surface winds changed direction to southwesterly.
The northeasterly winds are expected to transport the ozone-rich air in the sea to the
Shenzhen, contributing to nocturnal ozone enhancement there. This is also supported by
the backward trajectory analyses using the Hybrid Single-Particle Lagrangian Integrated
Trajectory (HYSPLIT) model (Figure 5). Previous studies have indicated that the land
breezes can transport the local pollutants in Shenzhen to the sea, and the sea breezes can
transport the pollutants back to Shenzhen [43].
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Figure 5. The 12 h backward trajectories of air mass calculated using the HYSPLIT model at 23:00,
8 April.

In summary, the increase in O3 concentration during the night from 8 April to 9 April
2020 can be explained as follows: around sunset (17:00 LT), the near-surface air stabilized,
wind speeds weakened, and chemical reactions alongside surface deposition reduced ozone
concentrations. Under the stable atmospheric conditions, turbulent mixing was suppressed,
and horizontal movement was promoted by the temperature differences between land and
ocean and the northeasterly winds.

3.2.2. Origin of Nocturnal O3 Events: Vertical Mixing

Figure 6a shows that the O3 concentration during the nighttime between 00:00 and
06:00 on 14 March 2020 rose from 14 µg/m3 to 40 µg/m3. Figure 7 shows the spatial
distribution of ozone concentration and horizontal wind vector at the 950 hpa level. It
can be seen from Figure 7 that under the condition of the prevailing north wind, the air
mass in the high O3 area was gradually transported to seashore land during the period of
00:00 to 07:00 on 14 March. At the same time, a low–level jet occurred (Figure 6b), which
further facilitated the O3 inland to be transported to the coastal areas. A wind profiler
radar recorded the evolution of the vertical profile of wind speed on the night of 14 March
(Figure 6b), and an obvious low-level jet appeared during the period of 02:00 to 06:00.
The maximum wind speed of the low-level jet was recorded at the height of 400–700 m,
reaching 15 m/s. During this period, vertical mixing might have been enhanced within
the surface layer due to the strong vertical shear of wind speed, resulting in an increase
in surface O3 concentration [18]. Based on this inference, the vertical distribution of O3
concentration during this period was further analysed in Figure 6c. A significant decrease
in O3 concentration at 0.4–1.0 km and an increasing tendency in the lower atmospheric
layers can be found, which indicates that the LLJ may enhance the vertical mixing of mass
within the boundary layer. Furthermore, it can be seen from Figure 6d that the TKE within
the surface layer increased rapidly from 02:00 to 07:00, reaching a maximum of 2.5 m2/s2,
which was further evidence that the LLJ enhanced vertical turbulent mixing. Therefore,
LLJs might promote the enhancement of vertical mixing and increase the ground-level O3
concentration at night.
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the strong vertical shear of wind speed caused by LLJ, the turbulence in the surface layer 

was enhanced, so that the O3 at high altitudes was delivered to the ground through ver-

tical exchange. 

Figure 6. (a) Temporal change in hourly ozone concentration from 07:00 LT on 13 March to 06:00
LT on 14 March 2020; (b) Horizontal wind speed profiles from 00:00 to 06:00 LT on 14 March
2020, respectively; (c) Ozone concentration profiles at 00:00, 04:00, and 06:00 LT on 14 March 2020,
respectively, which were observed by atmospheric ozone detection lidar on the Futian Archives
building (indicated by black pentagram in Figure 7); (d) Characteristic variations in TKE at 40 m from
the meteorology tower from 13 to 14 March 2020.
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Figure 7. Geographical distribution of the composites of 950 hPa O3 concentration (units: µg/m3;
shaded colours) and 950 hPa horizontal wind vectors at 00:00, 04:00, 07:00 on 14 March 2020, respec-
tively (data from the ECMWF). The black pentagram is the location of the ozone profile.

Therefore, the entire night O3 pollution event can be explained by Figure 8, during
which the LLJ played an important role. In the horizontal direction, the LLJ efficiently
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transported the inland airmass with rich O3 to the coastal areas. At the same time, due
to the strong vertical shear of wind speed caused by LLJ, the turbulence in the surface
layer was enhanced, so that the O3 at high altitudes was delivered to the ground through
vertical exchange.
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Figure 8. Conceptual model of nocturnal O3 pollution under the land breeze over Shenzhen.

4. Conclusions

This study sought to reveal the long-term daily variation in O3 concentrations in
2020, with a particular focus on nighttime O3 pollution. Distinct nocturnal peaks were
regularly observed around Shenzhen during the winter and spring, with monthly average
daily variations showing a clear bimodal distribution. Further data analysis revealed
that nighttime O3 pollution occurred on 68 days in 2020 and was accompanied by a
clear bimodal structure in the daily variation, with the maximum peak appearing from
12:00–14:00 during the day and the secondary peak mainly occurring from 23:00–03:00
at night.

Nocturnal O3 pollution in Shenzhen was caused by two different types of weather
conditions: high atmospheric stability, in favour of horizontal movement, and weak atmo-
spheric stabilization, favouring vertical mixing. During the study period, 68 nights had
secondary O3 maximums that mainly occurred from 23:00 to 03:00 on the next day, with
double peaks occasionally observed. Of the events, 16 cases can be explained by horizontal
transport, while 22 can be explained by vertical mixing. We suggest that vertical mixing
and horizontal transport are the main causes of the nocturnal secondary O3 maximums.
Under high atmospheric stability, O3 pollution was closely related to the development of
land breeze. For weak atmospheric stability, the analysis revealed no significant changes in
wind direction (i.e., the absence of local and mesoscale weather systems). Instead, vertical
mixing, which was closely related to LLJs, was identified as the major cause. LLJs occurred
at night, with the wind speed at the centre reaching 15 m/s. The turbulent activity induced
by the LLJs changed the structure of the residual layer and the stable boundary layer,
leading to an increase in ground-level O3 concentration.

The findings of this study confirm that nocturnal O3 pollution often occurs during
clear and stationary weather conditions in autumn and winter. Under such conditions, local
and mesoscale wind field and vertical mixing will play an important role in urban wind
circulation and pollution transport. The frequent occurrence of nocturnal O3 pollution in
Shenzhen requires particular attention from the government during their discussion on
efforts related to pollution management.
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