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Abstract: Seasonal forecasting systems still have difficulties predicting temperature over continental
regions, while their performance is better over some maritime regions. On the other hand, the land
surface is a substantial source of (sub-)seasonal predictability. A crucial land surface component
in focus here is the snow cover, which stores water and modulates the surface radiation balance.
This paper’s goal is to attribute snow cover seasonal forecasting biases and lack of skill to either
initialization or parameterization errors. For this purpose, we compare the snow representation
in five seasonal forecasting systems (from DWD, ECMWE, Météo-France, CMCC, and ECCC) and
their performances in predicting snow and 2-m temperature over a Siberian region against ERA5
reanalysis and station data. Although all systems use similar atmospheric and land initialization
approaches and data, their snow and temperature biases differ in sign and amplitude. Too-large
initial snow biases persist over the forecast period, delaying and prolonging the melting phase. The
simplest snow scheme (used in DWD’s system) shows too-early and fast melting in spring. However,
systems including multi-layer snow schemes (Météo-France and CMCC) do not necessarily perform
better. Both initialization and parameterization are causes of snow biases, but, depending on the
system, one can be more dominant.

Keywords: seasonal forecasting; snow; land-atmosphere

1. Introduction

The success of a seasonal forecast highly depends on the region of interest and its
predictability. Whereas most continental regions over the Northern Hemisphere show
low predictive skill from dynamical models, some ocean (especially tropical pacific) and
maritime regions show good predictive skill. The ocean is a slower and more predictable
system than the atmosphere and influences it. However, the land surface is a slower system
than the atmosphere and interacts with it. Thus, the land surface is considered a source of
predictability due to its memory (energy/water) stored as snow cover and soil moisture.

Snow cover is a substantial land surface component with high intra-annual variability
in the Northern Hemisphere. It interacts with the atmosphere via energy (short-/longwave
radiation, sensible/latent/ground heat flux) and water exchanges (precipitation, sublima-
tion, and condensation). The high albedo and emissivity of snow are cooling the surface
temperatures. This effect can maintain cold temperature conditions at the surface on a local
scale (snow-albedo feedback). In spring, the snowpack requires latent heat for melting,
which slows down the warming in the melting season, and the melted water contributes
to rivers and soil moisture, which, in turn, may lead to evaporation or precipitation in
spring and summer. With these interactions, anomalies in snow cover influence local
and remote weather and climate conditions from short-range to seasonal timescales [1-5].
Improving the representation of snow in subseasonal to seasonal experiments by more
realistically initializing [6-9] and adding layers to the snow scheme [10] helped to improve
predictability. Besides the local snow—atmosphere interactions, it has been suggested that
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snow cover variability over the Northern Hemisphere or, in particular, over Siberia influ-
ences atmospheric circulations such as the Arctic Oscillation (AO) or the India Summer
Monsoon Rainfall (ISMR) on subseasonal and seasonal timescales [5,11,12].

To evaluate the representation of snow in continental areas, we have chosen a region in
Siberia. This region has a high intra-annual variability of snow cover. In summer, this region
is almost snow-free, and in winter, it is fully covered with a total amount of 571 Gt of snow
in March, on average, making it an essential source for rivers and soil moisture in spring
and summer. The western—central part of Siberia has mainly boreal forests and is mostly flat,
whereas the southeast is more mountainous. In contrast to other regions in the Northern
Hemisphere, Siberia has no significant trend in snow amount over 39 years [13,14] and in
snow cover in autumn and winter, while CMIP5 historical simulations (51 years) indicate a
negative trend in Northern Hemispheric snow cover [15]. Figure 1 shows the selected region
in western—central Siberia (hereafter only Siberia) together with the locations of four stations
and in the context of the orography and its extent in the Northern Hemisphere.

This region has an inter-annual variability of about 40 mm of yearly maximum accumu-
lated SWE, which corresponds to 191 Gt of snow in this region.

Surface height (m above mean sea level)
Siberia (western-central) 55-70 N, 65-115 E

180W

el R S 4000
T
e [ 2500

\v

&, 1208
: v 2100

4‘ - 1800
| 1500

1200

Oy g

900
600
— 500

— 400
300

200
100

Figure 1. Orography with height in meters of the Northern Hemisphere (>40° N). The black box
(55-70° N, 65-115° E) shows western—central Siberia, further referred to as Siberia. Red dots indicate
the location of the four stations: Nadym (66.47° N, 72.67° E), Olenek (68.50° N, 112.43° E), Maksimoro
(57.10° N, 104.97° E), and Severnoe (56.35° N, 78.35° E).
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In this paper, we assess the representation of snow in five seasonal forecasting systems
over Siberia. To this end, we compare their general hindcast biases of snow water equivalent
(SWE) and 2-m temperature, focusing on the melting period.

2. Data and Methods
2.1. Seasonal Forecasting Systems

All five seasonal forecasting systems, which are from Deutscher Wetterdienst (DWD),
the European Centre for Medium-Range Weather Forecasts (ECMWEF), Météo-France (MEF),
Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), and Environment and Climate
Change Canada (ECCC), are distributed by the European Union’s Earth observation program
Copernicus (https://cds.climate.copernicus.eu, accessed on 22 February 2022). These
systems couple atmospheric, land surface, ocean, and sea-ice models to simulate global
weather and climate conditions from months to seasons (up to six months). Output products
are usually seasonal or monthly averaged data. However, we will further not only consider
monthly data but also daily output to determine, e.g., the timing of snowmelt in spring.
Besides the forecasts, each system provides hindcasts from 1993 to 2016 for generating
a model climatology and the forecast assessment. In the following, only the hindcasts
are considered.

Hereafter we will call the systems by their operational center. Table 1 provides an
overview of some properties and components of the systems. All systems start once a
month with all ensemble members except MF, which starts on lagged dates. DWD, MEF, and
CMCC initialize the atmosphere from ERA5 data, while ECCC initializes from ERA-Interim.
ECMWEF generates its land initial conditions by an offline simulation of HTESSEL forced
by ERA-Interim. The land surface variables of the other systems are initialized indirectly
by forcing a land model with atmospheric data from reanalyses. CMCC additionally
alters its indirect land surface initialization by using the NCEP Reanalysis 2 (NCEP2),
ERAS5, and an averaged combination of both. Along with perturbations for the atmosphere
and the ocean, they create 120 initial conditions, 40 of which are randomly selected to
generate the ensemble. All except DWD consider a dynamic snow density depending on
the age and sometimes on compaction, and MF and CMCC additionally represent snow
in multiple layers. For more details of all the systems, see the references in Table 1 or the
documentation site from the Copernicus Climate Change Service (C3S, https:/ /confluence.
ecmwf.int/display /CKB/Description+of+the+C3S+seasonal+multi-system, accessed on
22 February 2022). In this study, we consider hindcast data from the start of months from
October to April to investigate the process of snow cover development until melting. Given
the different behaviors of snow and surface variables across months and lead times, we
present a selection of these representations during the Siberian winter.

Table 1. Overview of some features and components of the five systems for their hindcasts. All
systems are also coupled to ocean models (not listed here). 1 Randomly from ERA5 or NCEP Re-
analysis 2 atmosphere. 2 The second system (GEM5-NEMO) from ECCC is not considered here.

Centre Model Initialization Snow Ensemble
(System) Atmosphere Land Atmosphere Land Layers Size
DWD (GCFS2.1) [16] ECHAM JSBACH ERA5 Indirect Single 30
ECMWEFE (SEASS) [17] IFS HTESSEL ERA-Interim Offline Single 25
MF (System 8) [18] ARPEGE SURFEX ERA5 Indirect Multi 25
CMCC (SPS3.5) [19] CAM CLM ERA5 Indirect ! Multi 40
ECCC (CanCM4i) 2 [20] CanAM4 CLASS ERA-Interim Indirect Single 10

2.2. Reference Data

Monthly [21] and daily [22] data from the fifth generation of the European Reanalysis
(ERADS) [23] are used as the reference in this study. ERAS5 provides a consistent estimate
of the atmospheric (and land surface) state by combining observation data and numerical
modeling on a 0.25° x 0.25° horizontal grid. The land component (CHTESSEL) simulates
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snow as an additional layer on top of the soil layers and assimilates snow data from satellites
and station data via 2D optimal interpolation. The uncertainty of ERAS5 is estimated by
the standard deviation of an ensemble with ten members at a lower resolution. Another
dataset worth mentioning is the dedicated land surface reanalysis ERA5-Land, which is on
a higher horizontal resolution and uses a newer version of the land model, which, among
others, for example, considers rain over snow [24], but it does not assimilate snow data
from observations. This leads to improvements in snow representation in ERA5-Land over
regions with complex orography. On the other hand, ERA5 performs better in regions with
less complex terrain and a high density of measurement stations, such as in Europe [24].
Further, we will only consider ERAS as a reference reanalysis due to the comparably less
complex orography over our region of interest and its assimilated station data.

An evaluation of multiple gridded snow datasets against station data from Mortimer
et al. (2020) [25] shows that ERA5 has the lowest RMSE (38 mm) and strongest correlation
(0.8) over Russia in snow water equivalent (SWE) with an underestimation of about 10 mm.
The ERAS5 estimated uncertainties for the whole Siberia domain are 0.5 K 2-m temperature
and 0.5 cm snow depth (£1 mm SWE).

In addition to the gridded reanalysis data, we chose four stations provided by the
All-Russian Research Institute of Hydrometeorological Information—World Data Centre
(RIHMI-WDC), one for each quarter of the selected region in Siberia , to evaluate the
systems in the melting season: Nadym in the northwest (NW), Olenek in the northeast
(NE), Maksimoro in the southeast (SE), and Severnoe in the southwest (SW). They provide
snow data as snow depth and snow cover fraction (no snow water equivalent or density).

Compared to the four stations , we performed an additional brief evaluation of ERAS.
The bias from 1993 to 2016 for October to May among the four stations ranges from —0.8 K
to 1.1K for 2-m temperature and from —0.8 cm to 3.6 cm for snow depth with estimated
mean uncertainties of £0.4K to £0.8 K and 0.1 cm to & 2.2 cm, respectively.

In the following, the variables of interest are snow, 2-m temperature (IT2m) and total
precipitation. Snow can be given as the actual height, here, snow depth (SD), or as the snow
water equivalent (SWE). One can convert one from the other with the snow density, but the
station data do not provide snow density or SWE, only snow depth. The total precipitation
contains rain or snowfall, or both, depending on the temperature.

2.3. Bias, Correlation, and Melting Phase Evaluation
The biases of the specific fields are calculated by

bias = (f) — (o), 1)

where hindcasts = f, reference = 0, and the bars and brackets indicate the averaging over
all years and the area, respectively. We measure the skill to predict the hindcast anomalies
with the Pearson correlation coefficient r:

YD)
\/Z?:l (fi = f2 L1 (0i —0)?

where the number of years = n. We calculate the Pearson correlation for the area mean in
the following.

To evaluate the melting process in the simulations, we compare them with station
and reanalysis data. For this purpose, the nearest grid points to the stations were selected.
The melt timing in this study is defined as the day of the year when only one-third of the
maximum snow depth is left. We calculate the difference in days of the melt timing from the
seasonal forecasting systems and ERA5 compared to station data, and we define the melt
duration as the number of days between the maximum and one-third of the snow depth.
We chose one-third of the maximum to obtain a date when most, but not all, of the snow has
melted. The relative measure of one-third also compensates for over-/underestimations of
the maximum snow depth, to some extent.

7 (2)
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To attribute biases to either initialization or parameterization errors, we evaluate the
initial biases separately from the biases emerging during the simulations. For this purpose,
we first consider only initial biases in the following section. Then, we evaluate the snow
parameterization in terms of the emerging biases, the correlation skill, and the timing and
duration of the snowmelt.

3. Results and Discussion
3.1. Initial Biases

The initial bias in the beginning of a forecast should be as low as possible. However,
assimilating data to generate initial conditions is not trivial and differs from system to system,
but in terms of initial land conditions, all five systems are generating them indirectly from
nudged/assimilated atmospheric data or from offline land simulations, as explained earlier.

Figure 2 shows the biases of all five systems compared to ERA5 over Siberia of
their common hindcast period from 1993 to 2016 for snow water equivalent (SWE), 2-m
temperature (I2m), and total precipitation. Different colors in Figure 2 indicate different
starting months, ranging from October to April, so that each first data point shows the
initial bias. DWD and MF show similar biases for all three variables. While MF has
overall lower biases, DWD has a lower bias at initial time with increasing error during
the forecast (see, e.g., SWE and precipitation in winter or T2m in early winter in Figure 2).
These analysis increments in the DWD system show a corrected initial state for SWE,
T2m, and precipitation for each start month. Similar behavior can be seen for ECCC,
whose initialization corrects the T2m in the early winter starting months. Small analysis
increments, for example, for T2m at MF or SWE at ECCC (Figure 2), suggest a good model
description of these variables. In contrast, the indirect/offline land initialization can also
lead to analysis increments with higher, rather than lower, biases, as shown for SWE at
ECMWE. However, most prominent are the increasing SWE biases from CMCC. With each
starting month, the SWE bias increases until April, and also the negative T2m bias rises
with the starting months in early winter and remains negative. This suggests that the
cooling in CMCC in early winter and spring is due to the high initial snow overestimation
(via snow-albedo effect and melting).

As already mentioned before, CMCC uses two reanalyses and their linear combination
to generate initial conditions for its land variables. We sorted the members by their
respective reanalysis initialization to obtain sub-ensembles. Dedicated plots for the sub-
ensembles of the CMCC system are shown in Figure 3, which shows the SWE climatology
for all simulations started in January, along with the ERA5 reference. All four types
show the overestimation starting from January. Towards the end of spring, the absolute
differences between the sub-ensemble means decrease due to melting. Besides a slightly
higher overestimation in the NCEP2 sub-ensemble, there are no significant differences in
SWE. This also applies to the ensemble spread between the indirectly initialized ensemble
members by NCEP2, by ERA5, and by both. Thus, the additional data of NCEP2 cannot
explain the general overestimation of initial snow in CMCC. A possible reason could be an
imbalance between the initial snow and the multi-layer snow scheme.

After initialization, the parameterization generates the prognostic variables, which are
discussed in the following.

3.2. Snow Parameterization

The parameterization of snow can be divided into the accumulation phase, which
mostly depends on precipitation and ambient air temperatures from the driving atmo-
spheric model, and the melting phase, which depends on the melting formulation in the
snow scheme, the incoming radiation, and turbulent heat fluxes [26]. However, we will
focus on the general forecast performance and, more specifically, on the melting phase in
the following.



Atmosphere 2022, 13, 1002

6 of 13

Snow water equivalent (mm) Snow water equivalent (mm) Snow water equivalent (mm) Snow water equivalent (mm)

Snow water equivalent (mm)

DWD - ERA5

C T T T T T ]
100 — —
L Apr ]
80 |- bt 7
L —e—Jan 4

L ﬁec 4

ey

60 I~ ——ou 7
a0 [ ]
20 [ ]
¢ ; /\\,/;
b | | | | | | = E|

Oct Nov Dec Jan Feb Mar Apr May Jun

ECMWF - ERA5
T T T T T

100

80

60

40

fé

20

1 1 1 1 1 1 1 E|
Oct Nov Dec Jan Feb Mar Apr May Jun

MF - ERA5
100 |- P —:
ol ]
ol ]
;
ol ]
E 0 0 0y ]

Oct Nov Dec Jan Feb Mar Apr May Jun

CMCC - ERA5
[ T T T T

100 [

80 [

60 [

40 :’ _/_\/

» //_\ \
F ]

1 1 1 1 1 1 1 E|
Oct Nov Dec Jan Feb Mar Apr May Jun

ECCC - ERA5
T T T T T

100

80

60

40

20

1 1 1 1 1 1 1
Oct Nov Dec Jan Feb Mar Apr May Jun

2 metre temperature (K) 2 metre temperature (K) 2 metre temperature (K) 2 metre temperature (K)

2 metre temperature (K)

DWD - ERA5

\\\‘\\\‘\\\

$

1 1 1 1 1 1 1
Nov Dec Jan Feb Mar Apr May Jun

o
Q

ECMWF - ERA5
6.0 T T T T

f

T N B
Oct Nov Dec Jan Feb Mar Apr May Jun

MF - ERAS
6.0 T T T

A

1 1 1 1 1 1 1
Oct Nov Dec Jan Feb Mar Apr May Jun

CMCC - ERA5S
6.0 T T T T

1 I 1 1 1 1 1
Oct Nov Dec Jan Feb Mar Apr May Jun

ECCC - ERA5
6.0 L . —] ]
]
]
0.0 V
]
]

1 1
Oct Nov Dec Jan Feb Mar Apr May Jun

Total precipitation (mm) Total precipitation (mm) Total precipitation (mm) Total precipitation (mm)

Total precipitation (mm)

DWD - ERA5

A

/s

o
IRREE) (emms

(

TN AT MR P S

-5

1 1 1 1 1 1 1
Oct Nov Dec Jan Feb Mar Apr May Jun

ECMWF - ERA5S
T T T T

o
N

{
I

C 1 1 1 1 1 1 1
Oct Nov Dec Jan Feb Mar Apr May Jun

MF - ERA5

E T T T |
20 | 4
15 F S
10 F 4
5 3
/ ]

0 [ = ]
5L 1
R O SO N N B R

Oct Nov Dec Jan Feb Mar Apr May Jun

CMCC - ERA5

[ T T T 1 ]
20 4
15 |- 4
10 | 4
.F E
0% ]

3 3 ]

C 1 1 1 1 1 1 1

Oct Nov Dec Jan Feb Mar Apr May Jun
ECCC - ERA5
F T T T T T
20 [
15 |-
10 |

<

-5

1 1 1 1
Oct Nov Dec Jan Feb Mar Apr May Jun

Figure 2. Biases of SWE, 2-m temperature, and total precipitation averaged over the domain and

all years of monthly data from hindcasts (1993 to 2016) with ERAS as reference. Relative biases are

shown for SWE and total precipitation, and absolute biases for 2-m temperature. Colors indicate

different starting months.
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Figure 3. Average monthly SWE from 1993 to 2016 over Siberia from ERA5 (black) and CMCC (red).
The red line represents the ensemble mean, and bars show the ensemble minimum and maximum
averaged over the years and region. Panel (a) shows the sub-ensemble where only NCEP Reanalysis 2
was used to generate the indirect land initial conditions; (b) where only ERA5 was used; (c) a linear
combination of both; and (d) the whole ensemble (sum of the previous).

Figure 4 shows the climatology of SWE, T2m, and total precipitation over Siberia from
1993 to 2016. Only simulations which started in October and February are shown, along
with ERA5. In general, the accumulation phase (October to March) lasts longer than the
melting phase (March to June), and the SWE maximum peaks in March. Already in October
the domain average is below 0 °C until April/May, and precipitation is highest in summer
and lowest in February, with only about 22mm. Additionally, we have the standard
deviations for March in Table 2, indicating the inter-annual variability. All systems except
ECCC have similar or higher standard deviations for SWE compared to ERA5, whereas for
T2m, the variabilities are closer to the reference.

Table 2. Inter-annual variability (standard deviation) for March (forecasted from February) of total
snow water equivalent (SWE), monthly mean 2-m temperature (T2m), and monthly total precipitation
over Siberia from 1993 to 2016 for the seasonal forecasting systems. Variabilities for March from ERA5

are also given.

Std. Dev. SWE (mm) T2m (K) Total Precip. (mm)
ERA5 40.2 4.9 8.4
DWD 42.8 4.4 12.6
ECMWEF 443 47 6.8
MF 61.7 5.8 9.4
CMCC 46.5 5.6 6.3

ECCC 34.8 4.7 55
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Figure 4. Climatology of SWE (a), 2-m temperature (b), and total precipitation (c) over Siberia with

the reference (ERA5) and the seasonal forecasting systems from monthly data (1993-2016). Only
starting months from October (solid) and February (dashed) are included.

From Figures 2 and 4, we see an SWE overestimation from all systems except DWD and
MF in late spring. The remarkable initial overestimations of SWE by CMCC have already
been discussed in the previous section. However, additionally, during the simulations,
these initial biases persist until the snow eventually melts completely at some time in late
spring. The wintertime 2-m temperatures are overestimated by DWD, MF, and ECCC
by 3K to 4K, whereas biases for March and April are small or negative. CMCC has an
opposite pattern, with negative biases of about —3 K in late winter, and ECMWF is mostly
close to the reference but with a negative bias in late spring. Towards spring, DWD and MF
overestimate precipitation, with DWD having the highest bias. ECMWF and CMCC show
only small precipitation underestimations during wintertime.

The general low biases of the ECMWEF system compared to the ERAS reference might
be due to the similar underlying numerical model (ECMWF’s Integrated Forecast System);
however, a comparison to MERRA-2 [27] reanalysis confirms this result (not shown).

In Figure 5 we show the Pearson correlation for SWE and T2m. Only DWD and
ECMWEF are shown as an example because the patterns from the other systems are mostly
similar. The correlations for SWE are generally high for all systems. However, this does not
apply to the correlations of the 2-m temperature forecasts, which are only high for the first
month in each case. The ECMWEF system is even worse for several months compared to the
other systems, while its 2-m temperature bias (Figure 2) is the lowest. Compared to the 2-m
temperature correlations, SWE correlations are degrading less, and some simulations even
have a correlation coefficient higher than 0.5 after six months (e.g., ECMWEF’s November
run), but the magnitude and signs of the SWE biases of the systems differ significantly.
The low correlations of all systems in 2-m temperature confirm the low predictability over
continental regions such as Siberia for seasonal forecasts. The question remains as to why
there is such a difference between the SWE and T2m correlation, or even between T2m bias
and T2m correlation. Diro and Lin (2020) [1], who obtained similar results from subseasonal
forecasting systems, suggested that this is caused by a weak snow—-temperature coupling
strength in the models.

Now we consider the melting process, first in the example of a single event and then
over all hindcast years at four stations. The example of a melting event at Nadym station in
spring 2013 is shown for a hindcast starting on 1 March from DWD and ECMWF with all of
their ensemble members and together with reference data in Figure 6. With the beginning of
the snowmelt or when the daily maximum 2-m temperature is larger than zero, the spread
of SWE increases rapidly. As long as there is snow left, the 2-m temperature hardly exceeds
the 0°C line because the melting process cools the ambient air. This is most pronounced in
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the DWD hindcasts, where it even seems to be a strict threshold. Similar observations can
be made in the other years (not shown here).
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Figure 5. Pearson correlation for SWE and 2-m temperature of monthly data from hindcasts (1993
to 2016) with ERAS as reference. Values were first averaged over the region before calculating the
Pearson correlation coefficient. Colors indicate different starting months.
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Figure 6. Top: daily snow water equivalent (blue) and daily maximum 2-m temperature (red) for each
ensemble member of DWD and ECMWFE. Bottom: daily snow (blue), daily mean temperature (red line),
and daily min/max temperature (red area) from ERA5 and Nadym station (snow given as snow depth).

At the stations, the snowmelt duration (from the maximum to one-third) lasts slightly
more than one month, which is shown in Figure 7 at the bottom of each sub-figure. DWD
and MF are melting too early and too fast at the selected stations (see Figures 7 and 8),
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which can also be seen from their small underestimation in April and March (Figure 4),
whereas ECMWF and CMCC are too late and are taking too long in the melting process.
The reason might be the general overestimation from CMCC (see Figure 2), because it takes
longer due to having more snow to melt. The gridded reference ERA5 also melts too slowly
at three stations, but not as slowly as the previous two.
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Figure 7. Days between the maximum and one-third of the snow depth at the grid-point closest to
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Figure 8. Difference in days of the average melting date at the grid-point closest to the station from
the seasonal forecasting systems and ERA5 compared to station data. The melt timing is defined by
the time when one-third of the maximum snow depth is left.
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4. Summary and Conclusions

We compared the snow (SWE) and temperature (T2m) representation in five seasonal
forecasting systems over western—central Siberia in terms of biases and correlations and
their dependence on snow initialization and parameterization uncertainties. The uncertain-
ties were attributed to initialization or parameterization errors by considering initial and
emerging biases, diminishing correlation skills, and snowmelt performance.

The hindcasts by DWD’s and ECCC’s systems show positive initialization effects on
SWE and T2m with analysis increments improving the results for the winter initial forecast
months. However, in some systems, the initialization increases the initial biases (e.g., in
CMCC’s system). The biases differ in sign and magnitude among the systems, although
they use similar constraining analysis data and similar initialization approaches (land
initialization via system simulations nudged to analyses or via offline land simulations
forced by analyses). CMCC'’s highly positive initial SWE biases amplify cooling in winter
and spring. This positive bias was independent of the constraining analysis dataset.

The forecasting systems of CMCC and MF utilize multi-layer snow schemes, which
should perform better than single-layer schemes, especially during the melting phase [10].
However, in the case of CMCC, the potential benefit could not emerge in the forecasts
because of the too-large initial biases, which led to too-late and too-long snowmelt periods.
This highlights the difficulties in balanced multi-layer snow initialization. MF’s system also
did not perform more promising, which highlights the strong impact of the quality of the
atmospheric forcing (especially of the radiation and turbulent heat fluxes in spring).

All systems show lower T2m than SWE correlation over Siberia. This has, for ex-
ample, a negative impact on the systems’ ability to represent the melting onset in spring,
which feeds back on temperature representation. The systems of MF and DWD forecast
the snowmelt too early and too fast. In the case of DWD, this might be because of a
parameterized constant snow density and an overestimation of sublimation (not shown).

Depending on the seasonal forecasting system discussed in this study;, initialization or
parameterization errors can be more dominant. Delayed hydrological and remote effects of
the snow biases (e.g., contribution to soil moisture) and their impacts on the seasonal forecasts
were not discussed in this paper, but are worth further investigation. In addition, the added
value of complex multi-layer vs. single-layer snow schemes should be investigated more
in-depth with seasonal modeling experiments. Our results indicate that the initialization
methods of the systems’ land components should be improved and that special care has
to be taken to initialize multi-layer snow. Additionally, we suggest seasonal hindcasting
experiments using different snow initialization approaches (direct, indirect, or offline) to better
disentangle the forecasting errors caused by snow initialization or snow parameterization.
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