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Abstract: Atmospheric particulate matter (PM) contains various chemicals, some of which generate
in vivo reactive oxygen species (ROS). Owing to their high reactivity and oxidation ability, ROS
can cause various diseases. To understand how atmospheric PM affects human health, we must
clarify the PM components having oxidative potential (OP) leading to ROS production. According to
previous studies, OP is exhibited by humic-like substances (HULIS) in atmospheric PM. However, the
OP-dependence of the chemical structures of HULIS has not been clarified. Therefore, in this study,
humic acid (HA, a model HULIS material) was exposed to ozone and ultraviolet (UV) irradiation,
and its OP and structures were evaluated before and after the reactions using dithiothreitol (DTT)
assay and Fourier transform infrared (FT-IR), respectively. The OP of HA was more significantly
increased by UV irradiation than by ozone exposure. FT-IR analysis showed an increased intensity of
the C=O peak in the HA structure after UV irradiation, suggesting that the OP of HA was increased
by a chemical change to a more quinone-like structure after irradiation.

Keywords: atmospheric particulate matter; reactive oxygen species; oxidative potential; humic-like
substances; dithiothreitol assay; ozone exposure; UV irradiation; Fourier transform infrared analysis

1. Introduction

Atmospheric particulate matter (PM) contains a wide variety of chemicals. Although
a strong link has been identified between the hazard level and composition of PM [1,2], the
chemicals that significantly affect human health are unclear [1]. To improve the atmospheric
environment and maintain human health, the harmful substances in PM must be identified
and their toxicity intensities must be clarified. Several studies have shown that PM exposure
can induce oxidative stress in human bodies, which is a hypothesized mechanism of PM
toxicity, i.e., inhaled PM may contribute to adverse health effects by producing excess
reactive oxygen species (ROS) [1–3].

ROS are oxygen-contained molecules with high reactivity and oxidation ability in
a living body. They include (but are not limited to) hydroxyl radicals, organic radicals,
nitroxyl radicals, singlet oxygen, and hydrogen peroxide [3]. ROS are produced during
processes such as energy production and attacks on xenobiotics. Although they play a
functional role in these processes, they also oxidize fats, proteins, enzymes, and DNA.
Such molecules are damaged by the production of excess ROS in vivo and the uptake of
excess ROS from outside. Consequently, ROS are responsible for various diseases such as
inflammation, carcinogenesis, cardiovascular diseases, and neurodegenerative diseases [4].

Oxidative potential (OP) is a critical indicator of PM toxicity [3]. We can estimate
the ability of PM to generate in vivo ROS by measuring the OP of PM components with
dithiothreitol (DTT) assay. The DTT assay is particularly popular [5] because it provides
quantitative OP measures of PM in the absence of cells, is low-cost, fast, and easy to
manipulate [3,6]. Based on current literature, the DTT assay seems to be among the most
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relevant OP assays for epidemiology analyses because it has been more associated with
acute and chronic health endpoints and adverse cardiorespiratory outcomes than the PM
concentration [7].

Transition metals, such as copper and manganese, and polycyclic aromatic hydro-
carbon quinones (PAHQ), are known to be DTT-active species [6–9]. Polycyclic aromatic
hydrocarbons (PAH), the parent compounds of PAHQ, are oxidized by ozone exposure or
irradiation to form PAHQ, exhibiting high OP [7,9–11]. Moreover, some metals, such as
manganese, are reported to show synergistic effects with PAHQ on OP [7,12–15]. Humic-
like substances (HULIS) in atmospheric PM are also DTT-active species [16–19]. HULIS are
polymeric compounds with no specific chemical structure. Their actual chemical structures
are estimated to be similar to those of humic substances in soils and natural waters [18].
HULIS account for approximately 30% of the organic constituents in atmospheric parti-
cles [20]. Their main sources are secondary production from low-molecular-weight organic
compounds in the atmosphere and biomass burning [18,21–24]. According to previous
studies, OP by HULIS [25–27] can be activated via the synergy caused by the complexation
with metallic elements that are similar to PAHQ [7,15,16,21,28]. However, the OP response
to a chemical change in the HULIS structure has not been clarified. Previous studies have
shown that under ultraviolet (UV) irradiation or ozone exposure, the OP of organic aerosols
increases and their harmfulness is enhanced [29]. HULIS in the atmosphere may also be
oxidized by ozone exposure or UV irradiation, which contributes to the increase in the
OP of organic aerosols; however, this is not yet confirmed. Understanding how chemical
changes in HULIS influence their OP is important for properly evaluating the hazard of
PM in the atmosphere. Therefore, in this study, humic acid (HA) as model HULIS ma-
terial was exposed to ozone and UV irradiation. Its OPs and structures were compared
before and after the reactions using DTT assay and Fourier transform infrared (FT-IR)
analysis, respectively.

2. Materials and Methods
2.1. Chemical Reagents

HA, DTT, and hydrochloric acid (HCl) were obtained from Wako Pure Chemical
Industries. 5,5′-Dithiobis(2-nitrobenzonic acid) (DTNB) was purchased from Dojindo
Laboratories (Kumamoto, Japan). Sodium hydroxide (NaOH), potassium dihydrogen
phosphate (KH2PO4), and dipotassium hydrogen phosphate (K2HPO4) were obtained
from Nacalai Tesque (Kyoto, Japan). The DTT and DTNB were dissolved in potassium
phosphate buffer (0.05 M, pH 7.2, prepared in the laboratory) at concentrations of 79 µM
and 3 mM, respectively. The HA used in this study was presumably prepared by the
chemical treatment of coal or peat rather than the extraction or purification from soil
or other natural sources. However, the elemental contents of the commercial HA were
reported to be similar to those of the Leonardite standard HA provided by the International
Humic Substances Society, and the organic matter in them is quite uniform in nature [30].

2.2. Sample Preparation

HA is insoluble in acids and soluble in alkalis [31,32]. Therefore, after the reaction, HA
was first dissolved in 0.1 M NaOH solution, and the pH was adjusted to 7.2–7.4 with the
addition of HCl (Figure S1). The HA concentration in the sample solution was 0.018 mg/mL.
As the blank solution, a 0.1 M NaOH solution without HA was adjusted to pH 7.3 with
HCl addition.

2.3. DTT Assay

The DTT assay was performed as previously described [33]. Briefly, 1425 µL of
79 µM DTT solution and 75 µL of each test sample were placed in a polypropylene conical
tube immersed in a water bath kept at 37 ◦C, mixed, and reacted for 60 min. After the
reaction, 100 µL of the solution was collected and mixed with 20 µL of 3 mM DTNB
solution in a disposable cell for spectrophotometry. The 5-Mercapto-2-nitrobenzonic acid
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(TNB) produced by this reaction was quantified in a UV–Vis spectrophotometer (UVmini-
1240; Shimadzu Corporation, Kyoto, Japan) at a measuring wavelength of 412 nm. In
addition, 95, 5, and 20 µL of DTT solution, buffer solution, and DTNB solution, respectively,
were mixed in advance in another cell. The generated TNB was then quantified in the
spectrophotometer. From these two results, the amount of TNB reduction was determined
and calculated as the amount of DTT consumed by each test sample. Furthermore, we
performed blank experiments with samples that did not contain the test substance. The
calculated results were corrected by subtracting the blank DTT consumption from the DTT
consumption of each sample. A quality assurance test was performed on our DTT assay by
measuring the DTT consumption rate with 9,10-phenanthrenequinone (PQN), which is a
representative DTT-active PAHQ. The results were then compared to a previous report [33].

2.4. Exposure of HA to Ozone

The air from an air compressor was passed through an air-drying unit and sent to an
ozone generator (ED-OG-L7; Eco Design Inc., Saitama, Japan). The ozone concentration was
adjusted to 1 ppm, which is more than ten times that of the typical ambient concentrations
in major cities in the world [34], by monitoring using an ozone monitor (MODEL1200;
Dylec Inc., Ibaraki, Japan). The ozone-containing air was transferred to the reaction vessel
(6 cm ID × 18 cm height, ~500 mL) at 1 L/min (Figure S2). HA was divided into 5 mg
portions in a Petri dish (1.9 cm ID × 1.0 cm depth). Each portion was placed in a Pyrex
reaction vessel protected from light and exposed to ozone for a certain period of time at
17 ◦C and a relative humidity of 13%. The exposure times were 0, 2, 4, 6, 8, 10, 18, and
24 h. Exposures were performed twice for each reaction time. The HA after exposure was
applied to the sample preparation at each reaction time according to Section 2.2. Each
prepared sample solution was divided into three portions, and then they were subjected to
the DTT assay; the average of the six assay results at the same reaction time was calculated
and displayed in Figure 1.
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Figure 1. Dithiothreitol (DTT)-consumption rates of HA before and after ozone exposure (mean± SD;
N = 6; * p < 0.05, *** p < 0.001).

2.5. UV Irradiation of HA

A 5-mg sample of HA in a Petri dish (1.9 cm ID × 1.0 cm depth) was irradiated
with UV light that was generated from six black-light fluorescent lamps (FL20S.BLB 20W
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from Toshiba Corporation, Tokyo, Japan) for a specified period of time in an indoor air
environment (20◦C and 30% relative humidity) (Figure S3). The maximum emission
wavelength of the black-light lamps was 360 nm. The intensity of the UV radiation at the
sample installation position, measured using an UV intensity meter (UV-340c; CUSTOM
Corporation, Tokyo, Japan), was 205 µW/cm2. The irradiation time was varied at 0, 0.5, 1,
2, 4, 6, 8, and 10 h. Irradiations were performed twice for each reaction time. The HA after
the irradiation was applied to the sample preparation at each reaction time according to
Section 2.2. Each prepared sample solution was divided into three portions, which were
then subjected to the DTT assay. The average value of the six assay results at the same
reaction time was calculated and displayed in Figure 2.
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Figure 2. DTT consumption rates of HA before and after UV irradiation (mean± SD, N = 6; * p < 0.05,
** p < 0.01, *** p < 0.001).

2.6. FT-IR Analysis

The FT-IR spectra of HA samples were obtained by an infrared spectrophotometer
(FT/IR-6100 from Jasco Corporation, Tokyo, Japan) before and after ozone exposure or
UV irradiation. The spectra were acquired using an attenuated total reflection method
with an integration frequency and measurement range of 500 times and 500–4000 cm−1,
respectively. No special sample preparation was required in the FT-IR analysis.

3. Results and Discussion

The DTT consumption rates of HA before and after ozone exposure are compared
in Figure 1. The results of two-sided tests with their significance levels are marked by
asterisks (* p < 0.05, *** p < 0.001). The ozone exposure increased the DTT consumption rate
of HA; however, the differences compared to pre-exposure rates were significant only after
10 and 24 h of exposure.

The DTT consumption rates of HA before and after UV irradiation are compared in
Figure 2. The results of two-sided tests with their significance levels are marked by asterisks
(* p < 0.05, ** p < 0.01, *** p < 0.001). The DTT consumption rates increased gradually with
the UV irradiation time, indicating that the OP of HA increased due to UV irradiation. This
clearly suggests that the chemical reaction in the UV irradiation of HA affected the OP.
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In the reaction with ozone, the relative DTT consumption rates were 1.11 ± 0.03 and
1.21 ± 0.03 after 10 and 24 h, respectively (Figure 1). On the other hand, the rate after
10 h of UV irradiation was 1.47 ± 0.09 (Figure 2), indicating that UV irradiation showed a
stronger effect on OP than the ozone reaction.

Typical FT-IR spectra in the range of 800–2000 cm−1 of HA before and after ozone
exposure and UV irradiation are shown in Figures 3 and 4, respectively. The peaks were
assigned as follows [35]: peak A (around 1220 cm−1) was from C–O–H phenolic, C–O
stretching of phenol, C–O stretching of alcohols, and bending of phenol OH and alcohol OH;
peak B (1350–1400 cm−1) was from the symmetric ring breathing of aromatics, C–H and
O–H bending modes, and C–H deformations of CH3 and CH2; peak C (around 1600 cm−1)
was from the asymmetric COO– stretching of carboxylate with partial protonation from
neighboring carboxyl groups, C=O stretching of quinones, aromatic C=C, and symmetric
stretching of COO–; and peak D (around 1720 cm−1) was from the C=O stretching of
carboxylic acid, aldehydes, esters, ketones, and saturated ethers. Similar IR spectra were
obtained from the analysis of authentic fulvic acid from the Suwanee River [36]. The
heights of peaks A, B, and D increased after both ozone exposure and UV irradiation.
The increases were more notable in the UV irradiation. For example, after UV irradiation
(Figure 4), the heights of peaks A, B, and D were approximately 2× higher than after
the reaction with ozone for the same time (Figure 3). This trend is consistent with the
DTT assay results. Peaks A, B, and D were attributed to the C=O bonds, phenol OH, and
carboxyl groups of HA. Oxidation, which changed the structure of HA, proceeded under
both ozone exposure and UV irradiation. It has been reported that similar results were
partially obtained by ozone exposure or UV irradiation of aqueous HA [37–39]. There was
no substantial difference between panels b and c in Figure 4. Moreover, the difference in
the peak heights between panels b and c in Figure 3 was unclear. This is consistent with
the finding that there was no significant difference in the DTT activity after the reactions
conducted for 6 and 10 h (Figures 1 and 2).

A typical structure of HULIS and the structural formula of PQN, which is a repre-
sentative PAHQ, are shown in Figure 5. PAHQ includes ketone groups in its structure.
For example, PQN with two ketone groups at the ortho position produces more ROS than
stoichiometrically expected through catalytic redox reactions [8]. The generation of PAHQ
is known to be via the photo-oxidation of PAH and oxidation of PAH with ozone. Molecules
of the parent PAH of PQN (i.e., phenanthrene) easily absorb sunlight because of their wide
electron delocalization, which induces electron transitions from a ground state to an excited
state with a higher energy. The reaction between light-excited phenanthrene and O2 finally
leads to oxidation products (e.g., PQN) [40,41]. Oxidized PAH molecules have also been
identified in products from heterogeneous reactions of PAH with ozone. Two mechanisms
have been proposed for the reaction, including the one-step electrophilic-nucleophilic
attack of ozone on the olefin bonds of PAH and the atom-attack of ozone on the most
electrophilic position. The former reaction mechanism tends to yield ring-opened products
such as aldehydes and carboxylic acids [42]. The latter reaction mechanism leads ultimately
to the formation of quinones. HA possesses no specific chemical structures; however, it
contains benzene rings in its structure [43]. In addition, some hydrogens in its benzene
rings are substituted by hydroxyl or ketone groups [44]. The hydroxyl groups of aromatics
are transformed easily by further oxidation to ketone groups [45]. Therefore, under ozone
exposure or UV irradiation, HA is potentially partially oxidized to PAHQ-like structures [7],
which likely contributed to the increased OP of HA. To verify this, a detailed structural
analysis by nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy,
and high-resolution mass spectrometry is required in future studies [46–48]. In this study,
the exposed ozone concentration was >10 × the ambient concentration [34]. A typical UV
intensity during daytime on the earth surface is fairly higher (>5000 µW/cm2) [49,50] than
that of the experimental condition (205 µW/cm2). Therefore, UV-induced oxidation is an
important factor that increases the OP of atmospheric HULIS.
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