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Abstract: Relations between atmospheric variables are often non-linear, which complicates research
efforts to explore and understand multivariable datasets. We describe a mutual information approach
to screen for the most significant associations in this setting. This method robustly detects linear
and non-linear dependencies after minor data quality checking. Confounding factors and seasonal
cycles can be taken into account without predefined models. We present two case studies of this
method. The first one illustrates deseasonalization of a simple time series, with results identical to the
classical method. The second one explores associations in a larger dataset of many variables, some of
them lognormal (trace gas concentrations) or circular (wind direction). The examples use our Python
package ‘ennemi’.

Keywords: correlation detection; variable selection; mutual information; exploratory data analysis

1. Introduction

Experimental scientists nowadays have a positive problem to confront: there is more
measurement data available than can be easily handled. For instance, each station in
the SMEAR (Station for Measuring Ecosystem-Atmosphere Relationships) network [1]
produces continuous measurements of hundreds or thousands of variables across different
domains of environmental sciences. The wide range of variables allows one to investigate
complex feedback loops. The climate system contains many two-way couplings; one
example is between atmospheric aerosols and vegetation [2].

Given a “wide” data set of many variables, how can we find the most interesting
relationships for deeper study? The ease of data visualization has led to a rise in popularity
of exploratory data analysis, where the focus is on experimenting with the data and iterative
model-building. This style of working generates hypotheses that can then be tested with
classical statistics.

Manual exploration of data is insightful, but it would be beneficial to automate some
of the process. Given a variable of interest, it would be useful to automatically screen for
the “most relevant” covariates: those that have the most explanative power. Such a method
should find non-linear relationships, as many atmospheric variables have exponential,
logarithmic or power-law relationships. It should also be robust to low-quality data, and
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be able to remove any known cofactors such as seasonal cycles. These requirements rule
out the classical Pearson correlation.

Our solution is to apply information theory: a theoretical framework in which variable
dependencies can have any functional form. The concept of mutual information (MI)
originated in communications technology, but has since found applications in machine
learning [3], medical image registration [4], feature selection [5], financial analysis [6] and
genetic expression studies [7], to mention only a few.

In the field of atmospheric sciences, we have previously benchmarked MI to explore as-
sociations between continuous-scale variables and atmospheric aerosol event categories [8].
The method correctly found the previously known correlations, but was limited to the other
variable being discrete. Practical analysis of associations between continuous–continuous
variable pairs has been so far inhibited by technicality of MI estimation.

We have recently developed the Python package ennemi to fix that issue [9]. The
package uses a robust estimation algorithm, supports any combination of continuous or
discrete variables, and is capable of removing seasonal effects. In addition, this package is
aimed to be non-technical and easy to integrate into existing data analysis workflows; it
is not restricted to the context of atmospheric sciences. It has already been used by other
research groups as well, e.g., in urban air-quality studies [10] and analyzing connections
between indoor and outdoor air parameters [11].

In this article, we focus on practical MI data analysis using the package, and the
outline is as follows. In Section 2, we introduce the basic theory and our Python package.
The Results section is divided into two parts: In Section 3, we illustrate the advantages
and issues of our method with simulated data, whereas in Section 4, we present two case
studies utilizing atmospheric measurement data. Finally, we summarize our workflow for
data exploration and some future directions in Section 5.

2. Materials and Methods

Some mathematical derivations are included in Supplementary Materials. More details
can be found in textbooks, e.g., [12,13], and in the articles referenced in this section.

2.1. Mutual Information

The entropy of a random variable is a measure of its randomness. If X is a continuous
variable, its entropy is defined as

H(X) = −
∫ ∞

−∞
p(x) log p(x)dx, (1)

where p(x) is the probability density function. If X is discrete or categorical, the integral is
replaced by a sum over the possible values. In the discrete case, entropy can be understood
as the number of bits necessary to encode an observation of the variable. The entropy of
a continuous variable is a relative measure, and can thus be negative (it is relative to a
standard distribution that has infinite discrete entropy).

The mutual information (MI) between X and Y is the amount of entropy shared by the
two variables. Effectively, it tells us how much the randomness of Y is reduced by knowing
the value of X. MI is formally defined as

I(Y; X) = H(X) + H(Y)− H(X, Y), (2)

where the first two terms are individual entropies, and the final one is the joint entropy of
the two-dimensional distribution.

It follows that MI is a symmetric measure that takes values between 0 and ∞. As
the values depend on the base of the logarithm and can be arbitrarily large, the results
can be difficult to interpret. Several authors [14,15] define instead what we call the MI
correlation coefficient

ρYX =
√

1− exp(−2I(Y; X)). (3)
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This value is between 0 and 1, and in classical linear correlation, it matches the Pearson
correlation coefficient exactly, except for missing the sign.

The primary benefit of MI is its independence from transformations. Pearson corre-
lation is only valid for linear relationships; in any other case, the variables must first be
transformed suitably. A bijective transformation does not, however, change the information
content of a variable, and hence the MI stays constant. In fact, MI provides the theoretical
maximum for Pearson correlation of transformed variables. Consequently, zero MI implies
statistical independence of the variables.

Some examples of non-linear relationships are presented in Figure 1. In all of these
cases, Pearson correlation initially fails, but a transformation of the x variable makes the
relationship linear. Mutual information predicts the final correlation coefficient.

MI can also be calculated when one or both of the variables is categorical. For example,
in [8] the coefficient is calculated between a categorical variable (new particle formation
event class) and several continuous variables. In this case, MI is bounded by the finite
entropy of the categorical variable, and thus the largest possible correlation in (3) is strictly
less than 1. Comparisons between correlations are only valid when the categorical variable
is kept fixed, which is the case in the cited article.

y = sin(x) +(a) y = |x| +(b) y = |x + 0.4| +(c)

Original: 0.07
Transformed: 0.96
MI: 0.94

Original: 0.10
Transformed: 0.85
MI: 0.85

Original: 0.70
Transformed: 0.89
MI: 0.89

Figure 1. Examples of best linear fit lines (blue solid lines) to three different types of non-linear
relationships, the Pearson correlation coefficient before and after transforming the x variable, and the
MI correlation. Each sample has 120 points (a–c).

2.2. Removing Known Effects

Partial correlation describes the residual dependency between X and Y after removing
the effect of some other variable Z. This is done by fitting linear models X∼Z and Y∼Z
and then computing the correlation between model residuals.

A similar procedure can be applied to MI [16], yielding partial or conditional mutual
information. Its interpretation is exactly as before: the amount of information shared by X
and Y after removing any knowledge gained from Z. It is calculated as in Equation (1), but
the probability density is replaced by conditional probability density. After some algebraic
manipulation, the conditional MI can be written as

I(Y; X | Z) = H(X, Z) + H(Y, Z)− H(Z)− H(X, Y, Z). (4)

Remarkably, the MI correlation coefficient calculated from conditional MI corresponds
exactly to the partial correlation coefficient when the model is linear. The previous transfor-
mation invariance property holds as well. The importance of these properties is further
illustrated in the case study of Section 4.1.

2.3. Estimation Methods

In order to compute MI, it is necessary to know the probability densities of the variables.
There are several numerical methods to estimate densities from observed data points.

The simplest is a binning approach, where variables are approximated by discrete
bins [17]. A more advanced method is based on kernel density estimation [18], typically
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using the normal distribution as the kernel. A downside of these two methods is that they
are sensitive to the estimation parameters (bin size or kernel bandwidth, respectively). This
is illustrated in [19] (Figure 2).

Instead, Kraskov et al. [20] proposed a k-nearest-neighbor approach. The dependence
of results on the number of neighbors k is usually very weak, and as such a fixed default
value suffices. This method has also been extended to conditional MI [16] and MI between
discrete and continuous variables [19].

We have implemented the nearest-neighbor method and its variants in the open-source
Python package ennemi [9]. This package provides several convenient features:

• Ordinary and conditional MI,
• Simple programming interface for common analysis tasks,
• Analysis of time dependency with lags,
• Support for both discrete and continuous variables,
• Optional integration with pandas data frames,
• Efficient, parallel, and tested algorithms.

The package is available on Python Package Index (PyPI). All the analyses in this
article were performed with ennemi 1.2.0, SciPy 1.8.0, NumPy 1.22.2, pandas 1.4.1, and
Python 3.9.7. The default number of neighbors k = 3 was used for all analyses.
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Figure 2. Median and interquartile range of MI correlation coefficient as the sample size increases,
for actual correlations 0.6 and 0.2. The low correlation case has more noise from the estimator.

3. Examples
3.1. Sample Size and Accuracy

A disadvantage of MI is that it needs more samples than Pearson correlation to
produce accurate results. This is because Pearson correlation has implicit knowledge
about the model; namely, that it is linear with Gaussian residuals. Figure 2 shows the 50%
interval for repeated estimations of two correlated Gaussian variables. It appears that a
few hundred data points are necessary to get results correct to one decimal place when
the actual correlation is ρ = 0.6. Due to the nonlinear normalization formula (3), lower
correlation values have higher uncertainty. Conditional MI decreases accuracy further.

However, our goal for MI is to screen for most relevant correlations. For this purpose,
the achieved precision is good enough. To make the estimate more accurate, methods such
as bootstrapping can be used to account for random estimation errors.

On the other hand, very large datasets run into performance issues. A single estimate
with 20,000 samples takes approximately 0.2 s on a laptop computer with an Intel i5-1135G7
processor (clock speed 2.40 GHz). Conditioning on one or more variables further increases
execution time; see [9] (Figure 1). Again, very large samples are not necessary for initial
data exploration; in this article the largest sample contains 10,000 data points.
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3.2. Robustness

MI correlation appears to be roughly as robust to outliers as Spearman rank correlation.
We are not aware of theoretical bounds for, e.g., the breakdown point.

In Figure 3, the effect of both a single outlier and an increasing number of outliers is
shown. We simulated data sets of 500 observations from a bivariate normal distribution
with marginal variance σ2 = 1 and correlation ρ = 0.6. In panel (a), we increased the
x coordinate of a single observation to produce an outlier. In panel (b), we moved an
increasing proportion of points to x = 10.

0 5 10 15 20
x delta of the outlier point
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(a)

MI
Spearman
Pearson

0% 5% 10% 15% 20%
Proportion of outliers

(b)

MI
Spearman
Pearson

Figure 3. Medians and interquartile ranges of various sample (n = 500) correlation coefficients (a) as
the x coordinate of a single point is increased, (b) as the proportion of points with x = 10 is increased.

It is evident that Pearson correlation is not robust in either case, whereas Spearman
and MI correlation are not affected by the single diverging point, and MI is the least affected
by either scenario.

If the data are recorded at low precision, it might contain identical observations. The
nearest-neighbor method may produce incorrect results in this case, because it assumes the
probability of two identical observations to be zero. Our package solves this problem by
adding low-amplitude noise to the data.

The distribution of a variable may also be censored, for example by the values being
close to the measurement threshold. In that case, the same issue occurs. As Figure 3b
illustrates, our estimator still produces correct results. Censored measurements are present
in the case study of Section 4.2.

3.3. Transformation Invariance

As noted in Section 2.1, the value of MI does not depend on transformations of
variables or the shape of their distributions. That is, the MI between exp(X) and exp(2Y) is
theoretically the same as between X and Y. This allows us to discover potential correlations
without any model specification.

However, the nearest-neighbor estimator does suffer from skewed distributions; effec-
tively, the density estimate becomes too weak at tails. In atmospheric sciences, the most
common such distribution is log-normal: if X is normally distributed, then exp(X) is
log-normal. In practice, it is exp(X) that is observed, and thus it is necessary to take the
logarithm to get a less skewed distribution. Figure 4 shows the much faster convergence to
correct correlation as a function of sample size when X and Y are normal, as opposed to
log-normal exp(X) and exp(2Y).
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Figure 4. (a) Median and interquartile range of MI correlation coefficient as the sample size increases.
The bottom line is of two log-normal variables; the top line of the same variables after a log transform
is much closer to the real ρ = 0.6. (b) A sample from the correlated normal distributions of X and Y
values is quite symmetric. (c) The corresponding log-normal distribution of the values exp(X) and
exp(2Y) is concentrated near the origin but has many far-away points, as illustrated by the larger
axis range (maximal y ≈ exp(2× 3) ≈ 400).

While this may appear to counteract the benefit of MI, this transformation only needs
to be done once per variable, not once for each variable pair. In practice, this is easy to do as
part of data preprocessing. For example, atmospheric trace gas and aerosol concentrations
are generally known to follow log-normal distributions and should be log-transformed. We
have found other transforms, e.g., square root, much less necessary.

As a rough guideline, each variable should have a somewhat symmetric histogram
without heavy tails. Normality is not required. Our software automatically rescales all
variables to unit standard deviation, which also improves accuracy slightly.

3.4. Autocorrelated Data

The most severe practical issue is related to autocorrelated data, which of course
includes most atmospheric time series. The MI estimation algorithm assumes samples to be
independent of each other. The presence of autocorrelation introduces patterns that cause
the algorithm to over-estimate the probability density, as illustrated in Figure 5. This leads
to a significant positive bias in the MI correlation.

(a) (b)

Figure 5. (a) Five observations of independent variables. The outer panel shows the probability
density of the y variable given by Gaussian kernel density estimation, with zero along the inner edge.
The estimated density is smooth. (b) Polynomial interpolation through the points creates a pattern.
Marginal density has peaks as the estimator bandwidth is smaller. Default bandwidth selection of
SciPy was used.
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In the case studies below, we apply two methods to remove the autocorrelation bias.
In both cases, the solution reduces the sample rate of observations and consequently the
sample size. We have used only one data point per day, but 2–3 data points per day is
probably still valid for basic meteorological variables. Determination of the safe sample
rate should be done on a case-by-case basis.

The first method in used in Section 4.1, where we fix the time of initial observation
to 15:00 local time. The mask and lag functions of ennemi compare these observations to
the corresponding measurements at (15− n) h. This procedure immediately reduces the
sample rate to one point per day, and gives accurate information on autocorrelations back
from the specified time point. Conversely, it gives no information on other times of day.

In Section 4.2, we instead randomly sample a small fraction of data points. Thanks to
a large data set, the sample size is still very large. On average, the sample rate is still about
one point per day, but all times of day are now represented. This allows us to see the effect
of diurnal variation.

The loss in sample size can be compensated by bootstrapping. In the second method,
correlation coefficients from several random samples are averaged. In the first method, we
can choose for each day a random data point close to the fixed time.

4. Case Studies

Python source code for these case studies, as well as the figures of previous sections, is
included in Supplementary Materials. The full data set for Section 4.1 and a reduced data
set for Section 4.2 are also included.

4.1. Removing Seasonal Dependency

This example illustrates how a seasonal effect is removed with conditional MI. The
results are shown in Figure 6.

We consider a very simplified model for the predictability of weather: given a temper-
ature measurement at 15:00 local time, we estimate its correlation with future temperature
measurements. As no other variables are included in the model, the autocorrelation repre-
sents the general rate of variability of temperature.

+0 days +1 days +2 days +3 days +4 days +5 days +6 days +7 days

0.2

0.4

0.6

0.8

1.0

Co
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tio

n 
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ef
fic

ie
nt

MI, unconditional
Pearson, unconditional
MI, conditional on DOY
Partial correlation, given DOY

Figure 6. MI (solid lines) and Pearson correlation (dashed lines) between temperature measured at
15:00 and hourly temperature measurements up to 7 days after this. The top two lines are results
without deseasonalization and the bottom two take seasonality into account.

We used hourly temperature observations at Helsinki Kaisaniemi measurement station
in Finland from 1 January 2015 to 31 December 2019. In total, the data set contains 1826 days
of observations.
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We loaded the data into a pandas data frame and linearly interpolated the 15 missing
hourly values (only 2 of them were consecutive). As the temperature distribution was fairly
symmetric, there was no need to transform the variable.

To estimate the MI correlation, we used the estimate_corr method of our ennemi
package. We fixed the start time by passing an observation mask that only included the
15:00 (UTC+2) points. We then passed the temperature data as both the x and y parameter,
and used the lag parameter to apply a sequence of time differences.

As seen in the top two lines of Figure 6, Pearson and MI correlations are nearly
identical. This also illustrates an issue with the straightforward approach: at 60◦ N latitude,
the temperature and season are too strongly correlated for day-to-day variation to be visible.

To remove the seasonal effect, we must calculate partial correlation given the day of
year. We created a simple seasonal model that incorporates yearly and half-yearly cycles:

T̂(t) = a1 sin
(

2πt
365

)
+ a2 cos

(
2πt
365

)
+ b1 sin

(
4πt
365

)
+ b2 cos

(
4πt
365

)
+ c. (5)

Here, t corresponds to the day of year. We fitted the parameters a1, a2, b1, b2, and c
to minimize the sum of squared errors and then repeated the correlation calculation with
model residuals instead of observed temperatures. Leap days could be neglected with no
loss of accuracy.

For conditional MI, the procedure was rather simpler: we passed an auxiliary “day
of year” variable as the cond parameter to the function call. The seasonal effect is then
estimated from probability density without an explicit model; in theory, it should yield
perfect deseasonalization.

As the bottom two lines in Figure 6 show, the conditional MI correlation coefficient
closely matches partial correlation. The deseasonalized correlation decays rapidly, indi-
cating that most temperature patterns only last for a few days. The similarity of the two
coefficients suggests that the correlations are close to linear.

The deseasonalization model in Equation (5) is very simple and does not take, e.g.,
diurnal variation into account at all. At the same time, conditional MI produces equivalent
results without any model specification apart from selecting the conditioning variable. Our
implementation also supports conditioning simultaneously on multiple variables.

4.2. Discovering Associations across Many Variables

To explore possible dependencies between atmospheric variables, we used measure-
ments from the SMEAR II station located at Hyytiälä Forestry Field Station in Southern
Finland, about 50 km northeast from Tampere [1]. Our goal was to benchmark the method
with known cross-correlations between variables. Many of these variables are factors
related to atmospheric new particle formation (NPF), which is a complex and still not
completely understood process [21].

We utilized observations of particle number–size distributions (in the size range
3–1000 nm), several trace gas concentrations (SO2, NOx, O3, CO), and basic meteorology
(temperature, wind speed and direction, relative humidity) and global radiation (GlobRad)
variables. Measured particle-number size distributions were used to calculate the formation
rate of nucleation mode particles (diameter 3–25 nm) and the condensation sink (CS), which
describes the loss rate of vapor molecules and small particles due to larger pre-existing
particles [22]. Additionally, we used a proxy for the concentration of sulfuric acid, which is
known to be connected with atmospheric NPF [23].

The data set ranged from 1 January 1997 to 31 December 2019 with 1 h time resolution.
Individual variable availability was 57% to 96% in this interval. By visual inspection of
histograms, we chose to take logarithms of the following variables: particle concentration
and formation rate, GlobRad, sulfuric acid proxy, SO2, NOx, and CS.
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If we were to use the full data set for MI estimation, the autocorrelation issue described
in Section 3.4 would lead to extremely biased results. Instead, we randomly sampled 5%
(ca. 9800 data points) of the data set, for an average of 1.2 data points per day. To compensate
for loss of precision, we averaged correlation coefficients from three such random samples.
The standard deviations of the MI results for most variable pairs match the results shown
in Figure 2 for this sample size. More bootstrap iterations could have been used to reduce
the uncertainty of the MI estimations, but the present accuracy suffices for data exploration
purposes and the computations can be performed within a minute.

Figure 7 shows the cross-correlation between variables, as given by the pairwise_corr
method of ennemi. In the unconditional plot (a), the strong seasonal cycles of several
variables are clearly visible by their high MI correlation with the day of year. As expected,
the temperature is most correlated with season, followed by trace gases with known
seasonal cycles. Only the formation rate of 3–25 nm particles and wind speed/direction are
only weakly correlated with day of year.

Conditioning on day of year removes the seasonal cycle of each variable. We can see
from Figure 7b that another natural cycle still remains: the time of day is strongly correlated
with temperature, radiation, and some other variables. This obvious correlation can be
removed by conditioning simultaneously on both the date and time. In Figure 7c, only the
variations unexplained by yearly and daily cycles remain.

Comparison of the matrices reveals that most of the correlations with global radiation
are actually explained by date and time, and that only relative humidity and the sulfuric
acid proxy correlate with deseasonalized GlobRad. The sulfuric acid proxy is a function
of GlobRad, SO2, O3, and condensation sink. All of these are identified in Figure 7b–c.
The other correlations with sulfuric acid are partly explained by common factors, such
as the cross-correlation of O3 with NOx, or GlobRad/CS with time. As sulfuric acid is a
precursor to nucleation-mode particles, its correlation with particle number also matches
our expectations.

The interpretation of conditional MI results requires some care. For instance, we
see a correlation between the sulfuric acid proxy concentration and particle formation
rate in Figure 7a,b, but not in Figure 7c. This does not indicate that sulfuric acid and
particle formation rate are unrelated; rather, both of them have similar diurnal cycles with
maximum in the daytime and minimum in the nighttime. The figures suggest that (a)
there is a relationship between the two variables; (b) the relationship remains strong within
each season; (c) but day-to-day variation in sulfuric acid is less significant in explaining
the particle formation rate. MI cannot distinguish whether the two variables are causally
related, or both explained by a common factor (date and time, similar long-term trend,
third variable, etc.). Some of the correlations shown in Figure 7 are weaker than previously
reported in SMEAR II station [21], but the difference is explained by the unconstrained
data set analyzed here.

Most importantly, the functional relationships between the studied variables can be
arbitrary. Some examples are shown in Figure 8. In panels (a) and (b), one or both of the
variables are on a logarithmic axis, which must be taken into account when fitting a line.
In panel (c) one of the variables is wind direction, which is a circular variable. A more
specialized model is needed here; we opted for an analogue of Equation (5) to produce the
fit line in the figure. This illustrates the main benefit of MI: sensible correlation values are
given without the need to choose and justify a model.

We were also interested in possible time dependencies between the variables. For
example, it takes some time for a newly formed particle to grow large enough for detection.
It would hence make sense to apply a lag to the covariate measurements. As in Section 4.1,
we used the estimate_corrmethod to produce figures of correlations at different lag values.
The method accepts a mask parameter that selects a subset of data without destroying the
time series structure.
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Figure 7. Pairwise MI correlation between a selection of SMEAR II variables. Correlation values
below 0.25 are not shown. (a) The bottom two rows of unconditional MI indicate that many variables
have strong seasonal and diurnal cycles. (b) Conditioning on the day of year removes the seasonal
cycles. The explanative strength of diurnal cycles is increased. (c) Additionally conditioning on the
hour removes diurnal cycles as well. The correlations are related to any remaining variation in the
variables. Other common factors may still exist, however. (d) By comparing subfigures (a,c), we see
that especially the effect of global radiation is actually explained by date and time. After conditioning,
a strong correlation only remains with the sulfuric acid proxy, of which global radiation is an input,
and with relative humidity. Conversely, the wind direction (air mass source) gains explanative power
when usual yearly variations are removed.
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Figure 8. Examples of non-linear correlations related to trace gases and condensation sink. Observa-
tions are separated by season, but a random sample from all times of day is used. The correlation
coefficient ρ refers to each fitted non-linear model. (a) Condensation sink and concentration of nitrous
oxides are both logarithmic variables. A log-log-linear model explains their correlation. Conditional
MI from Figure 7b is 0.62. (b) Ozone follows a linear scale. The log-linear correlation between O3 and
NOx depends heavily on the season. Conditional MI is 0.48. (c) Wind direction versus logarithmic
NOx concentration. A two-level trigonometric model analogous to Equation (5) is fitted. Conditional
MI is 0.58. Existing literature suggests that wind direction explains all three other variables [24].
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Figure 9 presents the time-dependent correlations of condensation sink and the other
variables. We see that correlations are generally strongest when there is no time difference
between the variables. The rate of decay corresponds to the rate of change (autocorrelation)
of each variable. The highest MI values are observed between CS and the concentration of
100–1000 nm accumulation mode particles, which is an expected result given the typical
particle size-distributions observed at the Hyytiälä SMEAR station [25]. The correlation of
CS with wind direction seems to be strongest some 4–6 h before the CS measurement, how-
ever visual inspection of scatter plots between these variables suggests that the differences
in the correlations at different lag times are not very large.

024681012141618202224
Covariate lag (hours)

3 25 nm form. rate
3 25 nm conc.

25 100 nm conc.
100 1000 nm conc.
Temperature (4 m)

Temperature (34 m)
Relative humidity

Wind speed (34 m)
Wind direction

Global rad.
CO
O3

NOx
SO2

H2SO4 proxy
Hour

Day of year

Unconditional MI with CS(a)

024681012141618202224
Covariate lag (hours)

MI given day of year and hour(b)

0.25

0.35

0.45

0.55

0.65

0.75

M
I c

or
re

la
tio

n 
co

ef
fic

ie
nt

Figure 9. Correlation coefficients between studied variables and the condensation sink (CS) as
function of the lag time for (a) unconditional MI and (b) conditioning on season and time of day.
Covariates are measured at times up to 24 h before the CS observation. The correlation with sulfuric
acid proxy is most likely explained by similar diurnal variation, as it is reduced by conditioning on
the time of day.

5. Conclusions

Several features make mutual information an attractive method for exploratory data
analysis of atmospheric variables. In particular, the measure is robust to outliers and
unprecise or censored data. The MI correlation coefficient matches Pearson correlation
exactly in many cases that traditionally require transformations of variables.

We also discussed some practical issues and limitations with MI. Autocorrelated data,
as is common in atmospheric sciences, pose problems that must be addressed in the analysis
workflow, e.g., by suitably sampling from the original dataset. Some care is thus necessary
when using the method with time series data. Low MI correlation values are accurate
only when the sample sizes are large. While the MI algorithm is more computationally
intensive than the classical methods, execution time is not an issue in practice even with
large datasets.

We performed several case studies to evaluate the method. We found that the method
makes it easy to detect non-linear relationships that would otherwise require model specifi-
cation or visualization: instead of modeling N2 variable pairs, possibly conditional on other
variables, it suffices to quality-check the N variables. With the ever-increasing number of
datasets of environmental variables available, pairwise MI plots help focus on exploring
the most relevant connections. Time-lag plots and conditioning can be used to suggest
causal relationships.

Let us still summarize the analysis workflow we used in our case studies:

1. After the usual data quality checking, preprocess variables to have roughly symmetric
histograms. Select a suitable subset of autocorrelated data.

2. Estimate pairwise MI between all variables, as in Figure 7.
3. Use conditional MI to investigate common factors such as seasonal cycles.
4. Estimate time dependencies with the variables of interest, as in Figure 9.
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5. Draw scatter plots and manually explore the reduced set of the most interesting variables.

Our Python package is designed to support this workflow. As the method requires
little data preparation or technical tweaking, it should be easy to try out on various data sets.
While the case studies presented in our work are within atmospheric sciences, the methods
are applicable to other fields of natural science as well. Some additional features of the
package are described in its online documentation (https://polsys.github.io/ennemi/,
accessed on 21 June 2022). In particular, the package also supports categorical variables.

With the large datasets now available, it is possible to “mine” for new hypotheses and
associations between variables. Our workflow makes the process easier and helps guide
modeling efforts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13071046/s1. Derivations of theoretical results. Source
code and partial data for all the figures.
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