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Abstract: A two-dimensional visibility estimation model was developed, based on random forest
(RF), a machine learning-based technique. A geostatistical method was introduced into the visibility
estimation model for the first time to interpolate point measurement data to gridded data spatially
with a pixel size of 10 km. The RF-based model was trained using gridded visibility data, as well as
meteorological and air pollution input variable data, for each location in South Korea, which were
characterized by complex geographical features and high air pollution levels. Generally, relative
humidity was the most important input variable for the visibility estimation (average mean decrease
accuracy: 35%). However, PM2.5 tended to be the most crucial variable in polluted regions. The
spatial interpolation was found to result in an additional visibility estimation error of 500 m in
locations where no adjacent visibility observations within 0.2◦ were available. The performance of the
proposed model was preliminarily assessed. Generally, the best detection performance was achieved
in good visibility conditions (visibility range: 10 to 20 km). This study is the first to demonstrate a
visibility estimation model based on a geostatistical method and machine learning, which can provide
visibility information in locations for which no observations exist.

Keywords: visibility estimation; inverse distance weighting; random forest; machine learning;
spatial interpolation

1. Introduction

Visibility refers to the maximum distance at which a person or object can be identified.
Visibility is known to be affected by meteorological conditions, such as the humidity, wind
speed, pressure, and concentration of air pollutants [1–3]. Aviation, marine, and traffic
safety may be affected by hazardous weather environments, such as fog and haze with low
visibility [4–6]. The US Department of Transportation Federal Highway Administration
has reported that low-visibility conditions, such as fog and heavy precipitation, increase
traffic accident damage [7]. Moreover, visibility can serve as an indicator for the level of air
pollution using the human eye [8,9]. Owing to the above reasons, it is necessary to monitor
visibility continuously.

The traditional method for measuring visibility is human observation of the farthest
distance at which a specific object can be distinguished from a building. However, owing
to their subjectivity, many human-based observations have been replaced by instrumenta-
tion [8]. Ground-based instruments, including transmissometers and optical scatterometers,
which detect the amount of attenuated or scattered light, have been employed for automatic
measurement of visibility at a specific location. However, these point measurements of
visibility are sparse in regards to measuring spatially continuous visibility information.
Since visibility can affect the safety of transportation and can be an index to estimate the
level of air pollution, spatiotemporally continuous visibility information must be provided
for locations where visibility measurements are not available.
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Visibility is directly predicted spatiotemporally using numerical weather prediction
(NWP) models [1,10]. However, challenges resulting in poor performance have been
reported in visibility prediction [11–13]. As an alternative, statistical techniques (machine
learning and regression analysis) have been introduced to estimate visibility information:
camera-based and sensor-based approaches [14]. Camera-based approaches have especially
been actively suggested, mainly focusing on road conditions. RGB images are inputted
to train machine learning models, such as neural networks [15], convolutional neural
networks (CNNs) [16,17], generalized regression neural networks (GRNNs) [17], CNN-
RNN [18,19], and Support Vector Regression [20–22]. However, these image-based visibility
estimation methods have the following limitations: 1. They can only be used for daytime
images, 2. Spatial distribution of visibility cannot be provided (only an estimation of
visibility information in the location where the camera is located). Sensor-based approaches
utilize meteorological information from weather stations for visibility estimation. Random
forest (RF) [23], neural network [23–25], and deep neural network (DNN) [23] models
have been used in previous studies. However, these previous studies still focused on
estimating and predicting visibility at specific locations, so that a spatial distribution of
visibility was not available. Several studies have been conducted to obtain spatiotemporally
continuous visibility information at locations in which measurements are not available,
or to predict future visibility. In general, several meteorological parameters (e.g., relative
humidity and precipitation) are obtained from NWP in the statistical models [12,26,27].
Moreover, concentrations of air pollutants have been introduced as an input variable for
visibility prediction. Kim et al. [13] performed visibility prediction using ground-based
meteorological measurement and air pollutant data from a chemical transport model
(CTM). However, the performance of visibility estimation models is dependent on the
performance of the model prediction data (meteorological parameters: NWP; air pollution
parameters: CTM).

Meanwhile, in South Korea, the causes of low visibility conditions owing to meteoro-
logical phenomena (fog, mist, and haze) are strongly dependent on regional characteristics,
such as complex geographical features and air pollution levels [23,28]. Moreover, the
Korean peninsula is surrounded by ocean, and includes mountainous areas along the
coast as well as several mountain chains [29,30]. Therefore, it is necessary to consider
the geographical features of the Korean peninsula and to obtain visibility information in
locations in which no visibility observations are available.

In this study, it was attempted to develop a two-dimensional (2D) visibility estimation
model in South Korea. We tried to use the observation data from ground-based stations in
the Korean Peninsula as the input variables (meteorological and environmental), not the
prediction data (NWP and CTM). The irregularly distributed point measurement data were
interpolated into a regular grid based on a geostatistical method: inverse distance weight-
ing (IDW). IDW has been actively used for the statistical estimation of two-dimensional
(2D) distribution of the concentration of fine dust, which is measured from point observa-
tions [31–34]. Subsequently, we attempted to construct a visibility estimation model using
a machine learning-based approach for each grid (location) for the first time to account for
the regional characteristics in each South Korean location. Furthermore, we investigated
the effects of the geostatistical method on the visibility estimation model in locations with
no observation sites. Finally, the performance of the visibility estimation model was pre-
liminarily assessed. In this study, for the first time, a modelto estimate two-dimensional
(2D) distribution of visibility, that can be used for traffic safety and air pollution diagnosis
in two dimensions in a place where there is no observatory on the Korean Peninsula with
complex geographical characteristics, is presented and verified.

2. Materials and Methods
2.1. Overall Design of the Development of the 2D Visibility Estimation Model

In this study, a two-dimensional visibility estimation model is suggested. Figure 1
shows the flow chart of the two-dimensional visibility estimation model’s development. As
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suggested in the introduction section, visibility is reported to have a correlation between
meteorological and environmental variables. Data were collected from ground-based sta-
tions that observe meteorological and environmental variables distributed in the regions of
interest (South Korea). The descriptions of the distribution of the stations and the data are
in Section 2.2. Then, the collected station data (visibility, meteorological, and air pollution
input variables) were geostatistically gridded using the spatial interpolation method (IDW)
with a pixel size of 10 km. The explanations on the IDW-based spatial interpolation process,
including determinations of the IDW coefficient and pixel size, are in Section 2.3. The
constructed data of the two-dimensional target variable (visibility) and input variable
(weather, environmental variables) were divided into training, validation, and test datasets.
The training and validation datasets were used to build the machine learning-based visi-
bility estimation model for each spatial pixel (location). In this study, the RF model was
introduced, since it provides variable importance information. Detailed descriptions of the
RF model-based 2D visibility model construction. including the characteristics of the RF
model and hyperparameter tuning, are in Section 2.4. Finally, the test dataset was utilized
to evaluate the visibility estimation model (Section 2.5).
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Figure 1. Flowchart of development of visibility estimation model.

2.2. Data Collection

The visibility, meteorological, and air pollution data were collected in the Korean
peninsula on an hourly basis from January 2018 to October 2022 (Figure 2, Table 1). In total,
33,600 datasets were collected (1400 days × 24 h). The visibility observation data were
obtained from the Automated Synoptic Observing System (ASOS) of the Korea Meteorolog-
ical Administration (KMA). A total of 94 ASOS ground-based observation sites are located
in South Korea. The meteorological input parameters, including air temperature, surface
pressure, wind speed, humidity, and precipitation data, were obtained from automatic
weather stations (AWSs) of the KMA. Data were collected from 521 AWS observation sites
during the study period. Furthermore, we calculated the temperature difference between
the observation time and that measured before the observation times of 6, 12, and 24 h to
account for the reduction in visibility from condensation owing to cooling (e.g., radiation
fog, haze, and mist) [35,36]. Both ASOS and AWS measurement data were obtained from
Open MET Data Portal of KMA (https://data.kma.go.kr/resources/html/en/ncdci.html,

https://data.kma.go.kr/resources/html/en/ncdci.html
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accessed on 6 February 2022). The air pollution input variables, such as the concentra-
tions of ozone (O3), carbon monoxide (CO2), sulfur dioxide (SO2), nitrogen dioxide (NO2),
and particulate matter (PM10, PM2.5), were collected from AirKorea observation sites
(https://www.airkorea.or.kr/eng, accessed on 2 April 2022). Finally, the solar zenith an-
gle (SZA) values for each location were calculated, based on the date, time, and location
(longitude and latitude). The SZA was used as an input variable for the visibility esti-
mation model to indirectly account for changes in radiation amounts because the SZA is
dependent on the amount of radiation. Although the ASOS also measures the radiation
amount, it could exhibit greater uncertainties following the gridding process when using a
geostatistical approach.
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Figure 2. Locations of (a) ASOS, (b) AWS, and (c) AirKorea observation sites in South Korea.

Table 1. Sites, units, and temporal resolutions of target variable (visibility) and input variables
(meteorological and air pollution).

Type Site Parameter
(Abbreviation) Unit Temporal

Resolution

Target variable ASOS a

(KMA b) Visibility km

Hourly

Meteorological
input variables

AWS c

(KMA)

Air temperature (T) ◦C
Pressure (P) hPa

Wind speed (WS) m/s
Humidity (Humid) %

Precipitation (Precip) mm
Delta temperature (∆T)

∆T24, ∆T12, ∆T06
◦C

Air pollution
input variables

AirKorea
(KECO d)

O3 concentration (O3) ppm
CO concentration (CO) ppm

SO2 concentration (SO2) ppm
NO2 concentration (NO2) ppm

PM10 concentration
(PM10) µg/cm3

PM2.5 concentration
(PM2.5) µg/cm3

Other input parameters Solar zenith angle (SZA) ◦ (degrees)
a ASOS: Automated Synoptic Observing System. b KMA: Korea Meteorological Administration. c AWS: Automatic
weather station. d KECO: Korea Environment Corporation.

2.3. Spatial Interpolation Process Using IDW

The spatial interpolation was carried out considering the Korean peninsula (longitude:
125.0◦ to 131.16◦; latitude: 33.1◦ to 38.5◦; only land pixels). The pixel size was determined

https://www.airkorea.or.kr/eng


Atmosphere 2022, 13, 1233 5 of 17

based on the distance between a specific ASOS site and the nearest ASOS site thereto. As
indicated in Table 2, the distances ranged from 0.05◦ to 1.8◦, with an average value of 0.28◦.
In total, 30% (73%) of the ASOS sites were within 0.2◦ (0.3◦) of the adjacent ASOS site. If
the pixel size was set to 20 km, the visibility information of two or more ASOS observation
points within 20 km could be located, and it was possible that the visibility values of the
points would not be sufficiently reflected. A pixel size of 5 km was considered to be too
fine because the distance between the observation points was approximately 0.2◦. Thus,
the pixel size was determined as 10 km.

Table 2. Number of ASOS sites and statistical values of distance between specific ASOS site and
nearest site.

Number of ASOS Sites Statistical Values

Total 94 sites Minimum 0.05◦

Distance ≤ 0.05◦ 2 sites Maximum 1.8◦

Distance ≤ 0.1◦ 4 sites Average 0.28◦

Distance ≤ 0.2◦ 28 sites Standard deviation 0.23◦

Distance ≤ 0.3◦ 69 sites
Distance ≤ 0.4◦ 87 sites

IDW was adopted as the spatial interpolation model in this study. IDW has been used
extensively in environmental studies [31–34]. IDW, which is a basic geostatistical process,
is based on two assumptions: (1) The values of spatially adjacent points are similar owing
to the common location factor and (2) The similarity decreases as the distance between the
two points increases. IDW uses the weight between the observation point and the point to
be estimated. In IDW interpolation, the power parameter (P), which is the exponent of the
distance, indicates the significance of the surrounding points on the interpolated value. The
typical value of P is 2 [33,34]. In this study, we attempted to determine appropriate P values
for each parameter (the visibility, and meteorological and environmental input variables) by
considering the distribution of the ground-based observations and pixel size. The P value
for the visibility (ASOS sites) was set to 2, whereas the P values for the meteorological
(AWS) and air pollution (AirKorea) input variables were set to 3. Figure 3 depicts the IDW
interpolation results for each variable.
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2.4. Construction of 2D Visibility Estimation Model Using RF Method

As the causes of low-visibility conditions are diverse owing to the complex geo-
graphical features and air pollution levels in South Korea [23,28], machine-learning-based
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visibility estimation models were constructed in each spatial location (spatial pixel). We
used the RF model, which is an ensemble technique based on bagging and randomized
node optimization [37]. The RF model averages a large collection of individual decision
trees to reduce overfitting. Furthermore, the RF model has built-in feature importance
called mean decrease accuracy (MDA) [37,38]. The MDA is a measure of the importance of
each input variable, expressing how much accuracy the model loses by excluding each input
variable. For each tree, the estimation accuracy using the original dataset was subtracted
from that using the input variable permuted dataset, then the remainders were averaged
over all trees in the forest, indicating the MDA. The resulting ‘MDA’ was an indicator of
input variable importance with regard to its contribution to the estimation accuracy. In
this study, we utilized the MDA values to evaluate the regional importance of each input
variable in the 2D visibility estimation model (See Section 3.1). We performed the RF model
training using the RandomForestRegressor from scikit-learn (version 1.0.2; NumFOCUS,
Austin, TX, USA) [39] in Python (version 3.7.11; Python Software Foundation, Wilmington,
DE, USA) [40]. The module includes various state-of-the-art machine-learning-based al-
gorithms [39,41]. The RandomForestRegressor includes several hyperparameters, such as
n_estimators (the number of trees in the forest) and max_features (the number of variables).
The optimal hyperparameters should be selected for improved model performance [37,42].
We used the GridSearchCV function that is available from scikit-learn (version 1.0.2; Num-
FOCUS, Austin, TX, USA) to determine the optimal hyperparameters. The RF models in
each spatial location were trained by optimizing the best hyperparameters. We randomly
divided part of the collected dataset (2018 to 2020) into training (70%) and validation
(30%) sets to construct the visibility estimation model (Figure 4). The dataset that was
collected in 2021 was used as the test dataset, which was subsequently used to evaluate the
performance of the visibility estimation model, as described in the following section.
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2.5. Assessment of Visibility Estimation Model

In this study, the values were estimated using a regression-based RF model. However,
it was desirable to evaluate whether the model detected a specific visibility range effectively,
as opposed to calculating the estimation error itself. Therefore, in this study, the performance
of the visibility estimation model was evaluated based on the detection performance for
each visibility range. The visibility ranges were classified into three groups (A: 10 to 20 km,
B: 5 to 10 km, and C: 0 to 5 km) (Table 3), as suggested in previous studies [43–45]. Moreover,
although we attempted to consider the visibility range between 0 and 1 km, it was excluded
owing to few cases (<100) that were identified in South Korea during the test set period
(January to October 2021).

Table 3. Definitions of visibility ranges.

Visibility Range Note

A 10 to 20 km Good visibility (clear air)
B 5 to 10 km Moderate visibility
C 0 to 5 km Poor visibility
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Three statistical measures were used to evaluate the visibility estimation models: the
recall, precision, and F1 score as used in the previous studies [46–48].

recall =
A

A + C
(1)

precision =
A

A + B
(2)

F1 score =
2 × (precision × recall)

precision + recall
(3)

In the above, A indicates a hit (corresponds to true positive), B is a false alarm (cor-
responds to false negative), C is a miss (corresponds to false positive), and D is a correct
negative value (true negative), as illustrated in Figure 5. Recall indicates the ratio of the
number of hits to the number of observed visibilities for each range. Precision is the ratio
of the number of hits to the number of estimated visibilities for each range. F1 score is the
harmonic mean of the precision and recall. The values of the recall, precision, and F1 score
are 1 for the perfect model (for worst model, these values are at 0) [49].
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2.6. Effect of Geostatistical Interpolation on Visibility Estimation Model

In this study, the ground-based data were spatially interpolated using the IDW method,
following which visibility estimation models were constructed for each location (each pixel).
However, it was necessary to investigate the performance of the visibility estimation model
using spatial interpolation in locations with no observation sites. Thus, in this study, we
focused on the effect of the gridded visibility on the model as it was the target variable
and observation sites (ASOS) are sparsely distributed in South Korea. We constructed an
additional visibility estimation model using spatially interpolated data without several
ASOS stations to examine the effect of the spatial interpolation on the visibility estimation
model. Subsequently, the visibility estimation error of the additionally constructed model
(modeladdition) was compared with that of the originally constructed model (modeloriginal) in
the locations where the ASOS site data were excluded from the geostatistical interpolation
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process. In this step, the visibility estimation errors (erroraddition and errororiginal) were
calculated as the absolute mean bias value between the estimated and observed visibilities
from the same test set. Table 4 lists the ASOS sites that were selected to investigate the
effect of the spatial interpolation on the visibility model. Poor visibility conditions (<5 km)
were frequently detected (>10,000 times) at these ASOS sites (Daegwallyeong, Inchen, and
Imsil) over 10 years (2011 to 2020).

Table 4. Summary of ASOS sites for investigating effect of spatial interpolation.

Station Name (Code) Latitude Longitude Poor Visibility Cases Notes

Daegwallyeong (100) 37.6771◦ 128.7183◦ 10,981

- Coastal area
AirKorea sites
are sparsely
distributed

Incheon (112) 37.4776◦ 126.6244◦ 12,242

- Coastal
areaAir
Korea sites are
sparsely
distributed

Imsil (244) 35.6120◦ 127.2856◦ 12,242 - Inland area

3. Results and Discussion
3.1. Variable Importance

Figure 6 depicts the importance of each input variable for the visibility estimation
models that were located at the ASOS measurement sites. The mean decrease accuracies
(MDAs) were spatially averaged over the ASOS measurement site locations. As reported
in a previous study [13], the relative humidity and concentration of fine-mode aerosols
(particularly PM2.5) had the highest variable importance, with the spatially averaged
MDA values of 35% and 26%, respectively. The spatially averaged MDAs of the remaining
input variables were less than 6%; however, the maximum MDAs of these input variables
were over 5%, depending on the location in which the visibility estimation model was
constructed. This implied that the influence of each input variable varied according to its
location in the model. For example, the maximum MDA of the relative humidity was 49%
on Heuksan Island, which is isolated from land with a background level of air pollutants,
whereas that of PM2.5 on Heuksan Island was only 14%. In Seoul, which is the capital
of South Korea, PM2.5 was the most crucial variable (MDA = 38%), and the MDA of the
relative humidity was 32%. In the case of the SZA, the maximum MDA was 8% in Yang-san.
Thus, our model could account for the regional characteristics of visibility in each location.
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3.2. Visibility Estimation: Case Studies

In this study, spatial distributions of the estimated visibility values were investigated
for four case studies including two well-estimated cases (Case A: 12:00 local time (LT) on
12 February 2021; Case B: 08:00 LT on 12 April 2021) and two wrongly-estimated cases
(Case C: 21:00 LT on 23 August 2021; Case D: 00:00 LT on 7 July 2021). Figure 7 illustrates
the spatial distributions of estimated visibility values using the constructed model on each
location with 10 km pixel size for the cases A–D. The observed visibilities from the ASOS
sites were also plotted to compare the estimated and observed values (Figure 7). As shown
in the Figure 7, visibility values had various spatial distributions in South Korea.

For case A, 78% of the ASOS sites provided visibilities of less than 10 km (36% of
sites: <5 km; 41% of sites: 5 ≤ visibility < 10 km), including haze cases over the entire
Korean peninsula. For case B, the visibilities in the northern part of South Korea were
greater than 10 km with clear weather conditions, whereas moderate visibility conditions
were observed in the southern part of South Korea (24% of sites: visibility < 10 km). In
general, the distributions of the observed and estimated values were strongly correlated
for moderate- and low-visibility cases. The correlation coefficients between the estimated
and observed values were determined as 0.73 and 0.81 for well-estimated cases (A and B),
respectively. The average absolute mean bias between the estimated and observed values
were 2.5 and 2.6 km, respectively.
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symbols indicate observed visibilities from ASOS at the same times.

Both wrongly-estimated cases (case C and D) included 50% of visibilities of less than
10 km (23% of sites: <5 km; 27% of sites: 5 ≤ visibility < 10 km). Case C indicated that our
model overestimated visibility values while case D showed underestimation. The values
of important input parameters (humidity, PM2.5, and PM10) were investigated for two
cases. For case C, the humidity values ranged from 77% to 100% with an average value of
95%. However, low concentrations of PM2.5 and PM10 were found with average values of
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5 µg/cm3 and 10 µg/cm3, respectively. It is thought that these low concentrations of PM2.5
and PM10 caused the model to estimate generally good visibility conditions. For case D,
high PM2.5 and PM10 values were found with average (maximum) values of 19 µg/cm3

(83 µg/cm3) and 28 µg/cm3 (113 µg/cm3), respectively. It seems that these high aerosol
concentrations caused the estimation of low visibility values in general. However, there
were discrepancies between the estimated and observed visibilities in several locations
for both cases. The causes of the discrepancies require more precise analysis in the future.
However, it means that new important input variables should be introduced besides aerosol
concentrations (PM10 and PM2.5) and humidity.

3.3. Effect of Geostatistical Interpolation on Visibility Estimation Model

In this study, spatial interpolation was performed to build a two-dimensional visibility
estimation model so that visibility could be estimated even where visibility stations are not
located. Therefore, as the distance from the visibility station increased, additional errors
might be inherent due to the application of the geostatistical method. As described in
Section 2.6, the visibility estimation error caused by spatial interpolation was investigated.
The visibility estimation error of modeladditional was compared with that of modeloriginal
in three sites where poor visibility events were frequent. The distance between the site
and the nearest site was the farthest (0.29◦) in Incheon, and the visibility estimation error
increased by 470 m (Table 5). In Daegwallyeong, at a distance of 0.19◦, the error increased
by 180 m, indicating that the effect of the spatial interpolation on the visibility estimation
error was not significant. However, the visibility estimation error for Imsil decreased by
60 m. Degradation of the visibility estimation model did not occur in limsil compared
to Incheon and Daegwallyeong because ASOS sites are located within 0.3◦ from lmsil.
When referencing the values of the adjacent ASOS stations, it appeared that degradation
of the visibility estimation model did not occur. Therefore, the visibility estimation error
with spatial interpolation is dependent on the distance from the adjacent ASOS site and
number of nearby ASOS sites when visibility estimation models are constructed in locations
with no ASOS sites. Hence, it appears that spatial interpolation may cause an additional
visibility error of 500 m, as determined over the ASOS sites with frequent low visibility
in South Korea. The degradation effect of the visibility estimation model with spatial
interpolation appeared to be negligible for the nearest ASOS sites that were located within
0.2◦. Therefore, it should be noted that additional visibility estimation errors (up to 500 m)
can be caused by the spatial interpolation over the pixels located more than 0.2◦ from the
actual visibility stations.

Table 5. Summary of visibility estimation errors of modeloriginal and modeladditional.

Site Name
Distance between Site
and Nearest Site

Absolute Mean Bias (Correlation Coefficient)

Errororiginal Erroradditional

Daegwallyeong 0.19◦ 1.56 km (0.83) 1.74 km (0.81)
Incheon 0.29◦ 1.45 km (0.93) 1.92 km (0.91)
Imsil 0.22◦ 1.81 km (0.79) 1.75 km (0.78)

3.4. Assessment of Visibility Estimation Model

The visibility estimation models were evaluated based on the detection performance
for three ranges of visibility values (range A: 10 to 20 km, range B: 5 to 10 km, and
range C: 0 to 5 km) in South Korea using the test dataset (data period: January to October
2021) as shown in Figure 8. The statistical measures (recall, precision, and F1 score) were
calculated for the pixels where a visibility estimation model was constructed, as described
in Section 2.5. However, pixels in which visibility was observed in less than 120 cases were
excluded from the performance test. The visibility counts were more than 120 for all pixels
in ranges A and B, whereas several pixels of range C were excluded owing to the small
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number of cases (Figure 9). In addition, the performances of the model using training and
validation datasets are in Figures S1 and S2 (Supplementary Materials).
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In general, our model detected almost all good visibility conditions (range A: 10 to 20 km).
For good visibility conditions, average values of all metrics (recall, precision, and F1 score)
were close to 1.0, indicating the high visibility detection performance of our model for good
visibility conditions.

For moderate visibility conditions (range B: 5 to 10 km), the spatial distributions of
recall, precision, and F1 score were diverse. Moderate detection performance was observed
in the middle-west part of South Korea for all metrics (average recall = 0.62, average
precision = 0.61, average F1 score = 0.61). A relatively higher recall (average: 0.73) were
detected in the northwestern part of South Korea, while low precision values (average:
0.42) were found in the region. The average F1 score was calculated as 0.52. It means that
our model overestimated moderate visibility conditions in the northwestern part of South
Korea. This might be explained by the lower number of cases in the moderate visibility
conditions than in the other regions during the test period (Figure 8). Moreover, the recall
values (average: 0.39) were low in the northeast region of South Korea (Gangwon Province),
where air pollution measurement (AirKorea) sites are not evenly distributed. Therefore,
it might be difficult to refer to air pollution information, including PM2.5, which is an
important variable. Additional training with a longer data period and more measurement
sites should be performed to improve the model detection performance in the region.

For the poor visibility case (range C: 0 to 5 km), the statistical measures (recall, preci-
sion, and F1 score) were calculated for the west-central part of South Korea (visibility counts
>120 cases). In general, low recall values of an average of 0.25 were observed, however,
high precision values (average: 0.79) were found. The average F1 score was 0.35. We found
that our visibility estimation models tended to underestimate low-visibility conditions
with low recall and high precision values, as demonstrated in the preliminary results. It is
expected that the low-visibility estimation performance could be improved if additional
model training was performed with more low-visibility cases using long-term data.

4. Conclusions

We have proposed a new model for estimating 2D visibility using a machine-learning
technique. Point measurement data (visibility as well as meteorological and air pollution-
based parameters) from South Korea were spatially interpolated using a geostatistical
method. The gridded data were used to train the visibility estimation models for each
location. The importance of the model input variables was distinct for each location, indi-
cating that our model could account for the regional characteristics of visibility variation.
Moreover, the effect of the spatial interpolation on the visibility estimation error was inves-
tigated. The model error was dependent on the location of adjacent visibility measurement
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sites. However, the error appeared to be negligible in locations where visibility observation
sites were located within 0.2◦, demonstrating the feasibility of the geostatistical method for
visibility estimation. The performance of the model was preliminarily assessed using three
measures (recall, precision, and F1 score). In general, the best performance was observed
for the detection of good visibility conditions, whereas the preliminary performance for
moderate and poor visibility conditions varied by region.

A regionally trained 2D visibility estimation model has been proposed in which the
RF is used to investigate regional features of variable importance. In the future, other
machine-learning techniques and deep learning can be applied to determine an optimal
model for visibility estimation in each location. Furthermore, the accuracy of the model
may be improved by collecting additional training data for moderate- and low-visibility
conditions over a longer period. In addition, the spatial interpolation method used in this
study is one of the common methods, suggested more than 20 years ago [50]. Recently,
state-of-the-art geostatistical methods have been developed, such as the deep learning-
based spatial interpolation method [51] and multiple Tensor-on-Tensor Regression [52,53].
The application of the latest approaches is expected to contribute to the improvement of the
visibility estimation model. Finally, this study is the first to demonstrate a machine learning
based model which estimates 2D visibility information that can be utilized for the safety of
transportation (road, shipping, and aviation) and indirect diagnosis of air pollution.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/xxx/s1, Figure S1: Recall, Precision, and F1 score of visibility estimation models
in South Korea for three visibility ranges ((a) 0 to 5 km, (b) 5 to 10 km, and (c) 10 to 20 km) for the
training set; Figure S2: Recall, Precision, and F1 score of visibility estimation models in South Korea
for three visibility ranges ((a) 0 to 5 km, (b) 5 to 10 km, and (c) 10 to 20 km) for the validation set.

Author Contributions: Conceptualization, H.L. and W.C.; methodology, W.C.; writing, H.L. and
W.C.; data curation, J.P. (Junsung Park), D.K., J.P. (Jeonghyun Park) and S.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Institute of Environment Research (NIER), funded
by the Ministry of Environment (MOE) of the Republic of Korea (grant no. NIER-2022-01-02-118).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fita, L.; Polcher, J.; Giannaros, T.M.; Lorenz, T.; Milovac, J.; Sofiadis, G.; Katragkou, E.; Bastin, S. CORDEX-WRF v1.3: Development

of a module for the Weather Research and Forecasting (WRF) model to support the CORDEX community. Geosci. Model Dev. 2019,
12, 1029–1066. [CrossRef]

2. Cornejo-Bueno, S.; Casillas-Pérez, D.; Cornejo-Bueno, L.; Chidean, M.I.; Caamaño, A.J.; Sanz-Justo, J.; Casanova-Mateo, C.;
Salcedo-Sanz, S. Persistence analysis and prediction of low-visibility events at Valladolid airport, Spain. Symmetry 2020, 12, 1045.
[CrossRef]

3. Xiao, S.; Wang, Q.; Cao, J.; Huang, R.-J.; Chen, W.; Han, Y.; Xu, H.; Liu, S.; Zhou, Y.; Wang, P. Long-term trends in visibility and
impacts of aerosol composition on visibility impairment in Baoji, China. Atmos. Res. 2014, 149, 88–95. [CrossRef]

4. Babari, R.; Hautière, N.; Dumont, É.; Paparoditis, N.; Misener, J. Visibility monitoring using conventional roadside cameras–
Emerging applications. Transp. Res. C Emerg. Technol. 2012, 22, 17–28. [CrossRef]

5. Gultepe, I.; Sharman, R.; Williams, P.D.; Zhou, B.; Ellrod, G.; Minnis, P.; Trier, S.; Griffin, S.; Yum, S.; Gharabaghi, B. A review of
high impact weather for aviation meteorology. Pure Appl. Geophys. 2019, 176, 1869–1921. [CrossRef]

6. Shan, Y.; Zhang, R.; Gultepe, I.; Zhang, Y.; Li, M.; Wang, Y. Gridded visibility products over marine environments based on
artificial neural network analysis. Appl. Sci. 2019, 9, 4487. [CrossRef]

7. U.S. Department of Transportation Federal Highway Administration. Low Visibility. Available online: https://ops.fhwa.dot.gov/
weather/weather_events/low_visibility.htm (accessed on 1 June 2022).

8. Hyslop, N.P. Impaired visibility: The air pollution people see. Atmos. Environ. 2009, 43, 182–195. [CrossRef]

https://www.mdpi.com/xxx/s1
https://www.mdpi.com/xxx/s1
http://doi.org/10.5194/gmd-12-1029-2019
http://doi.org/10.3390/sym12061045
http://doi.org/10.1016/j.atmosres.2014.06.006
http://doi.org/10.1016/j.trc.2011.11.012
http://doi.org/10.1007/s00024-019-02168-6
http://doi.org/10.3390/app9214487
https://ops.fhwa.dot.gov/weather/weather_events/low_visibility.htm
https://ops.fhwa.dot.gov/weather/weather_events/low_visibility.htm
http://doi.org/10.1016/j.atmosenv.2008.09.067


Atmosphere 2022, 13, 1233 16 of 17

9. Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014.

10. Singh, A.; George, J.P.; Iyengar, G.R. Prediction of fog/visibility over India using NWP Model. J. Earth Syst. Sci. 2018, 127, 26.
[CrossRef]

11. Huang, H.; Zhang, G. Case Studies of Low-Visibility Forecasting in Falling Snow with WRF Model. J. Geophys. Res. Atmos. 2017,
122, 862–874. [CrossRef]

12. Kim, M.; Lee, K.; Lee, Y.H. Visibility data assimilation and prediction using an observation network in South Korea. Pure Appl.
Geophys. 2020, 177, 1125–1141. [CrossRef]

13. Kim, B.-Y.; Cha, J.W.; Chang, K.-H.; Lee, C. Visibility Prediction over South Korea Based on Random Forest. Atmosphere 2021,
12, 552. [CrossRef]

14. Ortega, L.C.; Otero, L.D.; Solomon, M.; Otero, C.E.; Fabregas, A. Deep learning models for visibility forecasting using climatologi-
cal data. Int. J. Forecast. 2022, in press. [CrossRef]

15. Chaabani, H.; Werghi, N.; Kamoun, F.; Taha, B.; Outay, F. Estimating meteorological visibility range under foggy weather
conditions: A deep learning approach. Procedia Comput. Sci. 2018, 141, 478–483. [CrossRef]

16. Palvanov, A.; Cho, Y.I. Visnet: Deep convolutional neural networks for forecasting atmospheric visibility. Sensors 2019, 19, 1343.
[CrossRef]

17. Li, S.; Fu, H.; Lo, W.-L. Meteorological visibility evaluation on webcam weather image using deep learning features. Int. J. Comput.
Theory Eng. 2017, 9, 455–461. [CrossRef]

18. You, Y.; Lu, C.; Wang, W.; Tang, C.-K. Relative CNN-RNN: Learning relative atmospheric visibility from images. IEEE Trans.
Image Processing ITIP 2018, 28, 45–55. [CrossRef] [PubMed]

19. Song, M.; Han, X.; Liu, X.F.; Li, Q. Visibility estimation via deep label distribution learning in cloud environment. J. Cloud Comput.
2021, 10, 46. [CrossRef]

20. Lo, W.L.; Zhu, M.; Fu, H. Meteorology visibility estimation by using multi-support vector regression method. J. Adv. Inf. Technol.
2020, 11, 40–47. [CrossRef]

21. Lo, W.L.; Chung, H.S.H.; Fu, H. Experimental evaluation of pso based transfer learning method for meteorological visibility
estimation. Atmosphere 2021, 12, 828. [CrossRef]

22. Li, J.; Lo, W.L.; Fu, H.; Chung, H.S.H. A transfer learning method for meteorological visibility estimation based on feature fusion
method. Appl. Sci. 2021, 11, 997. [CrossRef]

23. Kim, J.; Kim, S.H.; Seo, H.W.; Wang, Y.V.; Lee, Y.G. Meteorological characteristics of fog events in Korean smart cities and machine
learning based visibility estimation. Atmos. Res. 2022, 275, 106239. [CrossRef]

24. Bremnes, J.B.; Michaelides, S.C. Probabilistic visibility forecasting using neural networks. In Fog and Boundary Layer Clouds: Fog
Visibility and Forecasting; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1365–1381.

25. Marzban, C.; Leyton, S.; Colman, B. Ceiling and visibility forecasts via neural networks. Weather. Forecast. 2007, 22, 466–479.
[CrossRef]

26. Ortega, L.; Otero, L.D.; Otero, C. Application of machine learning algorithms for visibility classification. In Proceedings of the
2019 IEEE International Systems Conference (SysCon), Orlando, FL, USA, 8–11 April 2019; pp. 1–5.

27. Bari, D.; Ouagabi, A. Machine-learning regression applied to diagnose horizontal visibility from mesoscale NWP model forecasts.
SN Appl. Sci. 2020, 2, 556. [CrossRef]

28. Chung, Y.; Kim, H.; Yoon, M. Observations of visibility and chemical compositions related to fog, mist and haze in South Korea.
Water Air Soil Pollut. 1999, 111, 139–157. [CrossRef]

29. Lee, S.H.; Kim, D.H.; Lee, H.W. Satellite-based assessment of the impact of sea-surface winds on regional atmospheric circulations
over the Korean Peninsula. Int. J. Remote Sens. 2008, 29, 331–354. [CrossRef]

30. Choi, S.W.; Kim, S.S. The past and current status of endangered butterflies in Korea. Entomol. Sci. 2012, 15, 1–12. [CrossRef]
31. Jha, D.K.; Sabesan, M.; Das, A.; Vinithkumar, N.; Kirubagaran, R. Evaluation of Interpolation Technique for Air Quality Parameters

in Port Blair, India. Univers. J. Environ. 2011, 1, 301–310.
32. Gómez-Losada, Á.; Santos, F.M.; Gibert, K.; Pires, J.C. A data science approach for spatiotemporal modelling of low and resident

air pollution in Madrid (Spain): Implications for epidemiological studies. Comput. Environ. Urban Syst. 2019, 75, 1–11. [CrossRef]
33. Shukla, K.; Kumar, P.; Mann, G.S.; Khare, M. Mapping spatial distribution of particulate matter using Kriging and Inverse

Distance Weighting at supersites of megacity Delhi. Sustain. Cities Soc. 2020, 54, 101997. [CrossRef]
34. Tella, A.; Balogun, A.-L. Prediction of ambient PM10 concentration in Malaysian cities using geostatistical analyses. J. Geo Spat.

Sci. Technol. 2021, 1, 115–127.
35. Duynkerke, P.G. Radiation fog: A comparison of model simulation with detailed observations. Mon. Weather Rev. 1991,

119, 324–341. [CrossRef]
36. Prusov, V.; Doroshenko, A. Computational Techniques for Modeling Atmospheric Processes; IGI Global: Hershey, PA, USA, 2017.
37. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
38. Louppe, G.; Wehenkel, L.; Sutera, A.; Geurts, P. Understanding variable importances in forests of randomized trees. In Advances

in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2013.
39. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.

Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

http://doi.org/10.1007/s12040-018-0927-2
http://doi.org/10.1002/2017JD026459
http://doi.org/10.1007/s00024-019-02288-z
http://doi.org/10.3390/atmos12050552
http://doi.org/10.1016/j.ijforecast.2022.03.009
http://doi.org/10.1016/j.procs.2018.10.139
http://doi.org/10.3390/s19061343
http://doi.org/10.7763/IJCTE.2017.V9.1186
http://doi.org/10.1109/TIP.2018.2857219
http://www.ncbi.nlm.nih.gov/pubmed/30028702
http://doi.org/10.1186/s13677-021-00261-7
http://doi.org/10.12720/jait.11.2.40-47
http://doi.org/10.3390/atmos12070828
http://doi.org/10.3390/app11030997
http://doi.org/10.1016/j.atmosres.2022.106239
http://doi.org/10.1175/WAF994.1
http://doi.org/10.1007/s42452-020-2327-x
http://doi.org/10.1023/A:1005077415764
http://doi.org/10.1080/01431160701241928
http://doi.org/10.1111/j.1479-8298.2011.00478.x
http://doi.org/10.1016/j.compenvurbsys.2018.12.005
http://doi.org/10.1016/j.scs.2019.101997
http://doi.org/10.1175/1520-0493(1991)119&lt;0324:RFACOM&gt;2.0.CO;2
http://doi.org/10.1023/A:1010933404324


Atmosphere 2022, 13, 1233 17 of 17

40. Van, R.G.; Drake, F. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009.
41. Torre-Tojal, L.; Bastarrika, A.; Boyano, A.; Lopez-Guede, J.M.; Graña, M. Above-ground biomass estimation from LiDAR data

using random forest algorithms. J. Comput. Sci. 2022, 58, 101517. [CrossRef]
42. Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and

random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [CrossRef]
43. Kuo, C.-Y.; Cheng, F.-C.; Chang, S.-Y.; Lin, C.-Y.; Chou, C.C.; Chou, C.-H.; Lin, Y.-R. Analysis of the major factors affecting the

visibility degradation in two stations. J. Air Waste Manag. Assoc. 2013, 63, 433–441. [CrossRef]
44. Elias, T.; Jolivet, D.; Mazoyer, M.; Dupont, J.-C. Favourable and Unfavourable Scenarii of Radiative Fog Formation Defined by

Ground-Based and Satellite Observation Data. Aerosol Air Qual. Res. 2018, 18, 145–164. [CrossRef]
45. Sun, X.; Zhao, T.; Liu, D.; Gong, S.; Xu, J.; Ma, X. Quantifying the influences of PM2.5 and relative humidity on change of

atmospheric visibility over recent winters in an urban area of East China. Atmosphere 2020, 11, 461. [CrossRef]
46. Ghorbanzadeh, O.; Tiede, D.; Dabiri, Z.; Sudmanns, M.; Lang, S. Dwelling extraction in refugee camps using CNN-first experiences

and lessons learnt. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 161–166. [CrossRef]
47. Lathifah, S.N.; Nhita, F.; Aditsania, A.; Saepudin, D. Rainfall Forecasting using the Classification and Regression Tree (CART)

Algorithm and Adaptive Synthetic Sampling (Study Case: Bandung Regency). In Proceedings of the 2019 7th International
Conference on Information and Communication Technology (ICoICT), Kuala Lumpur, Malaysia, 24–26 July 2019; pp. 1–5.

48. Krishna, P.R.; Ahammad, P.; Sethuraman, R. Hybrid Prediction Models for Rainfall Forecasting. Ann. Rom. Soc. Cell Biol. 2021,
25, 40–46.

49. Manimannan, G.; Priya, R.L.; Reena, K.J.; Priya, S.K. Climate Changes of Tamilnadu Based on Rainfall Data Using Data Mining
Model Evaluation and Cross Validation. IOSR J. Comput. Eng. 2018, 20, 32–38.

50. New, M.; Hulme, M.; Jones, P. Representing twentieth-century space–time climate variability. Part II: Development of 1901–96
monthly grids of terrestrial surface climate. J. Clim. 2000, 13, 2217–2238. [CrossRef]

51. Kirkwood, C.; Economou, T.; Pugeault, N.; Odbert, H. Bayesian deep learning for spatial interpolation in the presence of auxiliary
information. Math. Geosci. 2022, 54, 507–531. [CrossRef]

52. Gahrooei, M.R.; Yan, H.; Paynabar, K.; Shi, J. Multiple tensor-on-tensor regression: An approach for modeling processes with
heterogeneous sources of data. Technometrics 2021, 63, 147–159. [CrossRef]

53. Rajput, M.; Gahrooei, M.R.; Augenbroe, G. A statistical model of the spatial variability of weather for use in building simulation
practice. Build. Environ. 2021, 206, 108331. [CrossRef]

http://doi.org/10.1016/j.jocs.2021.101517
http://doi.org/10.1016/j.jag.2012.03.012
http://doi.org/10.1080/10962247.2012.762813
http://doi.org/10.4209/aaqr.2017.01.0044
http://doi.org/10.3390/atmos11050461
http://doi.org/10.5194/isprs-archives-XLII-1-161-2018
http://doi.org/10.1175/1520-0442(2000)013&lt;2217:RTCSTC&gt;2.0.CO;2
http://doi.org/10.1007/s11004-021-09988-0
http://doi.org/10.1080/00401706.2019.1708463
http://doi.org/10.1016/j.buildenv.2021.108331

	Introduction 
	Materials and Methods 
	Overall Design of the Development of the 2D Visibility Estimation Model 
	Data Collection 
	Spatial Interpolation Process Using IDW 
	Construction of 2D Visibility Estimation Model Using RF Method 
	Assessment of Visibility Estimation Model 
	Effect of Geostatistical Interpolation on Visibility Estimation Model 

	Results and Discussion 
	Variable Importance 
	Visibility Estimation: Case Studies 
	Effect of Geostatistical Interpolation on Visibility Estimation Model 
	Assessment of Visibility Estimation Model 

	Conclusions 
	References

