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Abstract: The joint state and parameter estimation problem is an important issue in data assimilation.
An adjoint free data assimilation method, namely analytical four-dimensional ensemble variational
(A-4DEnVar) data assimilation method, was developed to provide a solution for the joint estimation
problem. In the algorithm, to estimate the adjoint model reasonably, the ensemble initial conditions
and parameters are generated by Gaussian noise whose covariance is constructed by multiplying a
very small factor by their background error covariance. The ensemble perturbations are calculated
with respect to background states rather than the ensemble mean. Next, the usage of temporal
cross covariances makes it possible to avoid the adjoint model and estimate the gradient in 4DVar.
Furthermore, we update the solution iteratively with a linear search process to improve the stability
and ensure the convergence of the algorithm. The method is tested using the three-variable Lorenz
model (Lorenz-1963) to illustrate its efficiency. It is shown that A-4DEnVar results in similar perfor-
mance with 4DVar. Sensitivity experiments show that A-4DEnVar is able to assimilate observations
successfully with different settings. The proposed method is able to work as well as 4DVar and avoid
adjoint models for the joint state and parameter estimation.

Keywords: A-4DEnVar; joint state–parameter estimation; hybrid data assimilation

1. Introduction

As a chaotic system, the weather prediction models, which suffer from uncertainty in
initial conditions and parameters, are very sensitive to its initial conditions [1]. With small
errors in initial conditions, even the short-term state variables result in a big gap between
forecasting and truth. Besides, the impact of small-scale processes on large-scale processes
must be parameterized in practice due to the limitation of computational recourses [2,3].
Though some of the parameters have definite physical meaning in NWP systems and
can be deduced from observations empirically or based on physical laws, there are lots of
underlying parameters which cannot be easily inferred from observations [4]. For long-term
predictions, the parameterizations influence the behavior much more than in short-term
forecasting [5].

An effective mean to alleviate the uncertainty of initial conditions and parameters is
using the information extracted from realistic observations. Data assimilation algorithms,
such as variational methods [6,7] and ensemble Kalman filter methods (EnKF) [8], are
proposed to involve the information from observations into state variables. Under similar
statistical assumptions that the error is multi-dimensional Gaussian distributed, variational
data assimilation schemes and EnKF data assimilation schemes are similar [9]. Constructing
covariances to describe the evolution of errors is the key to both variational methods and
EnKF methods.

The variational data assimilation methods use a static and flow-independent background
error covariance. Various studies developed spatially inhomogeneous and anisotropic back-
ground error covariance [10–15]. As a non-sequential data assimilation scheme, if not
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combined with a specific estimation method, like the method proposed by the National
Meteorological Centre (NMC) [16], and re-estimated with the covariance at the beginning
of a data assimilation cycle, four-dimensional variational (4DVar) data assimilation scheme
itself cannot provide an explicit flow-dependent error covariance at the next cycle window.
By the great superiority of assimilating all observations spread over a data assimilation win-
dow simultaneously and taking the model constraint into account, 4DVar has been widely
used in operational systems [17]. However, the cost of this advantage is high. Coding and
maintaining the tangent linear model and adjoint model of a specific operational system
often costs many human resources but cannot be easily transplanted to other models.

In contrast to variational methods, EnKF uses the flow-dependent covariance explicitly.
Improved from Kalman filter theory and extended Kalman filter (EKF) [18], EnKF estimates
the error covariance by ensemble members. Once the observation is introduced, the algo-
rithm updates the forecast states straightforwardly. In these loops, the initial conditions are
not updated so that the adjoint model is avoided [19]. Hence, EnKF and its varieties [20,21]
have been also widely used recently.

Although the variational methods and EnKF achieve similar performances in NWP
models, both of them have merits and demerits [22,23]. As many studies mentioned, an
attractive issue is to combine both sides to improve performance. A typical development is
introducing ensemble-based covariance into the variational framework to make the back-
ground error covariance is flow-dependent [24–27]. When combined with 4DVar, since the
integrations of the tangent linear model and adjoint model are also necessary, these kinds
of algorithms are named as ensemble four-dimensional variational methods (En4DVar) [28].
The second typical development, so-called four-dimensional ensemble variational method
(4DEnVar), goes even further. Introduced by Liu et al. [29], the 4DEnVar algorithm not
only introduces ensemble-based covariance but also avoids the use of tangent linear model
and the adjoint model. In their studies, experiments based on the one-dimensional shallow
water model were conducted to prove its efficiency. Initially, Liu et al. [29] called the
proposed 4DEnVar as En4DVar method. With the continuous emergence of hybrid method,
Lorenc et al. [28] renamed it as 4DEnVar method at the World Meteorological Organization
(WMO) meeting to highlight its essence as a variational method without adjoint models.

Because of the good properties of 4DEnVar mentioned above, this method has at-
tracted much attention and developed rapidly in theory and application. The POD-E4DVar
method proposed by Tian et al. [30] uses the POD method (proper orthogonal decompo-
sition) to decompose the set members into orthogonal state variables and represents the
analysis field as a linear combination of these orthogonal state variables, which effectively
avoids the use of adjoint mode. Although, in the study of Tian et al. [30], POD-E4DVar
relies on 4DVar framework, this method is still enlightening and pioneering. Liu et al. [31]
proposed an applicable localization scheme to apply this method to operational analysis
and prediction. In 2013, Liu and Xiao [32] used 4DEnVar to assimilate data from radiosonde
ships to study a cyclone process in the Ross Sea in the South Pacific. Buehner et al. [25]
compared the assimilation effects of 3DVar, 4DVar, EnKF, and 4DEnVar. Lorenc et al. [33]
combined the flow dependent background error covariance matrix estimated by the ensem-
ble members with the static background error covariance matrix constructed by the climate
state in the Met Office operational system, proposed the hybrid 4DEnVar and compared
it with En4DVar. Goodliff et al. [34] used Lorenz-63 model to compare the differences of
assimilation algorithms including 4DEnVar under different observation frequencies and
different assimilation window lengths. Tian et al. [35] and Zhang and Tian [36] proposed a
series of nonlinear least squares En4DVar (NLS- En4DVar) and carried out experimental
verification based on Lorenz-96 model. Although named as En4DVar, it is in fact a 4DEnVar
method that takes the analysis field as the linear combination of orthogonal state variables.
Tian et al. [37,38] further constructed ensemble members from historical data and improved
the performance of existing algorithms by introducing constraints in the cost function [39]
and improving its optimization iterations.
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In another paper [40], the 4DEnVar proposed by Liu et al. [29] was improved by our
team to capture the model nonlinearity. A new adjoint free data assimilation method
called the analytical four-dimensional ensemble variational data assimilation method (A-
4DEnVar) was proposed. As mentioned above, the 4DEnVar is motivated by containing the
flow-dependent information into background error covariance and also avoids using the
adjoint model in data assimilation. However, if the ensemble perturbations are not small
enough, the gradients 4DEnVar provided are not the same as that from 4DVar (even they use
the same background error covariance and cost function) under strong nonlinear situations.
This is mainly because 4DEnVar maintains the idea of EnKF, in which the covariance of the
ensemble members is the same as background or analysis error covariance. As the ensemble
members are not close enough to the prior estimation, the high order terms in the Taylor
expansion influence the estimation accuracy of the adjoint model (see Section 2 below for
more details). Thus, the gradients are not well calculated in 4DEnVar. To better obtain
the adjoint model and gradients, the high order terms in Taylor expansion should be as
small as possible. To this end, A-4DEnVar constructs the covariance of ensemble members
by multiplying the background covariance by a small factor (denoted as µ in our formula
derivation). Furthermore, to keep consistent with 4DVar, the ensemble perturbations in
A-4DEnVar are calculated through centralizing the ensemble members to the evolution of a
prior field rather than the mean of these ensemble members as 4DEnVar does. In addition,
it is well known that the value of the adjoint model is updated iteratively in 4DVar to
capture the nonlinearity. A similar update of the prior initial states in A-4DEnVar is also
included to achieve the same effect. We also notice that some variants of 4DEnVar, like
NLS-En4DVar [36], also introduced an iterative loop to greatly improved its processing
ability of nonlinearity. With these improvements, the A-4DEnVar completely inherits the
properties of the conventional 4DVar scheme. Especially, the background error covariance
used in A-4DEnVar and 4DVar could be the same. The covariance is not flow-dependent at
the beginning of the first data assimilation window. However, if the data assimilation is
proceeded in many cycle windows, i.e., the end of one window is the beginning of the next,
it is also possible to construct a flow-dependent covariance in A-4DEnVar as 4DEnVar does.
This issue will be discussed in our future work.

Many studies focused on optimizing the initial conditions using 4DEnVar algorithms.
Following the development of its theory, Liu et al. [31,32] incorporated 4DEnVar into the Ad-
vanced Research Weather Research and Forecasting (ARW-WRF) model. Buehner et al. [25]
and Lorenc et al. [33] compared these hybrid variational and ensemble methods in global
NWP systems. Liu et al. [41] also discussed the relationships of several 4DEnVar algorithms.
Liu et al. [42] used a developed 4DEnVar algorithm, i.e., dimension-reduced projection
four-dimensional variational data assimilation scheme (DRP-4DVar), to optimize initial
conditions in the Lorenz-96 [43] model. In Liang et al. [40], we optimized initial conditions
in the Lorenz-63 model. However, as mentioned above, beyond the initial conditions, the
state-of-the-art NWP systems consist of uncertainty caused by parameterizations as well.
It is widely acknowledged that the conventional data assimilation methods also provide
efficient ways to solve the combined state and parameter estimation problem. There are
many such studies. To name a few, see [44,45] for 4DVar and see [46–50] for EnKF.

It is illustrated that the A-4DEnVar works as well as conventional 4DVar, even with a
small ensemble size and a relatively long data assimilation window with sparse observa-
tions. However, the joint–estimation problem has not been well discussed in A-4DEnVar. It
is expected to incorporate the simultaneous estimation method under the framework of
A-4DEnVar. Therefore, this issue is to be addressed in the paper. In this paper, we devel-
oped A-4DEnVar to estimate the initial conditions and parameters simultaneously. At the
beginning of the paper, we consider the evaluations of both state variables and parameter
perturbations in the dynamic model. The adjoint models are related to the temporal-spatial
covariances of these perturbations. After introducing an approximation of the true initial
conditions, the analytical solution of the minimizations of cost function is represented using
adjoint models. Then, replacing the adjoint models with temporal-spatial covariances, the
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adjoint models can be removed. Experiments are conducted to show the equivalence of
proposed A-4DEnVar with conventional 4DVar in the joint estimation problem.

This paper is organized as follows. Section 2 shows the proposed estimation algorithm
and its derivation. Section 3 validates the performance of the A-4DEnVar by the Lorenz
model with three parameters. Summary and conclusions are given in Section 4.

2. Methodology
2.1. Relating the Adjoint Models to Second-Order Statistics

Suppose that the dynamic system is defined as

xi = Mi,i−1(xi−1,λ, Fi−1) (1)

where M denotes the model operator evolves from time ti−1 to time ti, and xi−1, λ and Fi−1
are the state variables, model parameters, and forcing terms, respectively. To begin the data
assimilation, we assume that the prior estimations of the initial condition and parameters
are known and denoted as x∗0 and λ∗, respectively. Using the same dynamic model in the
equations above, under a strong constraint framework, the estimation satisfies

x∗i = Mi,i−1
(
x∗i−1,λ∗, Fi−1

)
(2)

Suppose any other approximation of xi is composed of the a priori estimation and a
perturbation (here, marked with a tilde), i.e.,

xi = x∗i + x̃i, λ = λ∗ + λ̃ (3)

In contrast to our earlier study, the parameters are also included in the combined
estimation problem. Substituting these equations into the dynamical model and expressing
through Taylor series expansion gives

xi = Mi,i−1

(
x∗i−1 + x̃i−1,λ∗ + λ̃, Fi−1

)
≈Mi,i−1

(
x∗i−1,λ∗, Fi−1

)
+ Mx

i,i−1

∣∣∣x∗i−1,λ∗ ,Fi−1
(x̃i−1) + Mλ

i,i−1

∣∣∣x∗i−1,λ∗ ,Fi−1

(
λ̃
) (4)

where Mx
i,i−1

∣∣∣
x∗i−1,λ∗ ,Fi−1

and Mλ
i,i−1

∣∣∣
x∗i−1,λ∗ ,Fi−1

represent the tangent linear expansion of the

dynamic model Mi,i−1 with respect to the state variables and parameters, respectively. We
do not optimize the forcing terms in this paper, so that the tangent linear model about the
forcing terms is omitted without any misunderstanding. Comparing Equation (4) with
Equation (2) leads to a one-step evolution of the perturbations based on the tangent linear
model, i.e.,

x̃i ≈ Mx
i,i−1

∣∣
x∗i−1,λ∗(x̃i−1) + Mλ

i,i−1

∣∣∣
x∗i−1,λ∗

(
λ̃
)

(5)

We emphasize here that, although Equation (5) was also mentioned in previous studies
like Liu et al. [29], it is often overlooked that the perturbations must be particularly small.
The background error covariances are usually too large to be used directly, so without any
modification they are not a reasonable choice for x̃0 or λ̃. It is easy to generalize the result
to the multiple steps evolution corresponding to the initial perturbations

x̃i ≈Mi,0

∣∣∣x∗0 ,λ∗ x̃0 + Di,0

∣∣∣x∗0 ,λ∗ λ̃ (6)

where Mi,0|x∗0 ,λ∗ ≡ Mx
i,i−1

∣∣∣
x∗i−1,λ∗

· · ·Mx
1,0

∣∣∣
x∗0 ,λ∗

represents the tangent linear model from

time step t0 to time step ti, and

Di,0|x∗0 ,λ ≡ Mi,1|x∗0 ,λ∗ Mλ
1,0

∣∣∣
x∗0 ,λ∗

+ · · ·+ Mi,i−1|x∗0 ,λ∗ Mλ
i−1,i−2

∣∣∣
x∗0 ,λ∗

+ Mλ
i,i−1

∣∣∣
x∗0 ,λ∗

(7)
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demonstrates the compound tangent linear models with respect to state variables and
parameters. Note that the above derivations hold for any perturbations that are small
enough so that the high order terms in Taylor expansion can be neglected. Different from
conventional 4DEnVar and EnKF schemes, the perturbations in A-4DEnVar are used to
estimate the adjoint models as shown below.

If there are N perturbations
(

x̃k
i , λ̃

k
i

)
(k = 1, 2, · · · , N) substituting them into

Equation (6) yields(
x̃1

i x̃2
i · · · x̃N

i

)
≈ Mi,0|x∗0 ,λ∗

(
x̃1

0 x̃2
0 · · · x̃N

0

)
+ Di,0|x∗0 ,λ∗

(
λ̃

1
λ̃

2 · · · λ̃
N
)

(8)

Multiplying 1
N

(
x̃1

i x̃2
i · · · x̃N

i

)
by both sides of the equation, it yields

1
N

N

∑
k=1

(
x̃k

i x̃k
0

T
)
≈ Mi,0|x∗0 ,λ∗

(
1
N

N

∑
k=1

x̃k
0x̃k

0
T

)
+

1
N

N

∑
k=1

(
Di,0|x∗0 ,λ∗ λ̃

k
x̃k

0
T
)

(9)

Again, multiplying 1
N

(
λ̃

1
λ̃

2 · · · λ̃
N
)

by both sides of the equation, it yields

1
N

N

∑
k=1

(
x̃k

i λ̃
kT) ≈ Mi,0|x∗0 ,λ∗

(
1
N

N

∑
k=1

x̃k
0λ̃

kT
)
+

1
N

N

∑
k=1

(
Di,0|x∗0 ,λ∗ λ̃

k
λ̃

kT)
(10)

If the ensemble size is large enough, the estimation of the tangent linear model is
obtained through

Mi,0|x∗0 ,λ∗ ≈
[

1
N

N

∑
k=1

(
x̃k

i x̃k
0

T − Di,0|x∗0 ,λ∗ λ̃
k
x̃k

0
T
)]( 1

N

N

∑
k=1

x̃k
0x̃k

0
T

)−1

(11)

Di,0|x∗0 ,λ∗ ≈
[

1
N

N

∑
k=1

(
x̃k

i λ̃
kT − Mi,0|x∗0 ,λ∗ x̃

k
0λ̃

kT)]( 1
N

N

∑
k=1
λ̃

k
λ̃

kT
)−1

(12)

where T is the transpose operator. In the above equations, the distributions of perturbations
are not determined or fixed yet. It is easy to see that Equations (11) and (12) holds for
any small perturbations and these perturbations do not have to be (though they could be)
flow-dependent. In other words, the structure of the adjoint model can be determined by a
specially designed Monte Carlo method. A probability density that ignores the interactions
between the perturbations of state variable initial conditions and that of parameters is
acceptable. With the probability density, the estimations can be simplified as

Mi,0|x∗0 ,λ∗ ≈
(

1
N

N

∑
k=1

x̃k
i x̃k

0
T

)(
1
N

N

∑
k=1

x̃k
0x̃k

0
T

)−1

(13)

Di,0|x∗0 ,λ∗ ≈
(

1
N

N

∑
k=1

x̃k
i λ̃

kT
)(

1
N

N

∑
k=1
λ̃

k
0λ̃

kT
)−1

(14)

The tangent linear model here is related through the temporal cross covariances

Bi0 = 1/N∑N
k=1 x̃k

i x̃k
0

T and Pi = 1/N∑N
k=1 x̃k

i λ̃
kT

, the error covariance of ensemble initial
condition B00 = 1/N∑N

k=1 x̃k
0x̃k

0
T, and the error covariance of the ensemble parameters

Λ = 1/N∑N
k=1 λ̃

k
λ̃

kT
for any time step ti, i.e., Mi,0|x∗0 ,λ∗ ≈ Bi0(B00)

−1 and Di,0|x∗0 ,λ∗ ≈ PiΛ
−1.

Especially, Pi describes how the initial conditions are related to parameters. Symbols B0i

and D0i are the transposes of Bi0 and Di0, that are B0i = (Bi0)
T and D0i = (Di0)

T .
In the derivations above, the tangent linear models and their adjoint models are

connected to the second-order statistics of perturbations. Therefore, it is possible to replace
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adjoint models with these statistics of ensemble members. Besides, the temporal cross
covariances are involved in the analytical solution of the cost function in the next subsection
to further simplify the calculation. The equations mentioned above hold for any time step
ti, but the temporal covariances are only necessary at the time where observations exist
(see more details in the next subsection).

2.2. Expressing Analytical Solutions Using Temporal Cross Covariances

In conventional 4DVar schemes, the cost function is defined as

J(x0,λ) =
1
2
(x0 − xb)

TB−1(x0 − xb) +
1
2∑

i
[Hi(xi)− yi]

TR−1
i [Hi(xi)− yi] (15)

in which xb is the background initial condition, λ denotes the parameters in the dynamic
model as mentioned in the above subsection, and xi = Mi,i−1[· · ·M1,0(x0, F0) · · · , Fi−1] are
the state variables at time ti. Here, Hi, yi and Ri are the observation mapping operator,
observations, and the error covariance of observations, respectively. The background
regularization term for parameters is not included in the cost function above because it is
difficult to be well determined in reality. Hence, parameters are estimated only based on
the observational information in this paper.

Note that although the observation mapping operator might be nonlinear, it can
be linearized as Hi by using similar processes discussed in Section 2.1. Considering
Equations (1)–(3) and (6), the cost function concerning perturbations is

J
(

x̃0, λ̃
)
≈ 1

2
(x∗0 + x̃0 − xb)

TB−1(x∗0 + x̃0 − xb)

+
1
2∑

i

(
HiMi,0x̃0 + HiDi,0λ̃− di

)T
R−1

i

(
HiMi,0x̃0 + HiDi,0λ̃− di

) (16)

where di = yi −Hix∗i is the observational innovation at time step ti. In Equation (16) and
henceforth, parts of subscripts of adjoint models are omitted to simplify notations. The
gradient of the cost function concerning x̃0 and λ̃were then calculated using

∇
λ̃

J = ∑
i

DT
i,0HT

i R−1
i

(
HiMi,0x̃0 + HiDi,0λ̃− di

)
(17)

∇x̃0 J = B−1[x̃0 − (xb − x∗0)] + ∑
i

MT
i,0HT

i R−1
i

(
HiMi,0x̃0 + HiDi,0λ̃− di

)
(18)

In conventional 4DVar, numerical optimization algorithms such as gradient descend
methods are often used. In contrast to the conventional 4DVar, we solve the equations
above directly to achieve its analytical solutions. To further simplify the descriptions, we
introduce notations below

S(A,C) ≡∑
i

AT
i HT

i R−1
i HiCi S(A,d) ≡∑

i
AT

i HT
i R−1

i di (19)

to denote the summation terms. Here, Ai and Ci represent the tangent linear model Mi,0
and/or Di,0, or the temporal cross covariance Bi0 and/or Pi. Thus, the minimum solution
of the cost function is (See more details in Appendix A for the derivations)

x̃0 =
[
B−1 + S(M,M) − S(M,D)S

−1
(D,D)

ST
(M,D)

]−1[
B−1(xb − x∗0) + S(M,d) − S(M,D)S

−1
(D,D)

S(D,d)

]
(20)

λ̃ =

[
S(D,D) − ST

(M,D)

(
B−1 + S(M,M)

)−1
S(M,D)

]−1

[
−ST

(M,D)

(
B−1 + S(M,M)

)−1
B−1(xb − x∗0)− ST

(M,D)

(
B−1 + S(M,M)

)−1
S(M,d) + S(D,d)

] (21)
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Or eliminating the adjoint models, the equations are equivalent to

x̃0 = B00

[
B00B−1B00 + S(B,B) − S(B,P)S

−1
(P,P)S

T
(B,P)

]−1[
B00B−1(xb − x∗0) + S(B,d) − S(B,P)S

−1
(P,P)S(P,d)

]
(22)

λ̃ = Λ

[
S(P,P) − ST

(B,P)

(
B00B−1B00 + S(B,B)

)−1
S(B,P)

]−1

[
−ST

(B,P)

(
B00B−1B00 + S(B,B)

)−1
B00B−1(xb − x∗0)− ST

(B,P)

(
B00B−1B00 + S(B,B)

)−1
S(B,d) + S(P,d)

] (23)

To ensure that the generated perturbations are small enough, we generate ensemble
members using B00 = µB where µ is a small factor to ensure the high order terms in Taylor
expansion could be omitted. In practice, with cycled data assimilation, the perturbations
could not always satisfy small perturbations in all windows, especially with nonlinear
regimes. Once the perturbations are too large, the ensembles should be regenerated.
Theoretically, the value of factor µ is related to the spectral norms of the Hessian matrix of
dynamic models and should be carefully determined. However, it is difficult to calculate the
spectral norms. An efficient way is set the factor to be as small as possible, and empirically,
setting µ to be less than 10−6 is often acceptable. Here, the specially designed construction of
B00 also makes it possible to introduce a flow-dependent covariance estimation method (see
next subsections for details). Assuming that the parameters to be estimated are mutually
independent, Λ = diag

(
σ2

λ1
, · · · , σ2

λm

)
is a diagonal matrix with its non-zero elements

being the ensemble error variances of the parameters and m is the number of parameters.
Then, Equations (22) and (23) leads to

x̃0 = B00

[
µB00 + S(B,B) − S(B,P)S

−1
(P,P)S

T
(B,P)

]−1[
µ(xb − x∗0) + S(B,d) − S(B,P)S

−1
(P,P)S(P,d)

]
(24)

λ̃ = Λ

[
S(P,P) − ST

(B,P)

(
µB00 + S(B,B)

)−1
S(B,P)

]−1

[
−µST

(B,P)

(
µB00 + S(B,B)

)−1
(xb − x∗0)− ST

(B,P)

(
µB00 + S(B,B)

)−1
S(B,d) + S(P,d)

] (25)

Equations (24) and (25) shows that the information introduced into the increments
are composed of three parts, i.e., the difference between the background initial conditions
with the prior approximation (xb − x∗0), observational innovations transmitted through
the state variables S(B,d) and through parameters S(P,d). The solution of the cost function
is analytical for fixed approximations x∗ and λ∗. We call the proposed method analytical
4DEnVar to be consistent with Liang et al. [40]. However, the form of solution is much
more complex than what we obtained in the earlier study because the interactions of initial
conditions and parameters were included.

It is interesting to note that the increments of state variables and parameters are similar
except for the term µB00 which is related to the background term in the cost function. In
fact, the parameters are regarded as special time-invariant state variables. This treatment
process is similar to previous studies of Koyama and Watanabe [51]. In their study, the
so-called state augmentation method regards time-varying parameters as state variables.
The estimation processes of state variables and parameters are separated from each other.
State variables are assimilated in several cycle windows by conventional EnKF firstly, then
the parameters are estimated using the imperfect analysis state variables. In contrast to
it, the estimation of state variables and parameters proceeded at the same time under the
framework of A-4DEnVar in our study.

When considering the single estimation problem for initial conditions or parameters,
it is a natural step to assume the parameters (or initial conditions) are accurate. The
corresponding perturbation increment reduces to

x̃0 = B00

[
µB00 + S(B,B)

]−1[
µ(xb − x∗0) + S(B,d)

]
(26)
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λ̃ = Λ
[
S(P,P)

]−1
S(P,d) (27)

The algorithm proposed is in fact equivalent to the Newton iteration method used in
conventional 4DVar [40]. As is well known that the Newton iteration is sensitive to the
initial conditions, to make the algorithm stable, a linear search process is necessary. When
updating analysis state variables, we add the weighted perturbation

(
α1x̃, α2λ̃

)
to (x∗,λ∗),

and ff1 and ff2 ∈ [0, 1] are the weights minimizing the cost function under the increment
direction

(
x̃0, λ̃

)
. After the linear search, (x∗,λ∗) is updated and then substituted into the

next iteration to regenerate ensemble members and calculate a new increment. The process
is finished when the difference of the value of the cost function between two iterations is
less than tolerance.

While in real atmospheric and oceanic models, the dimension of state variables is
huge, the terms with inverse are difficult to calculate. To overcome the obstruction, A-
4DEnVar methods estimate the corresponding pseudo inverses instead of the inverse matrix
itself by using a few ensemble members. Since the ensemble size is not very large, if we

denote the ensemble perturbations as X̃ =
(

X̃
1
0 X̃

2
0 · · · X̃

N
0

)
where N is the ensemble size,

its pseudo-inverse is X̃
+
0 =

(
X̃

T
0 X̃0

)−1
X̃

T
0 . Note that X̃

T
0 X̃0 is an N × N matrix, then X̃

+
0

could be easily calculated. Besides, any inverse term in Equations (24) and (25) and/or
Equations (26) and (27) can be decomposed as

(
X+

0
)TS−1X+

0 , where S is a symmetric matrix
with N rows and N columns. Based on the decomposition, one can easily calculate the
value of x̃ and λ̃. We emphasize that a compatible localization approach is also necessary
for this situation (see more details in next subsections). However, as a proof of concept,
under the simplified models whose degree of freedom is small, like the Lorenz model we
used below, the inverses are directly used in this paper.

The flowchart of A-4DEnVar method is shown below (Figure 1).
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Figure 1. The flowchart of proposed A-4DEnVar. The ensemble initial conditions and parameters
are generated by adding small perturbations to the background initial conditions and parameters,
respectively. After integrating the dynamic model, the ensemble temporal-spatial covariances are
calculated to replace the adjoint models in 4DVar. Using the analytical solutions of cost function,
state variable and parameter increments are obtained. The linear search processes are conducted to
minimize the cost function.

2.3. Flow-Dependent Covariance and Localization Method

The proposed A-4DEnVar is not a traditional hybrid scheme. The advantage of A-
4DEnVar is that the adjoint model is avoided. Although the ensembles in A-4DEnVar
are mainly used to estimate the adjoint model, the uncertainty of state variables and
parameters are also propagated through these ensembles. It is also possible to propose a
flow-dependent scheme in A-4DEnVar.
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If an initial condition x∗0 is the center of ensemble initial condition, i.e.,

xn
0 = x∗0 + ε

n
0 (28)

where xn
0 denotes the initial condition of ensemble members and εn

0 is a zero-mean random
noise. In 4DEnVar, x∗0 denotes the true initial condition and is unknown. However, in
A-4DEnVar, x∗0 denotes the background or the prior initial condition. It is known exactly
and is updated in each iteration.

It is easy to calculate E
(
xn

0
)
= x∗0 and Var

(
xn

0
)
= Var

(
εn

0
)
. Here E(·) and Var(·) are

the expectation and variance operator, respectively. After integration through a dynamic
model, say M(·), for example, one would obtain the ensemble state variables at time ti,

xn
i = x∗i + ε

n
i = M(xn

0 ) = M(x∗0 + ε
n
0 ) (29)

Hence, the uncertainty of the state variables is

Var(εn
i ) = Var(M(x∗0 + ε

n
0 )−M(x∗0)) ≈ Var(M(εn

0 )) (30)

Here, M is the tangent linear model. However, because the true state is unknown yet,
4DEnVar replaces M(x∗0) with E

[
M
(
xn

0
)]

, which is only acceptable under a linear or weakly
nonlinear situation. In A-4DEnVar, the uncertainty (which is related to the initial state
x∗0) is calculated directly without any approximation. In addition, a factor is multiplied
bythe perturbation in A-4DEnVar, but its influence can be easily removed by dividing the
perturbations by the square of the same factor when estimating the variance, i.e.,

Var(εn
i ) ≈ Var(M(εn

0 )) ≈
1
µ

Var(M(x∗0 +
√

µεn
0)−M(x∗0)) (31)

To better consider the flow-dependent error covariance, a combination of traditional
4DEnVar and A-4DEnVar is also useful. However, such issues are beyond this paper. A
more detailed discussion combined with localization methods will be addressed in our
future work.

It is well known that the dimensions of state variables in real operational system
are often huge. The huge dimension usually introduces unexpected problems. One of
them is how to localize the background error covariance so that the long-distance pseudo
correlations between state variables introduced from a finite of ensemble members are
eliminated. Although this paper focuses on the derivation of the algorithm, here we also
present a convenient improvement of A-4DEnVar to implement localization. Motivated
by Liu et al. (2009), the localization of background error covariance is proposed through
extended ensemble members. The process is briefly described below.

In A-4DEnVar, the set of ensemble perturbations is an N-column matrix X̃0,

X̃0 =
(

x̃1
0, x̃2

0, · · · , x̃N
0

)
(32)

where N is the ensemble size, and the ith ensemble perturbation x̃n
0 (n = 1, · · · , N) is a

column vector. The background error covariance without localization is

B ≈ 1
µN

X̃0X̃
T
0 (33)

Generally, to localize B one often modifies it by a correlation function, such as the
Schur operator for example. The localized background error covariance is defined as

BL = ρ · B (34)
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and ρ denotes the spatial correlation function. Suppose ρ is decomposed as

ρ ≈ 1
r
ρ̃ρ̃T (35)

in which ρ̃ is a matrix composed of r empirical orthogonal functions of ρ. It is demonstrated
in Liu et al. [28] that the localized error covariance is

BL ≈ 1
µrN

Z̃0Z̃
T
0 (36)

where
Z̃0 =

(
ρ̃ · X̃1

0 · · · ρ̃ · X̃n
0 · · · ρ̃ · X̃N

0

)
(37)

and X̃
n
0 (n = 1, · · · , N) is an r-column matrix with its every column x̃n

0 .
It is easy to see that the construction of localized background error covariance BL is

similar with B itself but with more ensemble members. If the extended ensemble size is
also not very large, the solution of A-4DEnVar algorithm (Equations (24) and (25)) is not
changed, even with localization in practice.

3. Experiments and Results
3.1. Twin Experiment Setup

Before being performed in operational systems, it is important to study the method in
some simple but widely accepted models to test the method. Since this is the first step of
our study, a highly nonlinear chaotic ideal model is used here. More complicated models
will be studied in the future. In this subsection, we follow the study of Miller et al. [52],
Kalnay et al. [22], and Goodliff et al. [34], and use the Lorenz [1] model (Lorenz-63, hence-
forth) for verification of A-4DEnVar data assimilation. Although the Lorenz-63 model
consists of only three variables and three parameters, it is a strong nonlinear model. The six
degrees of freedom make it possible to carry out experiments with full rank. The governing
equations of the Lorenz-63 model are

dx
dt = σ(y− x)
dy
dt = rx− y− xz
dz
dt = xy− bz

(38)

where σ is the Prandtl number, b a non-dimensional wave number, and r a normal-
ized Rayleigh number. The standard and default values of parameters are set to be
(σ, b, r) = (10, 8/3, 28) which were widely used in previous studies. The model runs for
truth solutions using a fourth-order Runge-Kutta numerical scheme with time step dt = 0.01
and starting from the same initial condition as in Goodliff et al. [34], i.e., (−3.12346395;
−3.12529803; 20.69823159), which were obtained after disregarding the first 1000 steps of
an integrating process.

For the experiments constructed in this paper, all three model state variables are
observed. The simulated observations are sampled from the truth model state variables
contaminated by Gaussian noise with its mean zero and variance 1.0 at regular periods.
The background initial conditions were obtained by adding Gaussian noise with covariance
B to the initial truth. Considering the interactions between variables, the background error
covariance is provided by a three-dimensional variational data assimilation (3DVar) process
with a 5000 time-step cycle. The cycle includes many end-to-end assimilation windows and
only one observation at the end of each window. Starting from an arbitrary symmetric Bc
and initial conditions, the 3DVar provides an analysis state in a data assimilation window.
Then, integrating the analysis state, one would obtain a forecast state x f in the next window.
The truth states xtruth in the next window can also be calculated easily through integrating
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the truth initial conditions. Repeat the assimilation and forecast processes until the end of
the cycle. A new Bc is estimated as

Bc =
(
x f − xtruth

)(
x f − xtruth

)T (39)

from t = 500 to t = 5000. Again, repeat the estimations. The Bc usually converges to B in
less than 10 iterations.

The determination of parameters is even more complicated than that of initial con-
ditions. There are two empirical strategies to get the parameters. The first demonstrates
that no prior information about the parameters is known so that the variance of three
parameters might be the same for convenient. The second multiplies a factor by the value
of the parameters as their variances. It is hard to point out which is better. However, the
main purpose of this paper is to propose the A-4DEnVar for joint estimation problems
and show its consistency with conventional 4DVar. Therefore, the two strategies are both
acceptable here. In this paper, the initial parameters are calculated by adding random
noise with variance 0.25 to the default parameters. Besides, we also conducted experiments
based on the variance considered the difference of the parameters, i.e., the variances are set
to be (0.1, 0.027, 0.28), which is one percent of their values. Obviously, the variances are
much less or slightly larger than what is used below. Experiment results also demonstrate
that A-4DEnVar performs as well as conventional 4DVar. However, we do not show these
results in this paper for the limitation of spaces.

To estimate the adjoint models through temporal cross covariances, we add Gaussian
noise with covariance µB (in all experiments, we set µ = 10−8) to the initial conditions and
another white noise with variance 10−8 to the background parameters to generate ensemble
members. In this paper, these noises are regenerated in every iteration to be consistent
with the derivations. To reduce computational cost, it is not always necessary to update
them in practice if ensembles are close enough to (x∗,λ∗). In future works, more efficient
generation methods will be discussed, but it is beyond the scope of this paper.

The widely used root-mean-square error (RMSE) as a criterion to appraise the perfor-
mance of A-4DEnVar and conventional 4DVar schemes. Here, the RMSE for the variable x
is defined as

RMSE(x) =

√√√√ 1
L

L

∑
t=1

(
xanalysis

t − xtruth
t

)2
(40)

where L represents the number of time steps contained in all time windows (or cycles) in
an experiment, xanalysis

t is the analysis state variable and xtruth
t is the true state variable at

time step t. The RMSE mentioned below is calculated from all variables,

RMSE =
1
K

K

∑
k=1

RMSE[x(k)] (41)

where K is the degree of freedom and it is three for both state variables and parameters in
the Lorenz-63 model.

3.2. Comparison with Conventional 4DVar

In this subsection, we compare the performance of A-4DEnVar with conventional
4DVar. The experiment settings for window length, observational period, ensemble size,
etc., are as follows.

A long data assimilation window may introduce multiple minimums for the cost func-
tion. For the single initial condition estimation problem, Kalnay et al. [22] recommended
that the optimal window length when observed every 8 time steps is about 32 time steps,
and if observed every 25 steps the optimal window length is from 50 to 125 steps. However,
as it is known that the simultaneous estimation for initial conditions and parameters is
much more complex than the single estimation problems, it is reasonable to use a data
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assimilation window that is shorter but can also touch the ultimate window length of
4DVar. Thus, we choose 72 steps for a compromise. Besides, we set the observational
period to be 12 time steps in the preliminary test. We conducted experiments with an
observational period of 24. However, due to the nonlinearity of the chaotic system, it is
very hard for both 4DVar and A-4DEnVar to achieve stable performance. For some initial
conditions or parameters, algorithms converge to local minimizers that are far away from
the truth, which indicates the failure of data assimilation. Therefore, we do not show these
results in this paper. The experiment is designed as end-to-end cycles with 14,400 time
steps, i.e., 200 windows. One must note that it may be possible to produce special optimal
methods to extend the length of assimilation windows and observation periods.

Here, the ensemble size is set to be 50 to validate the performance of A-4DEnVar in
full rank. To test the performance of the algorithm, 100 experiments were produced using
both A-4DEnVar and conventional 4DVar. In these experiments, the initial conditions for
state variables, parameters, and observations are set to be the same for both A-4DEnVar
and 4DVar (but they are different values in the 100 experiments). A model control run
solution (labeled as CTL) without any data assimilation or correction is also presented.

The results (Figure 2a shows the solutions only in the first 25 windows from one
experiment) indicate the effectiveness of A-4DEnVar. Figure 2b shows the mean RMSE
of the conventional 4DVar algorithm and A-4DEnVar algorithm in all 100 experiments.
Although the RMSE of A-4DEnVar is slightly less than that of 4DVar, both algorithms
assimilate the information from observations so that the analysis RMSE for each variable is
less than the standard deviations of observations, the unit of which is mentioned above. It
is shown that both algorithms perform well under the experiment setting. In Figure 2c, the
RMSEs of parameters b and r from A-4DEnVar are less than that from 4DVar. However,
4DVar performs slightly better than A-4DEnVar on the parameter σ.

Due to the complex manifold structure caused by the high nonlinear model, the
global minimum of the cost function is difficult to achieve through gradient based optimal
methods. The chaos of the Lorenz model makes the optimization even more difficult so
that a small perturbation in the gradient would lead to another local minimum of the cost
function. Considering that the motivation of A-4DEnVar is replacing the adjoint models
with these estimated temporal cross error covariances, these estimations can be close enough
to their true values but cannot be the same. The gradient directions calculated from adjoint
models in 4DVar are slightly different from what was estimated in A-4DEnVar. Therefore,
the RMSE obtained by the two data assimilation schemes might be slightly different from
each other. In our conclusions, we do not emphasize whether the performance of 4DVar or
that of A-4DEnVar is better, but only state that their performances are all acceptable and
are equivalent to each other.

The computational cost also influences the usage of both methods. The computing
burden for A-4DEnVar is mainly from integrating ensembles. For conventional 4DVar,
the burden is mainly from the calculation of adjoint models. Empirically, running the
adjoint model often costs about 6 to 10 times the computational resources of the forward
dynamic model. Therefore, if every ensemble member is updated in each iteration, it would
be cheaper to implement A-4DEnVar when the ensemble size is less than 10. However,
it also should be noticed that regenerating or updating ensembles is only necessary if
ensembles are not close to the background. For example, updating the ensembles after
several iterations of increments is acceptable when the nonlinearity is limited. Therefore,
it is possible for A-4DEnVar to further reduce its computing costs in practice. What also
should be emphasized is that, to calculate the gradient, one has to store the value of state
variables increments in every time step in 4DVar. In contrast to it, A-4DEnVar only stores
the values of state variables where the observations are located. Considering the dimension
of the state variables is often much larger than that of observations, A-4DEnVar saves most
storage spaces. Besides, the proposed A-4DEnVar is an ensemble-based method, and it can
be easily implemented in operational parallel systems to save time.
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The usage of factor µ to control the value of perturbations and generate ensemble
members is an important difference between A-4DEnVar and 4DEnVar methods. Figure 3
shows the difference between the gradients (in the first iteration step) calculated by A-
4DEnVar and the traditional 4DVar method with the change of µ. It is shown that, in
Lorenz-63 model, only if the factor is less than 10−6 which is far less than the value
of the background error covariance used in other 4DEnVar methods, the gradients (for
both variables and parameters) obtained from A-4DEnVar are close enough to that from
traditional 4DVar.

Atmosphere 2022, 13, x FOR PEER REVIEW 14 of 21 
 

 

  
Figure 3. The difference between the gradients obtained from A-4DEnVar and the traditional 4DVar 
method with the change of factor. 

3.3. Model Sensitivities with Respect to Observation Period, the Length of Data Assimilation 
Windows and Ensemble Size 

Since the nonlinearity of operational NWP systems increases with the length of the 
assimilation window, it is of great importance to point out the assimilation capability of 
A-4DEnVar with different window lengths and observation periods. In this set of experi-
ments, the window of length 24, 48, 72, and 120 steps with observation periods 4, 6, and 
12 steps are conducted. Each experiment is carried out 500 times to test the statistical per-
formance and robustness. Again, the initial conditions for state variables, parameters, and 
observations are set to be the same for A-4DEnVar and 4DVar, but they are different val-
ues in these experiments. 

The RMSEs of state variables as a function of window lengths and observation peri-
ods are presented by box plot in Figure 4. On each box, the central mark indicates the 
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively. The whiskers extend to the most extreme data points not considered outliers, 
and the outliers are plotted individually using the red cross-marker symbol. It can be seen 
that for experiment settings, most RMSEs of variable states are less than 1.0. The outliers 
are mainly because of the random choice of backgrounds, and the algorithms find a local 
minimum. For a fixed window length, the mean of assimilation RMSEs increases with the 
observational period. The best performance occurs when the window is about 120 time 
steps. If the window is too short, the lack of observational information also results in large 
RMSEs. When the assimilation window is 24 steps and the observation period is 24 steps 
(not shown here), the RMSE is greater than the standard deviation of the observational 
noise, which indicates the failure of data assimilation. 

Figure 3. The difference between the gradients obtained from A-4DEnVar and the traditional 4DVar
method with the change of factor.



Atmosphere 2022, 13, 993 14 of 19

3.3. Model Sensitivities with Respect to Observation Period, the Length of Data Assimilation
Windows and Ensemble Size

Since the nonlinearity of operational NWP systems increases with the length of the
assimilation window, it is of great importance to point out the assimilation capability
of A-4DEnVar with different window lengths and observation periods. In this set of
experiments, the window of length 24, 48, 72, and 120 steps with observation periods 4, 6,
and 12 steps are conducted. Each experiment is carried out 500 times to test the statistical
performance and robustness. Again, the initial conditions for state variables, parameters,
and observations are set to be the same for A-4DEnVar and 4DVar, but they are different
values in these experiments.

The RMSEs of state variables as a function of window lengths and observation periods
are presented by box plot in Figure 4. On each box, the central mark indicates the median,
and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme data points not considered outliers, and the
outliers are plotted individually using the red cross-marker symbol. It can be seen that
for experiment settings, most RMSEs of variable states are less than 1.0. The outliers are
mainly because of the random choice of backgrounds, and the algorithms find a local
minimum. For a fixed window length, the mean of assimilation RMSEs increases with the
observational period. The best performance occurs when the window is about 120 time
steps. If the window is too short, the lack of observational information also results in large
RMSEs. When the assimilation window is 24 steps and the observation period is 24 steps
(not shown here), the RMSE is greater than the standard deviation of the observational
noise, which indicates the failure of data assimilation.
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For parameters in Figure 5, a shorter observational period does not achieve a smaller
RMSE. In this case, we find that the minimum point of the cost function is different
from the truth because of the interaction between state variables and parameters and the
noises contained in observations. Since both A-4DEnVar and 4DVar converge to this point,



Atmosphere 2022, 13, 993 15 of 19

parameters with high RMSEs are obtained. However, the trajectories are almost the same
as the truth. Another suit of experiments (not shown here) which only optimize parameters
with perfect initial conditions shows that the interactions can be alleviated but cannot be
completely eliminated. Both in Figures 4 and 5, the experiments carried out by 4DVar
using the same settings also lead to similar results and demonstrate the equivalence of
A-4DEnVar and 4DVar.
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In the last set of experiments, we consider the impact of ensemble size on the per-
formance of A-4DEnVar. Generally speaking, the dimensions of variable states in the
operational NWP system are huge. It is necessary to evaluate the required ensemble size
for data assimilation. However, we only consider a simple model with full rank ensembles
here. Because the Lorenz-63 chaos system has six degrees of freedom, to implement data
assimilation, the ensemble sizes are chosen as 10, 20, 50, 100, 300, 500, and 1000, while the
window length and observational period are set to be 72 and 12 steps as in the preliminary
experiment. Each experiment is also repeated 500 times to demonstrate the statistical
performance of the A-4DEnVar under the same settings used above. The RMSE results for
variables and parameters are shown in Figure 6.

Although the RMSEs for each variable change a little with different ensemble size, it
is clear that all RMSEs are less than observation variance, which shows the effectiveness
of the proposed algorithm. The A-4DEnVar is not sensitive to the ensemble sizes for the
Lorenz model with full rank ensembles. In fact, the key to A-4DEnVar is estimating the
adjoint models by ensemble perturbations. The performance of A-4DEnVar depends on the
precision of these estimations. Theoretically, it is the magnitude of ensemble perturbations
rather than the ensemble sizes influence the estimation of adjoint models. The experiment
results shown in Figure 6 also indicate that RMSE does not improve significantly with the
increase of ensemble sizes. While the dimension of the NWP system is large, it is often
impossible to generate enough ensemble members. Hence, the localization methods should



Atmosphere 2022, 13, 993 16 of 19

be introduced to alleviate spurious correlations between state variables. However, we do
not focus on the issue in this paper and our related studies are also on the way.
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4. Conclusions

The necessity of an adjoint model in conventional 4DVar schemes limits its transplant
to other operational NWP systems. To alleviate the limitation, the hybrid data assimilation
scheme, namely A-4DEnVar, has been proposed for the initial condition optimal problem
in our earlier work. In this paper, the A-4DEnVar is proposed for the combined state
and parameter estimation. In A-4DEnVar, the ensemble members are centralized to the
state variables integrated with background parameters and from the background initial
condition at each iteration step to estimate reasonable temporal cross covariances. The
perturbation is very small and model error evolution is described by the temporal cross
covariances so that the adjoint model is avoided. The linear research and iteration process
are also adopted to ensure convergence.

The A-4DEnVar algorithm is evaluated by the Lorenz-63 model in which all three
variables and parameters are estimated simultaneously. Comparisons between A-4DEnVar
and adjoint-based conventional 4DVar show that the A-4DEnVar can not only capture the
observational information but also obtain a reasonable analysis state in the assimilation
window, just as 4DVar does. Sensitive experiments demonstrate the effectiveness of A-
4DEnVar in different assimilation window lengths and observational periods. Besides, the
proposed algorithm is not sensitive to ensemble size if in full rank.

In this paper, we validate A-4DEnVar in a simplified model. This is the first step of
our study, and it will soon be studied in operational systems. Our further work focuses on
the localization and the generation of ensemble members to improve its performance in
real applications.

Author Contributions: Conceptualization, K.L. and W.L.; methodology, K.L.; validation, G.H.;
writing—original draft preparation, K.L.; writing—review and editing, W.L. and G.H.; visualization,
S.L. and Y.G. project administration, W.L.; funding acquisition, G.H. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by grants from the National Key Research and Development
Program (2021YFC3101501) and the National Natural Science Foundation (41876014) of China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Atmosphere 2022, 13, 993 17 of 19

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors acknowledge valuable discussions with Hanyu Liu, Lige Cao and
Qi Shao from the School of Marine Science and Technology of Tianjin University.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this Appendix we present the derivartions of the analytical solutions of A-4DEnVar.
Considering the gradient of cost function and set ∇x̃0 J = 0 and ∇

λ̃
J = 0 in Equations (17)

and (18), i.e.,

B−1[x̃0 − (xb − x∗0)] + ∑
i

MT
i,0HT

i R−1
i

(
HiMi,0x̃0 + HiDi,0λ̃− di

)
= 0 (A1)

∑
i

DT
i,0HT

i R−1
i

(
HiMi,0x̃0 + HiDi,0λ̃− di

)
= 0 (A2)

From Equation (A1), we find that(
B−1 + ∑

i
MT

i,0HT
i R−1

i HiMi,0

)
x̃0 =

[
B−1(xb − x∗0) + ∑

i
MT

i,0HT
i R−1

i

(
di −HiDi,0λ̃

)]
(A3)

Note that Equation (A2) indicates that

λ̃ =

(
∑

i
DT

i,0HT
i R−1

i HiDi,0

)−1

∑
i

DT
i,0HT

i R−1
i (HiMi,0x̃0 − di) (A4)

Substituting Equation (A4) into Equation (A3) yields[
B−1 + S(M,M) − S(M,D)S

−1
(D,D)

ST
(M,D)

]
x̃0 =

[
B−1(xb − x∗0) + S(M,d) − S(M,D)S

−1
(D,D)

S(D,d)

]
(A5)

where
S(A,C) ≡∑

i
AT

i HT
i R−1

i HiCi S(A,d) ≡∑
i

AT
i HT

i R−1
i di (A6)

It is easy to get from Equation (A5) that

x̃0 =
[
B−1 + S(M,M) − S(M,D)S

−1
(D,D)

ST
(M,D)

]−1[
B−1(xb − x∗0) + S(M,d) − S(M,D)S

−1
(D,D)

S(D,d)

]
(A7)

Substituting Mi,0|x∗0 ,λ∗ ≈ Bi0(B00)
−1 and Di,0|x∗0 ,λ∗ ≈ PiΛ

−1 into the above equation,
we have

x̃0 = B00

[
B00B−1B00 + S(B,B) − S(B,P)S

−1
(P,P)S

T
(B,P)

]−1[
B00B−1(xb − x∗0) + S(B,d) − S(B,P)S

−1
(P,P)S(P,d)

]
(A8)

Eliminating x̃0 from Equations (A1) and (A2) with similar process, we have

λ̃ =

[
S(D,D) − ST

(M,D)

(
B−1 + S(M,M)

)−1
S(M,D)

]−1

×
[
−ST

(M,D)

(
B−1 + S(M,M)

)−1
B−1(xb − x∗0)− ST

(M,D)

(
B−1 + S(M,M)

)−1
S(M,d) + S(D,d)

] (A9)

and
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λ̃ = Λ

[
S(P,P) − ST

(B,P)

(
B00B−1B00 + S(B,B)

)−1
S(B,P)

]−1

×
[
−ST

(B,P)

(
B00B−1B00 + S(B,B)

)−1
B00B−1(xb − x∗0) −ST

(B,P)

(
B00B−1B00 + S(B,B)

)−1
S(B,d) + S(P,d)

] (A10)

which are equations in our main sections.
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