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Abstract: Remote sensing technology has been used for gasoline vehicle gaseous emissions moni-
toring for nearly 30 years. However, the application effect of the remote sensing detection of diesel
vehicle tailpipe emission concentrations is unsatisfactory. Therefore, several approaches were pro-
posed to analyze the remote sensing results for gaseous exhaust emissions from diesel vehicles,
including the concentration ratios of gaseous emission components to carbon dioxide (CO2) and
fuel-based emission factors. Based on our experimental results, these two metrics have some high
values in low-speed or low-load conditions of vehicles, which introduces uncertainty when eval-
uating vehicle emission levels. Therefore, an inversion calculation method originally developed
for remote sensing light duty diesel vehicle gaseous emissions was used for the remote sensing of
nitrogen monoxide (NO) tailpipe concentrations in heavy duty diesel vehicles, and validated by
PEMS tested emission results. For the first time, the above three options for evaluating the NOx

emission level of diesel vehicles, including the concentration ratio of NO to CO2, the fuel-based NO
emission factor and the estimated tailpipe NO emission concentration were investigated, and some
influencing factors were also discussed. The remote sensing tailpipe NO emission concentration can
be directly used to evaluate diesel vehicle NO emission levels compared with the two other metrics.

Keywords: diesel vehicle; remote sensing; concentration ratio; fuel based emission factor; tailpipe
emission concentration

1. Introduction

Due to the rapid growth of vehicle ownership, vehicle emissions are the main source
of air pollution. Compared with gasoline vehicles, exhaust pollution from diesel vehicles
is more serious due to their real-world emissions often being several times higher than
their type-approval limits [1,2]. One reason is that chassis or engine dynamometer testing
over a standard test cycle does not fully represent real vehicle driving situations; another
reason may be the use of defeat devices or the optimization of vehicle emission control
strategies for a type-approval test. It was not until the Euro VI or China VI stage that
the actual road emissions of diesel vehicles improved significantly [3]. However, as the
main freight vehicles, diesel vehicle emissions cannot be ignored, especially heavy duty
diesel vehicles (HDVs), as their emissions of nitrogen oxides (NOx) and particulate matters
(PM) are a significant cause of haze and ozone formation in many areas of the world,
and cause serious damages to human health, crop yields and the climate worldwide [4].
Although the emissions of new vehicles have been greatly reduced due to the gradual
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tightening of vehicle emission limits in major markets, once vehicles are put into use, the
wear, deterioration and failure of components leads to increased toxic emissions. In order to
effectively control vehicle emission pollution, it is necessary to strengthen the supervision
and control of in-use vehicle emissions.

At present, the Inspection and Maintenance (I/M) programs for diesel vehicles in
China include the free acceleration test and lug-down test [5]. The free acceleration test
cannot effectively measure NOx emissions from diesel vehicles. The lug-down test used to
detect diesel vehicle NOx and smoke emissions requires a chassis dynamometer and cannot
be used for on-site testing by environmental law enforcement personnel. Although the
vehicle I/M programs are effective ways to detect in-use vehicle emissions and screen out
high-emitting vehicles, the periodic inspection cycle of in-use vehicles in China is generally
6 months to 2 years, and no emission inspection is required for the first six years of a new
car, thus vehicle emissions may deteriorate before the next scheduled periodic inspection.
Therefore, it is necessary to adopt appropriate emission detection methods to realize the
real-time monitoring of in-use diesel vehicle emissions.

The portable emission measure system (PEMS) can directly measure vehicle emissions
in real road driving situations, and has high measurement accuracy [6,7]. However, the
PEMS test is time-consuming and expensive, and not suitable for measuring a high number
of vehicles in a short period of time to identify high emitting vehicles.

On-board Diagnostics (OBD) is a convenient and cost-effective means to monitor
vehicle emissions [8,9]. When the vehicle has a failure exceeding the emission standard, the
OBD malfunction light will illuminate to warn the driver to repair the vehicle. Since China-
III and previous diesel vehicles are generally not equipped with OBD, OBD monitoring
cannot fully replace the vehicle I/M method in the near future.

Remote sensing is an efficient technology that can measure the exhaust emissions of
vehicles driving on-road without interrupting traffic [10]. With the purpose of identify-
ing high-emitting vehicles in a timely and convenient way, some cities including Beijing,
Chongqing and Guangzhou in China adopted remote sensing devices (RSD) to detect vehi-
cle emissions [11]. The remote sensing of vehicle emissions can be used in conjunction with
the regular I/M programs to monitor unauthorized modifications and illegal adjustments
after legislatively scheduled emission inspections, can also detect serious failures in the
emission control system, and identify high-emitting vehicles.

In 2017, China’s Ministry of Ecology and Environment promulgated and implemented
the first national-level remote sensing regulation for measuring exhaust pollutants from
diesel vehicles [12]. The limits of exhaust opacity and Ringelmann blackness are manda-
tory, while the vehicle tailpipe nitrogen monoxide(NO) emission concentration limit of
1500 × 10−6 (1500 ppm) is only applied when screening high-emitting diesel vehicles. The
reason the single emission concentration limit for NO was proposed in the remote vehicle
emissions sensing standard was because most of the in-use diesel vehicles in China until
2017 were pre-China IV diesel vehicles without after-treatment systems, for which more
than 90% of the NOx generated by the engine is NO, and thus less than 10% is nitrogen
dioxide (NO2), and most of the high-emitting diesel vehicles are pre-China IV ones. Cur-
rently, the number of diesel vehicles compliant with China V and VI emission standards is
increasing, and diesel oxidation catalyst (DOC) devices are widely used to reduce pollutant
emissions and improve the purification efficiency of diesel vehicles’ after-treatment systems,
leading to increased proportions of NO2 of the total NOx emissions. In this study, NO was
used to represent the total amount of nitrogen oxides in order to remain consistent with the
Chinese remote emissions sensing standard.

For diesel vehicles, the remote sensing method for measuring diesel vehicle exhaust
smoke is to detect smoke opacity and has been used to capture severely smoky vehicles [13],
while remote sensing is less reliable for the detection of tailpipe NO emission concentration
from diesel vehicles, leading to the high rate of misjudgment for high-emitting vehicles [14].
In addition, the use of diesel particulate filters (DPF) in diesel vehicles can effectively
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reduce PM emissions [15]; therefore, the NO (NO and NO2) emission measurement and
control are the main challenges faced by diesel vehicles.

The remote sensing technology for gasoline vehicle emissions monitoring has been
used for nearly 30 years since researchers from the University of Denver first measured
vehicle CO emissions using remote sensing [16]. Until now, the measurement of CO, HC
and NO concentrations in tailpipe emissions from gasoline vehicles by remote sensing
has been considered feasible and acceptable [17–19]. In the US, vehicle emission remote
sensing data have been used for the screening of high-emitting vehicles, exemption of clean
vehicles and evaluation of vehicle emission levels [20–22].

Remote sensing typically measures the absolute concentrations of gaseous components
including CO, HC, NO (NO and NO2) and CO2 in the vehicle exhaust plume rather than
directly at the tailpipe. In the meantime, the concentrations of exhaust components in
the plume change rapidly as the exhaust plume disperses and is diluted by ambient air;
in order to obtain the tailpipe emission concentrations, the concentration ratios of CO,
HC, NO to CO2 in the exhaust plume are assumed to be constant for unreactive gaseous
pollutants and used to inversely calculate the tailpipe emission concentrations of CO, HC,
NO and CO2. The remote sensing system can detect the concentration ratios of CO, HC
and NO to CO2 in diesel vehicle exhaust plume directly, and the concentration ratios of
CO, HC and NO to CO2 can reflect the combustion and emission performances of the
diesel engine relatively well; therefore, the concentration ratio of NO to CO2 was used to
evaluate the NO emission levels of diesel vehicles in some studies [23,24]. Oftentimes, the
fuel-based NO emission factor, which represents the NO mass emission per unit mass of
fuel burnt (g/kg fuel), is used to evaluate the NO emission level of diesel vehicles [25,26].
Furthermore, the distance-based NO emission factor can also be estimated based on the
fuel-based NO emission factor and the vehicle fuel consumption at the time of the emission
measurements [27].

In order to overcome the major obstacle of adopting the remote sensing NO emission
concentration limit for diesel vehicles in China, an inversion calculation algorithm for
remote sensing CO2 exhaust emission concentrations from diesel vehicles was established
based on the relative concentration ratios of CO, HC and NO to CO2 in diesel vehicle
exhaust plume and the diesel engine excess air coefficient under test conditions, and used
to calculate the diesel vehicle tailpipe absolute CO2 emission concentration. Furthermore,
the absolute NO concentration in the diesel vehicle exhaust can be computed based on
the relative concentration ratio of NO to CO2 [28]. In this study, the inversion calculation
method used for the remote sensing of diesel vehicle tailpipe NO emission concentrations
was validated by experiments.

Because the inversion calculation method based on the theoretical air-fuel ratio or
rich mixture combustion of gasoline engines produces large errors in detecting the tailpipe
emission concentrations of diesel vehicles, scholars at home and abroad proposed using the
concentration ratio of NO to CO2 or the fuel-based NO emission factor to evaluate the NO
emission level of diesel vehicles. Based on our experimental results, these two metrics have
some high values in low-speed or low-load conditions of the vehicles, which introduces
uncertainty in the evaluation of vehicle emission levels. An inversion calculation method
originally developed for the remote sensing of light duty diesel vehicle gaseous emissions
was applied for the remote sensing of tailpipe NO emission concentrations from heavy
duty diesel vehicles, and validated by PEMS-tested emission results. For the first time,
the above three options for evaluating the NO emission level of diesel vehicles including
the concentration ratio of NO to CO2, the fuel-based NO emission factor and the derived
tailpipe NO emission concentrations were investigated, and their influencing factors were
also discussed to analyze their applicability in evaluating diesel vehicle NO emission levels.
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2. Methodology
2.1. Testing Facilities and Equipment

From September to November 2020, the exhaust emissions of 12 diesel vehicles were
tested by the remote sensing system and portable emission measurement system (PEMS)
synchronously. The instrument layout and test method are shown in Figure 1.
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Figure 1. Measurement of diesel vehicle emissions by RSD and PEMS. (a) Schematic diagram of RSD
and PEMS layout. (b) Instrument layout and installation. 1. License plate camera. 2. Remote sensing
system. 3. Weather station. 4. Light source and detector. 5. Reflector. 6. Speedometer. 7. Exhaust
flow meter. 8. Portable Emission Measurement System (PEMS). 9. Global positioning system. 10.
Weather station.

An Anhui Baolong BDH-1Z across-road open-path remote sensing system was used
to measure gaseous exhaust emissions including CO, HC, NO and CO2. The instrument
response time was less than 0.6 s. Table 1 shows the technical specifications of the BDH-1Z
remote sensing system.

As a diesel vehicle passes through the beam, RSD measures the absolute concentrations
of HC, CO, NO and CO2 in the exhaust plume and calculates the concentration ratios of HC,
CO, NO to CO2. For gasoline vehicles, the tailpipe emission concentrations of HC, CO, NO
to CO2 can be calculated by the inversion calculation method based on the theoretical air-
fuel ratio combustion mechanism, while for the remote sensing of diesel vehicle emissions,
the inversion calculation of the tailpipe emission concentrations of CO, HC, NO and CO2
needs to be corrected with the diesel engine excess air coefficient [28].
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Table 1. Technical specifications of BDH-1Z system.

Item Range of
Measurement Unit Accuracy

CO 0–10 % ±0.25%
CO2 0–16 % ±0.25%
HC 0–20,000 10−6 ±250 × 10−6

NO 0–10,000 10−6 ±250 × 10−6

NO2 0–10,000 10−6 ±250 × 10−6

Vehicle peed 10–120 km·h−1 ±1.6 km·h−1

When testing with the remote sensing system, vehicle exhaust emissions were directly
tested using PEMS. A Horiba OBS-ONE emission analyzer was installed on-board to
measure vehicle exhaust emissions simultaneously, as shown in Figure 1. The PEMS tested
vehicle emission results can be used to validate the calculated absolute concentrations of
exhaust emissions using remote sensing tests, and the diesel engine excess air coefficient
data measured by PEMS under vehicle real driving conditions can be used to establish a
diesel engine excess air coefficient map with vehicle speed and acceleration as parameters,
used for the interpolation calculation of diesel engine excess air coefficient under vehicle
test conditions. In this way, by using the concentration ratios of HC, CO and NO to CO2
in the exhaust plume and the calculated diesel engine excess air coefficients, the tailpipe
emission concentrations of the gaseous components from diesel vehicles can be calculated,
and the derived NO emission concentration can be used to compare with the remote sensing
NO emission limit for identifying whether the diesel vehicle is a high emitter or not.

The OBS-ONE emission analyzer uses non-dispersive infra-red detection (NDIR),
flame ionization detection (FID) and chemiluminescence detection (CLD) to measure CO
and CO2, HC and NO concentrations, respectively. NDIR determines the concentrations of
CO and CO2 in the exhaust gas by their infrared light absorption capacities. The absorbed
light intensities are directly related to the CO and CO2 concentration, respectively. The
change in the light intensity leads to a change in the electrical signal of the detector, which
can be used to calculate the gaseous concentration. Moreover, concentrations of NO and
NO2 are measured by CLD, whose principle is that NO molecules in the exhaust gas reach
the excited state after reacting with O3 in the reaction chamber, and photons are released
when NO molecules transform from the excited state back to the ground state. The detected
light intensity is proportional to the number of molecules of NO before the reaction, and
a photo-multiplier tube can be used to convert the light signal into an electrical signal,
and then the NO concentration can be calculated. FID is used to detect hydrocarbons in
vehicle exhaust gas, which typically contains many hydrocarbon compounds. Therefore,
FID was used to identify the total hydrocarbons(THC) instead of identifying hydrocarbon
compound/compounds. Table 2 shows the technical parameters of the OBS-ONE analyzer.
Vehicle speed and acceleration are derived by means of a global positioning system (GPS).
The operating parameters of the diesel engine and the vehicle were accessed through
On-board Diagnostics (OBD) communication with the electronic control unit (ECU).

Table 2. Technical parameters of OBS-ONE analyzer.

Types of Gaseous
Components

Measuring
Principle

Range of
Measurement Unit Resolution

CO NDIR 0–10 % 1
THC HFID 350 10−6 0.1
CO2 NDIR 0–20 10−6 0.01
NO NDUV 3000 10−6 0.1
NO2 NDUV 3000 10−6 0.1



Atmosphere 2022, 13, 1100 6 of 16

During remote sensing tests, the exhaust emissions of diesel vehicles were measured
under different driving situations, including constant vehicle speeds (10 km·h−1, 20 km·h−1,
30 km·h−1, 40 km·h−1, 50 km·h−1, 60 km·h−1 and 70 km·h−1), non-constant vehicle speeds
with slight acceleration, different vehicle loads (no-load, half-load and full-load) and
different SCR function states (brand new, normal and aged).

In this study, two heavy duty diesel vehicles including a China-V heavy duty diesel
truck (HDDT) and a China-VI HDDT were tested and used to validate the inversion
calculation method for the remote sensing of tailpipe gaseous exhaust emissions from
diesel vehicles. Furthermore, the concentration ratios of NO to CO2 and the fuel-based
emission factors of NO of these two HDDTs under different driving conditions were also
analyzed. Table 3 shows the specifications of these two tested heavy duty diesel vehicles.

Table 3. Specifications of the tested diesel vehicles.

No of
Vehicle

Emission
Level

Fuel
Type Vehicle Type

After
Treatment

System

Mileage
/km

Gross
Weight

/kg

Cargo
Weight

/kg

Cylinder
Number

Swept
Volume

/L

Maximum
Power
/kW

1 China-V diesel heavy-duty
diesel truck DOC + SCR 3768 4495 2215 4 3.0 110

2 China-VI diesel Heavy-duty
diesel truck

EGR + DOC +
DPF + SCR+

ASC
88,523 35,000 6800 6 11.8 294

DOC: Diesel Oxidation Catalyst; SCR: Selective Catalytic Reduction; EGRE: Exhaust Gas Recirculation; DPF:
Diesel Particulate Filter; ASC: Ammonia slip catalyst.

2.2. Detection of the Concentration Ratios of Gaseous Pollutants to CO2 in Diesel Vehicle Exhaust

Based on the emission concentration ratios of CO, HC and NO to CO2 in the exhaust
plume, the combustion and emission performances of the diesel vehicle engine can be
analyzed under the tested conditions. The concentration ratios of the gaseous components
to CO2 in the diesel vehicle exhaust plume are defined as:

∅CO =
CCO

CCO2

(1)

∅HC =
CHC

CCO2

(2)

∅NO =
CNO

CCO2

(3)

where ∅CO, ∅HC and ∅NO are the calculated concentration ratios of CO, HC and NO to
CO2 and CCO, CHC, CNO and CCO2 are the measured concentrations of CO, HC, NO and
CO2 in the exhaust plume, respectively.

The concentration ratios of gaseous components over CO2 in the exhaust plume can be
obtained directly and are usually taken as constant values. Since diesel engines, due to the
excess of oxygen in the fuel combustion process, emit less CO and HC, the NOX emissions
are the focus of diesel vehicle emission control. The concentration ratio of NO to CO2 was
used in Hong Kong to determine the remote sensing cutoff points for high-emitting diesel
vehicles, and the NO/CO2 ratios of 57.30 and 22.85 ppm/% were selected as the remote
sensing cutoff points for Euro 4 and Euro 5 high-emitting vehicles, respectively [23].

2.3. Detection of the Fuel-Based Emission Factors

Based on the carbon balance method, the concentration ratios of CO, HC and NO
to CO2 measured by RSD, together with the molecular weight of each substance, can be
used to calculate the fuel-based emission factors of CO, HC and NO, expressed in g·kg−1

fuel [29–31], which can also be used to assess the emission levels of the vehicle under tested
conditions.
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The fuel-based emission factors of CO, HC and NO are calculated by Equations (4)–(6):

EFCO =
28 ∗∅CO

(1 +∅CO + 3 ∗∅HC/0.493) ∗ Mfuel
(4)

EFHC =
44 ∗∅HC

(1 +∅CO + 3 ∗∅HC/0.493) ∗ Mfuel
(5)

EFNO =
30 ∗∅NO

(1 +∅CO + 3 ∗∅HC/0.493) ∗ Mfuel
(6)

where, EFCO, EFHC, and EFNO are the fuel-based emission factors of CO, HC and NO in
g·kg−1 fuel and the values 28, 44 and 30 are the molecular weights of CO, HC (calculated
as C3H8, which is used as a standard gas to calibrate remote sensing equipment) and NO,
respectively. For diesel, the molar hydrogen to carbon ratio is 1.85, the molar mass Mfuel is
0.01385 kg·mol−1, and the value 0.493 used in the formula is the conversion coefficient of
the carbon mass measured as propane.

Some studies also attempted to derive vehicle distance-based emission factors from the
fuel-based emission factors and the fuel consumption per unit travel distance [27], in order
to provide a direct comparison with the legislative emission limits for light-duty vehicles.

2.4. Detection of Tailpipe Emission Concentrations from Diesel Vehicles

Due to the lean-burn characteristics of diesel engines, the inversion calculation method
for the remote sensing of gasoline vehicle emissions is not suitable for diesel vehicles.
Considering the fact that there is a large excess of air in the diesel engine combustion process,
an inversion calculation method was proposed for the remote sensing of tailpipe gaseous
emissions from light duty diesel vehicles [28], and the tailpipe emission concentration of
CO2 (%) can be calculated by

ECCO2 =
100

0.5∅HC − 0.5 + 2.38α(2∅CO +∅HC + 3 +∅NO)
(7)

where α is the diesel engine excess air coefficient under the tested condition.
The tailpipe emission concentrations of CO, HC and NO from diesel vehicle are

calculated as:
ECCO = ECCO2 ∗∅CO (8)

ECHC = ECCO2 ∗∅HC (9)

ECNO = ECCO2 ∗∅NO (10)

For diesel vehicles, in addition to the concentration ratios of NO, CO, HC to CO2 in
the exhaust plume, the diesel engine excess air coefficient under the tested condition is also
needed to derive diesel vehicle tailpipe emission concentrations.

In this study, the inversion calculation formula defined by Equation (7) was utilized to
calculate the remote sensing results of CO2 emission from heavy diesel vehicles, and was
validated by PEMS-tested CO2 emissions of heavy diesel vehicles. Furthermore, the NO
concentration was calculated based on the concentration ratio of NO to CO2, and was also
compared with PEMS-tested NO emission of heavy diesel vehicles.

The excess air coefficient is an important parameter to characterize the load and
combustion characteristics of a diesel engine, and is closely related to the amount of fuel
required by the car while driving. To meet the demand of the diesel vehicle motion force,
the fuel injection quantity was used as the basic control parameter, which corresponds
to the excess air coefficient within the diesel engine cylinder. Therefore, it is feasible and
applicable to establish the excess air coefficient model related to the operating conditions
of diesel vehicles.

We originally set up the driving dynamics model of the light duty diesel vehicle
to calculate the engine torque and revolution speed based on the vehicle motive force
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and speed, used engine torque and revolution speed to interpolate the engine excess
air coefficient map and calculated the engine excess air coefficient under the driving
conditions [28]. However, this method requires a large number of parameters of the vehicle,
the engine and gear shift strategy. Generally, it is difficult to obtain the technical parameters
of the tested vehicle in real time. Therefore, in order to conveniently and effectively
obtain the excess air coefficient of diesel vehicle engines under driving conditions, the
statistical analysis method was adopted in this paper to build the map of diesel engine
excess air coefficients as a function of vehicle speed and acceleration based on the PEMS
tested data. In this study, the map of diesel engine excess air coefficients was built for
the two tested heavy duty diesel vehicles, as shown in Figure 2. For remote sensing
emission concentration detection, the engine excess air coefficient for diesel vehicle driving
conditions was calculated by interpolating the excess air coefficient map using the test
vehicle speed and acceleration.
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Figure 2. Excess air coefficient map as a function of vehicle speed and acceleration for heavy duty
diesel truck.

Figure 2 shows the schematic map of excess air coefficients for the two tested HDDTs.
The vehicle speed ranged from 0 to 100 km·h−1 with an interval of 5 km·h−1, and vehicle
acceleration ranged from 0 to 4.5 m·s−2 with an interval of 0.5 m·s−2. The surface plots
of excess air coefficients show that the excess air coefficient decreased with the increased
fuel injection due to the increased engine load with the increase in the vehicle speed or
acceleration.

The vehicle real driving emission test in this research lasted more than two months.
During vehicle emission tests, the ambient conditions including temperature, humidity,
wind speed and wind direction were uncontrollable and variable, but they all met the
requirements for the remote sensing of vehicle emissions. Thus, their combined effects
on vehicle emissions and engine excess air coefficients were already included within the
statistical analysis results of excess air coefficients. Therefore, in this research the calculation
of diesel engine excess air coefficient did take the changes of ambient conditions into
consideration as they all met the requirements for the remote sensing of vehicle emissions.
In addition, considering that it is not easy for RSD to measure the diesel vehicle weight,
the statistical maps of diesel engine excess air coefficients were obtained by combining
the diesel engine excess air coefficients under different vehicle load conditions, including
no-load, half-load and full-load. Thus, further research can be carried out to consider a
vehicle load that leads to a different engine load and excess air coefficient by adding a
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weight-in motion measurement to the RSD. In addition, for this excess air coefficient model,
the vehicle engine was assumed to be fully warmed up without considering cold-start
and hot-start emissions, and the excess air coefficient maps in this paper were developed
based on the tested diesel vehicles in this study. If these excess air coefficient maps are used
for other diesel vehicles, further validation work has to be performed, and more excess
air coefficient data derived by on-road testing other diesel vehicles need to be integrated
into the excess air coefficient maps. Moreover, the excess air coefficients were stored as
look-up tables as functions of vehicle speed and acceleration, and each node of data was
the statistical average value of numerous raw data, so that some transient characteristics
were smoothed out while keeping the most important and general logical relationships of
the original database; therefore, some errors under the vehicle transient driving conditions
were expected.

Although vehicle emissions are influenced by many factors, it is practical to determine
the engine excess air coefficients based on the driving dynamics of diesel vehicles. In this
way, the excess air coefficient of the diesel vehicle engine under test conditions can be
obtained, and the concentration ratios of HC, CO, NO and CO2 in the exhaust plume can
be measured by RSD; therefore, diesel vehicle tailpipe emission concentrations of HC, CO,
NO and CO2 can be calculated and used to evaluate diesel vehicle emission levels. The
calculation procedure for the remote sensing of tailpipe emission concentrations from diesel
vehicles is depicted in Figure 3.
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3. Results and Discussion
3.1. Concentration Ratios of Gaseous Exhaust Pollutants to CO2 of Diesel Vehicles

The concentration ratios of CO, HC, NO to CO2 in diesel vehicle exhaust emissions
were calculated based on the concentrations of CO, HC, NO and CO2 in the diesel vehicle
exhaust plume measured by RSD.

Based on the remote emission sensing data of the China-V heavy duty diesel truck
and the China-VI heavy duty diesel truck, the concentration ratios of NO to CO2 and the
measured concentrations of NO and CO2 (calculated by the inversion calculation method)
of these two diesel vehicles are shown in Figures 4 and 5, respectively.
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Figures 4 and 5 show that NO emission concentrations have a tendency to increase as
the CO2 emission concentrations increase, indicating that NO emissions increase with the
engine load. However, for the concentration ratios of NO to CO2, higher values typically
appear under engine part-load or vehicle light-load conditions. The reasons may be as
follows: First, this phenomenon may reflect the actual test results. Second, the emission
concentrations of NO and CO2 are low under light engine load conditions, especially under
low concentrations of NO, which easily leads to larger measurement errors. Second, because
the tested China-V and China-VI diesel vehicles adopt the SCR system, the conversion
efficiency decreases when the engine exhaust temperature drops under low load conditions
leading to relatively high NO emission concentrations.

The measured concentrations of NO and CO2 are only a snapshot of a vehicle’s
exhaust emissions within 1 s when the vehicle passes the remote sensing system. If the
high-emitting vehicles are judged solely on the basis of a higher concentration ratio of NO
to CO2 measured by the remote sensing system, it may lead to higher risks of misjudgment.
Therefore, if the high-emitting vehicles are judged based on the concentration ratio of NO
and CO2, additional judgment criteria must be added, such as the diesel engine load or the
CO2 emission concentration range, and ensure to be in the area with high CO2 emission
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concentrations of diesel vehicles, i.e., judging the high-emitting vehicles within higher
engine load range to avoid misjudgment of high-emitting vehicles.

3.2. Fuel-Based Emission Factors of Diesel Vehicle

Based on the remote emission sensing data for the China-V heavy duty diesel truck
and the China-VI heavy-duty diesel truck, the fuel-based NO emission factors of the two
vehicles are shown in Figure 6.
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As shown in Figure 6, the fuel-based NO emission factors of the China-V and China-VI
diesel vehicles show a decreased tendency with increased vehicle load due to the increased
conversion efficiency of the SCR system with increasing exhaust temperatures. On the
basis of the NO formation mechanism, the fuel-based NO emission factors can reflect the
emission level of diesel vehicles. Since remote sensing usually records the instantaneous
results of vehicle exhaust emissions, only one measurement result of the fuel-based NO
emission factor may not reflect the real emission level of the vehicle, and may be unsuitable
for identifying the high-emitting vehicles due to the higher fuel-based NO emission factors
under low vehicle load conditions. Similarly to the concentration ratio of NO and CO2,
additional judgment criteria should be added, such as the diesel vehicle load or the CO2
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emission concentration, ensuring the identification of high-emitting vehicles within a higher
vehicle load range and avoiding misjudgment.

However, statistical average values from a large number of measurements of fuel-
based NO emission factors can well characterize the emission levels of diesel vehicles [25].

3.3. Tailpipe Emission Concentrations from Diesel Vehicles

The remote sensing results of CO2 and NO emissions from a China-V heavy duty
diesel truck and the China-VI heavy-duty diesel truck were compared with the PEMS test
results, as shown in Figures 7 and 8.
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Figures 7a and 8a show that the remote sensing results of tailpipe CO2 emissions
calculated by the inversion calculation method are very close to the PEMS tested results,
as the correlation coefficient reached 99%, which shows the inversion calculation method
for the remote emission CO2 results for diesel vehicles is correct and reasonable, although
there are small errors between the remote sensing CO2 data and the PEMS tested CO2 data.

The remote sensing NO results are mostly close to the PEMS tested results, but there are
some abnormal points with some deviations between the two methods. The measurement
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errors caused by the test equipment are small; the main reason is the asynchronous RSD
and PEMS tested data and the cycle variations of engine combustion. The reasons for the
difference between the RSD and PEMS data are summarized as follows:

(1) The remote sensing NO emissions were calculated based on the CO2 remote sensing
results; therefore, the errors of the CO2 measurement and calculation led to errors in
the NO emission calculation.

(2) There were measurement errors for both RSD and PEMS, and there were differences
between RSD and PEMS in terms of test principles, methods and test sensitivity,
especially for NO.

(3) RSD detects the concentrations of vehicle gaseous exhaust components in the exhaust
plume behind the vehicle, while PEMS detects the vehicle tailpipe emission concen-
trations of gaseous components. Therefore, the test location and test conditions are
different between RSD and PEMS, and the test time is difficult to synchronize, thus
differences in test results are inevitable.

(4) Compared with the CO2 emission concentrations, the NO emission concentrations
were very low after dilution, and lower concentrations cause greater measurement
errors.

(5) The inversion calculation method for the remote sensing of diesel vehicle tailpipe
emissions needs to obtain the excess air coefficient of the diesel engine under the test
condition. The calculated excess air coefficient unavoidably has errors due to the
transient variations of driving dynamics of the vehicle and the measurement errors
for speed and acceleration.

Despite the measurement errors, the errors of the NO tailpipe emission concentrations
calculated by Formulas (7) and (10) reduced by several times to a few percent or tens
of percent compared with the result calculated based on engine theoretical air-fuel ratio
mixture combustion. Therefore, the remote sensing of tailpipe NO emission concentrations
from diesel vehicles can be used to identify high-emitting diesel vehicles and detect the
malfunctions or deterioration of diesel vehicles’ exhaust after-treatment system.

4. Conclusions

Remote sensing has been used as a means of screening high-emitting vehicles, while
the remote sensing system generally records an instantaneous result of the vehicle exhaust
emissions; therefore, the reasonable and accurate use of remote sensing test data is critical
to the reliability of screening high-emitting vehicles.

Three options for evaluating NO emissions from heavy duty diesel vehicles were
investigated, including the concentration ratio of NO to CO2, the fuel-based NO emission
factor and the derived tailpipe NO emission concentration, and some additional influencing
factors were also analyzed.

In theory, both the emission concentration ratio of NO to CO2 and the fuel-based
emission factor of NO can be applied to evaluate diesel vehicles’ NO emission level.
However, emission concentration ratios of NO to CO2 are prone to extreme values when
the vehicle is driven under low speed or low load conditions, which may result in the
incorrect judgment of NO emission levels. Similarly, the application of the fuel-based
emission factor of NO also leads to the same problem with higher values under low vehicle
speed or low-load conditions, which increases the risk of misjudging high-emitting vehicles.
Therefore, if high-emitting diesel vehicles are judged based on the concentration ratio of
NO and CO2 or the fuel-based emission factor of NO, additional judgment criteria must be
added, such as the diesel engine load or the CO2 emission concentration range, so as to
ensure that the NO emission level of diesel vehicles within a higher engine load range is
evaluated to avoid the misjudgment of high-emitting vehicles.

An inversion calculation method was applied to calculate diesel vehicle tailpipe emis-
sion concentrations based on remote sensing measurements using the relative concentration
ratios of various gaseous components in the exhaust plume and the diesel engine excess air
coefficient under the test condition. The remote sensing results of tailpipe CO2 emission
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concentrations fit well with the PEMS tested CO2 results, showing the correctness of the
inverse calculation method for the remote sensing of diesel vehicle tailpipe emissions. The
remote sensing results for tailpipe NO emission concentrations are mostly compliant with
the PEMS test results, and may thus be used to evaluate the NO emission performance of
diesel vehicles, and identify high-emitting diesel vehicles.
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ASC Ammonia Slip Catalyst
CO Carbon Monoxide
CLD Chemiluminescence Detection
CO2 Carbon Dioxide
DOC Diesel Oxidation Catalyst
DPF Diesel Particulate Filter
EF Emission Factor
EGR Exhaust Gas Recirculation
FID Flame Ionization Detection
GPS Global Positioning System
HC Hydrocarbon
HDDT Heavy Duty Diesel Truck
HDVs HDVs
LNT Lean NOx Trap
NDIR Non-Dispersive Infra-Red Detection
NO Nitrogen Monoxide
NO2 Nitrogen Dioxide
NOx Oxides of Nitrogen
OBD On-Board Diagnostics
PEMS Portable Emission Measurement System
RSD Remote Sensing Device
SCR Selective Catalytic Reduction
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