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Abstract: The urban form (e.g., city size, shape, scale, density, etc.) can impact the air quality and
public health. However, few studies have been conducted to assess the relationship between the
urban form and PM2.5 concentrations on a regional scale and long-term basis in China. In this study,
we explored the impact of the urban form on the PM2.5 concentrations in four different regions (i.e.,
northeast, central, east, western) across China for the years 2000, 2005, 2010, and 2015. Five landscape
metrics were classified into three characteristics of the urban form (compactness, shape complexity,
and urban expansion) using high-resolution remote-sensing data. With considerations given to
regional differences, panel-data models and city-level panel data were used to calculate the impact of
the urban form on the PM2.5 concentrations. The results of the study indicate that urban expansion is
positively correlated with the PM2.5 concentrations across China, with the only exception being the
country’s western region, which suggests that urban extension is conducive to increasing the PM2.5

levels in relatively developed regions. Meanwhile, the positive relationship between the irregularity
of cities and the PM2.5 concentrations indicates that reducing the urban shape complexity will help
to mitigate PM2.5 pollution. Moreover, urban compactness, which mainly refers to the landscape-
division-index values, proved to have a negative effect on the PM2.5 concentrations, suggesting that
the optimization of urban spatial compactness could reduce PM2.5 levels. The findings of this study
are beneficial for a better understanding of the intensity and direction of the effect of the urban form
on PM2.5 concentrations.

Keywords: urban landscape pattern; landscape metrics; regional differences; PM2.5 concentrations;
China

1. Introduction

Air pollution has become one of the most severe environmental issues across the world,
increasing health risks and anomalous climatic events. Rising PM2.5 concentrations—which
have caused a host of problems, including increased death rates, reduced visibility, and
damage to ecosystems—is believed to be one of the greatest contributors to the air prob-
lem [1–3]. Recent studies have demonstrated that PM2.5 concentrations can be influenced by
urban forms (e.g., the city size, shape, scale, density, land uses, building types, urban block
layout, and distribution of green space) [4–9]. For example, the urban-heat-island effect can
affect the production and aggravation of the PM2.5 concentrations in urban areas [10,11].
The urban landscape pattern can be reflected by the NDVI (normalized difference veg-
etation index), and a higher NDVI value was reported to have a negative effect on the
PM2.5 levels in a study conducted in East Asia [12]. This is because the NDVI has negative
effects on the land surface temperature [13]. Existing studies have demonstrated that road

Atmosphere 2022, 13, 963. https://doi.org/10.3390/atmos13060963 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos13060963
https://doi.org/10.3390/atmos13060963
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-0621-3563
https://orcid.org/0000-0001-5948-1054
https://doi.org/10.3390/atmos13060963
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos13060963?type=check_update&version=1


Atmosphere 2022, 13, 963 2 of 14

greenbelts and the vertical distribution of biomass and diversified vegetation species assist
in mitigating PM2.5 levels [14]. Deng et al. [15] also posit that green spaces with different
structures have different influences on reducing PM2.5 levels. However, other indices (e.g.,
area, compactness, and shape complexity [16]) should also be considered when assessing
the impact of urban forms on PM2.5 concentrations. Currently, only a handful of articles
have addressed the influence of urban forms on PM2.5 concentrations, with most previous
studies focusing on CO2 [17]. For instance, a study on the relationship between urban
forms and PM2.5 concentrations based on 111 U.S. cities suggests that the higher popu-
lation centrality is associated with lower PM2.5 concentrations, but higher urban sprawl
created heavier PM2.5 concentrations [18,19]. In China, the findings indicate that large
urban areas had a positive impact on the PM2.5 concentrations in cities with built-up areas
<300 km2 [20]. The results of the research by Shi et al. [4] also suggest that urban expansion
had a positive influence on the PM2.5 concentrations in Chinese cities. Meanwhile, they
further argue that urban-form compactness is beneficial for reducing PM2.5 concentrations.
Su et al. [21] analyzed the implications of urban landscape patterns for the PM2.5 levels in
Nanchang and found that the SHDI (Shannon’s diversity index) value of the construction
land could increase the PM2.5 levels [21]. Lu et al. [22] took the Yangtze River Delta as a
sample and also found that the irregular shape of a landscape patch was associated with
an increase in PM2.5 levels. It has also been found that the irregularity of urban land-use
patterns can increase energy consumption and, therefore, is positively correlated with
PM2.5 levels [23,24]. The results of the research by Yuan et al. [25] further suggest that
sprawling urban forms are associated with higher PM2.5 levels. Similar findings can also be
seen from the study by Marttins [26]. The results of a study by Lu and Liu [27] also suggest
that compact urban forms can reduce air pollution due to the higher rate of clustering
among industrial enterprises. Above all, these studies were conducted for one specific
city/region or over a short period, which limits our understanding of the impact of the city
form on the PM2.5 levels at the national level. However, regional differences between urban
forms and PM2.5 concentrations at the national level are far from explained. Therefore, this
paper will focus on this topic from the perspective of regional differences in China.

In this study, 343 cities were selected from 31 provinces in China to analyze the
influence of the urban form on PM2.5 concentrations. Firstly, the cities were divided into four
regions (namely, northeast, central, eastern, western) across China. Secondly, five landscape
metrics (i.e., total landscape area (TA), mean perimeter/area ratio (PARA_MN), landscape
shape index (LSI), largest patch index (LPI), landscape division index (DIVISION)) were
utilized to quantify and analyze the urban landscape patterns of the various cities. Thirdly,
in this study, after completing all estimates, we employed panel-data models to estimate
the associations between the urban landscape patterns and the PM2.5 levels. Through the
above analysis, we believe that the results are beneficial for us to better understand the
intensity and direction of the effect of the urban form on PM2.5 concentrations.

2. Materials and Methods
2.1. Study Area

To deal with the regional heterogeneity in the influences of a range of factors on
the PM2.5 levels, 343 cities, which are located in 31 provinces in mainland China, were
selected. These were divided into four geographical research units: the northeast region,
central region, western region, and eastern region. The northeast region covers 3 provinces
(Liaoning <1>, Jilin <2>, and Heilongjiang <3>), the central region covers 6 provinces
(Hunan <4>, Hubei <5>, Henan <6>, Shanxi <7>, Anhui <8>, and Jiangxi <9>), the western
region covers 12 provinces (Chongqing <10>, Guangxi <11>, Guizhou <12>, Gansu <13>,
Qinghai <14>, Shannxi <15>, Sichuan <16>, Tibet <17>, Inner Mongolia <18>, Ningxia <19>,
Xinjiang <20>, and Yunnan <21>), and the eastern region involves 10 provinces (Fujian
<22>, Beijing <23>, Hainan <24>, Guangdong <25>, Jiangsu <26>, Hebei <27>, Shanghai
<28>, Shandong <29>, Tianjin <30>, and Zhejiang <31>). The geographic locations of each
region are described in Figure 1.
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2.2. Dataset

This study utilized data from the China Land Use/Cover Dataset (CLUD) to obtain the
urban land-use areas in each study area for the years 2000, 2005, 2010, and 2015. The CLUD
dataset is calculated by the Chinese Academy of Sciences with scenes data, such as Landsat
ETM scenes and Landsat TM scenes, with a spatial resolution of 1 km × 1 km. The detailed
methods for acquiring the areas of urban land use are available in Fang et al. [28]. The data
on the PM2.5 concentrations (denoted by the annual concentration) used in this paper are
freely available as a public good from the Dalhousie University Atmospheric Composition
Analysis Group, at a high spatial resolution of 1 km × 1 km, and were estimated by com-
bining the data retrieved from the aerosol optical depth (AOD) of the moderate resolution
imaging spectroradiometer (MODIS) products of the National Aeronautics and Space Ad-
ministration (NASA), and multiangle imaging spectroradiometer (MISR) instruments with
aerosol vertical profiles and scattering properties that were simulated by the GEOS-Chem
chemical transport model [29]. Published articles have demonstrated that satellite products
can provide data and technical support for the government in atmospheric environmental
governance [30].

Landscape metrics are important in the effective evaluation of urban landscape pat-
terns [31,32]. This study employed five frequently utilized landscape metrics to describe
the urban landscape patterns of urban areas by describing their extension, shape com-
plexity, and compactness [33–35]. The extension is calculated from the means of the total
landscape areas (TAs). The TA, which is the foundation for calculating the other landscape
metrics, refers to the total areas of all patches and is used to represent the size (or extent)
of the urban land use. The landscape shape index (LSI) and the mean perimeter/area
ratio (PARA_MN) are generally employed to denote the shape complexity of patches. The
PARA_MN is utilized to calculate the ratio of the patch perimeter to the total area, and this
measure increases as the irregularity of the landscape shape increases. The LSI is obtained
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by modifying the perimeter/area ratio of the total areas. When the LSI is equal to 1, this
indicates that the landscape has the most regular shape possible, or that a specific patch
type is regular [36]. Compactness, which is employed to measure the agglomeration of the
landscape, was represented in this study by way of the division index (DIVISION) and
the largest patch index (LPI). The DIVISION denotes the fragmentation of the landscape.
The DIVISION has a negative relationship with the compactness of the urban landscape.
The LPI denotes the proportion of the largest patch to the total landscape area, thereby
denoting the size of the urban core. The LPI ranges from 0 to 100, representing a small
to large core [37]. The five selected landscape metrics listed above were calculated using
Fragstats4.2. The specific description and mathematical equation for each of the five metrics
are presented in Table 1.

Table 1. Description of landscape metrics.

Category Landscape Metric Equation Description

Urban extension Total (class) area (TA) TA = ∑n
j=1 aij(1/10000 ) αij = area (m2) of patch (ij)

(Range > TA > 0)

Urban shape
complexity

Mean perimeter/area
ratio (PARA_MN) PARA_MN = ∑m

i=1 ∑n
j=1

(
Pij/αij

)
/mn

Pij = perimeter (m) of patch (ij)
αij = area (m2) of patch (ij)

mn = the number of all landscape
patch types

(range: PARA_MN > 0)

Landscape shape index
(LSI) LSI = 0.25∑m

k=1 E∗ik/
√

TA

Eik
* = total length (m) of edge in

landscape between class i and k,
TA = total landscape area (m2)

(range: LSI ≥ 1)

Urban
compactness

Largest patch index (LPI) LPI = max
(

aij

)
/TA(100)

αij = area (m2) of patch (ij)
TA = total landscape area (m2)

(range: 0 < LPI ≤ 100)

Landscape division index
(DIVISION) DIVISION = 1−∑m

i=1 ∑n
j=1

(
aij/TA

)2
αij

* = areas (m2) of patch (ij),
TA = total landscape area (m2)

(range: 0 ≤ DIVISION < 1)

2.3. The Panel-Data Model

A panel-data model was utilized to measure the influence of the urban form on the
PM2.5 concentrations. The panel-data model can better control individual heterogeneity,
reduce the collinear problem between variables, increase the degree of freedom, and
increase the stability and reliability of the estimated coefficients in comparison with other
data models, such as cross-section data and timeseries data [35]. The fixed-effects model
and the random-effects model are the two main kinds of panel-data-regression models. The
fixed-effects model is a special type of the least-squares dummy-variable model compared
to the random-effects model. In the random-effects method, unobservable and time-
invariant factors for each observation unit are treated as part of the disturbances, and it
thereby assumes that their correlation with the regressors is zero: this is the null hypothesis
of the Hausman test [38]. If the Hausman test result rejects the null hypothesis, then the
random-effects model confers the advantage of greater efficiency over the fixed-effects
model. Otherwise, the fixed-effects model should be applied. The purpose of this study
was to analyze the effects of the five landscape metrics on the PM2.5 concentrations in
China. In this paper, the results of the random-effects model by the Hausman test rejected
the null hypothesis at 1% levels. The model can be specified as follows:

PMit = α0 + α1TAit + α2LSIit + α3PARA_MNit + α4LPIit + α5DIVISIONit + εit

where PMit denotes the PM2.5 levels of city i in year t, the intercepts are denoted by α0,
and α1 to α5 stand for the coefficients. TA denotes total landscape area, LSI stands for
landscape shape index, PARA_MN represents mean perimeter/area ratio, LPI stands for
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the proportion of the largest patch to the total landscape area, and DIVISION denotes the
landscape division index. ε represents the random error, and t and i denote the year and
city, respectively.

3. Results
3.1. Statistical Characteristics
3.1.1. PM2.5 Concentrations

As shown in Table 2, the middle of the PM2.5 concentrations averaged over the
343 cities increased from 25.0 µg/m3 to 34.4 µg/m3 over 16 years. From 2000 to 2010,
the mean of the annual average of the PM2.5 concentrations continued to rise, but it de-
clined from 2010 to 2015. The reason may be China’s new ambient air quality standards
in 2012 (the name of this GuoBiao is the GB3095-2012 Ambient Air Quality Standards), in
which the PM2.5 concentrations were also assessed. The measure is beneficial to limiting the
rise in the PM2.5 concentrations. The standard-deviation increase from 13.5 to 18.7 indicates
that the differences in the PM2.5 levels across the country increased over the period, and
the imbalance between the regions in terms of the PM2.5 levels widened.

Table 2. PM2.5 concentrations in main years, 2000, 2005, 2010, and 2015, averaged over the 343 cities.

Year Mean
µg/m3

Median
µg/m3

Max
µg/m3

Min
µg/m3

Std. Dev.
µg/m3 Skewness Kurtosis

2000 27.52 25.02 67.40 2.34 13.50 0.64 2.87
2005 38.43 37.43 77.32 3.33 16.17 0.16 2.34
2010 40.60 38.00 81.47 3.34 17.80 0.28 2.37
2015 39.51 34.42 84.99 2.94 18.75 0.40 2.17

Figure 2 shows the averaged PM2.5 concentrations for the different regions from 2000
to 2015. For central China, the averaged PM2.5 concentrations increased from 33.47 µg/m3

in 2000 to 47.20–50.00 µg/m3 in 2005 and 2010, and they stayed at a similar level or even
slightly decreased in 2015 (48.03 µg/m3). For eastern and western China, the averaged
PM2.5 concentrations had a similar trend as central China, growing from 2000 to 2010, and
falling in 2015, while, for northeastern China, the PM2.5 concentrations increased almost
linearly, from 18.50 µg/m3 in 2000 to 45.89 µg/m3 in 2015. Among the four regions, central
China maintained the highest PM2.5 levels, followed by eastern China. Before 2005, the
western region had higher PM2.5 levels than the northeast region; however, after 2010,
the western region was the lowest out of all four regions. In contrast, the PM2.5 levels
were characterized by an increasing trend between 2000 and 2015, and especially after
2010 in the northeast region. This reflects the launch of a national strategy to revitalize the
old industrial base of northeast China in 2003, which promoted the development of the
northeast region, and prompted economic growth to rise in 2008. As a region characterized
by a development mode that is dominated by heavy industry, the revitalization of northeast
China led to increases in the resource and energy consumption, which eventually led to a
rapid rise in the PM2.5 levels.

The results illustrated in Figure 3 show that the PM2.5 levels in China continued to
increase from 2000 to 2015 in all of China. The degree of the dispersion of the PM2.5
levels in 2015 was much higher than it was in 2000 for all regions, indicating that regional
differences were becoming increasingly large. For example, in the northeast region, the
annual average peak level of PM2.5 was 26.50 µg/m3 in 2000, compared with 77.03 µg/m3 in
2015; this means that the differences within the northeast region were constantly increasing.
The eastern region was revealed to have the highest annual average PM2.5 levels during
the period from 2000 to 2015, and the annual average peak levels were 66.85 µg/m3

and 84.99 µg/m3, respectively. The PM2.5 levels of the central region, which were only
lower than the eastern region, remained at a high level throughout the study period, and
the annual average peak levels of PM2.5 were 67.4 µg/m3 and 74.45 µg/m3 from 2000



Atmosphere 2022, 13, 963 6 of 14

to 2015. According to the dispersion degree, which is represented by the value of the
median±quartile, the eastern and central regions not only had increased PM2.5 levels, but
they also demonstrated an obvious imbalance in the PM2.5 concentrations within their
regions. In comparison, the annual average peak levels of PM2.5 in the western region
actually decreased from 2010 (74.27 µg/m3) to 2015 (60.06 µg/m3), which was similar to
the annual average peak in 2000 (60.29 µg/m3), which demonstrates that the PM2.5 levels
were relatively stable in the western region.
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3.1.2. Statistical Characteristics of Urban Landscape Pattern

In this paper, we employed the TA metric to represent the urban extension. As is
shown in Table 3, the mean value of the urban extension for the whole study sample was
from 18,292.1 km2 to 29,597.9 km2, which is a significant 1.6-fold increase. Meanwhile,
the level of growth in 2010–2015 was the highest from 2000 to 2015. According to the
evolution of the standard deviation, which increased from 19,720.2 to 28,554.0, a great deal
of heterogeneity existed in the urban extension values nationwide, and the range of this
difference widened during the study period, indicating that the variations in the urban
landscape patterns continued to grow.

In Figure 4, the highest average TA values were in 2015 for all regions. They were
53,094 ha in eastern China, 24,809 ha in central China, 23,861 ha in northeast China, and
19,420 ha in western China.
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Table 3. TAs in main years: 2000, 2005, 2010, and 2015.

Year Mean
ha

Median
ha

Max
ha

Min
ha

Std. Dev.
ha Skewness Kurtosis

2000 18,292.13 13,000 154,900 400 19,720.23 3.03 15.86
2005 21,451.60 14,600 181,400 400 23,639.75 2.88 14.46
2010 23,656.85 15,700 196,300 400 25,991.40 2.72 13.03
2015 29,597.96 20,500 203,100 800 28,553.96 2.42 10.99
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Figure 4. The averages of the TAs (2000, 2005, 2010, 2015).

The eastern region maintained a higher average TA value than the other three regions
from 2000 to 2015, while the lowest average TA values were in the western region, with
9714 ha in 2000 and 19,420 ha in 2015. In terms of the change trends, the growth in the
average TA value of the nation from 18,292 ha in 2000 to 29,597 ha in 2015 is characterized
by continuous increase. Central and northeast China are in the middle and are slightly
below the national average TA value. Notably, the average TA value in the central region
(15,047 ha) was lower than that in the northeast region (19,522 ha) in 2000; however, in 2015,
the average TA value in the central region was 24,809 ha, which was 948 ha higher than the
northeast region. From the perspective of the relative differences in the average expansion
of each region, the rate of expansion in the eastern region during the period of 2010–2015
decreased compared with the previous five years, during which it was 24.26%, while it was
10.29% during the period of 2010–2015. In contrast, the growth rates of the TA in the other
three regions were higher in the period of 2010–2015 (e.g., northeast was 3.71%, central
region was 13.48%, western region was 12.60%) than they were in the period from 2000 to
2005 (e.g., northeast was 12.20%, central region was 31.27%, western region was 62.60%).
This means that the differences between the four regions were narrowing.

Figure 5 shows the box charts of the five selected landscape metrics (TA, PARA_MN,
LSI, LPI, and DIVISION), with scatter plots and distribution overlays, wherein the top
and bottom of each box represent the 75th and 25th centiles, respectively. The TAs of
most Chinese cities were less than 10 × 104 ha, while only a few cities had TAs greater
than 10 × 104 ha. The PARA_MN was distributed, with a maximum of 38.19 m/ha and a
minimum of 16.72 m/ha, indicating the considerable regional differences in China’s urban
shape complexity. The distribution of the LSI was found to be below 20, and the highest
was for Chongqing, which is a relatively complex mountain city. The LPI was distributed
between 95.79% (Dongguan, with many kinds of factories in the city) and 5.19% (Yulin,
a resource-based city). The DIVISION of most of the Chinese cities was more than 0.2%,
while only Shihezi, Shenzhen, and Tongling had around 0.1%.
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3.2. Estimation Results for Different Panel Models

Before building the panel-data models, we undertook a multicollinearity test. In
Table 4, the correlation coefficient of the factors by Pearson were less than 0.5, which
indicates that there was no multicollinearity in the data between any of the five landscape
metrics. As such, the panel-data-model parameters could be estimated.

Table 4. Correlation coefficients of the factors by Pearson.

TA LPI PARA LSI DIVISION

TA 1
LPI −0.069 ** 1

PARA 0.021 −0.129 *** 1
LSI 0.380 *** 0.400 −0.401 *** 1

DIVISION 0.089 −0.410 *** 0.116 *** −0.321 *** 1
Note: *** p < 0.01, ** p < 0.05.

We employed Hausman tests to identify which estimator was more appropriate for
which model. The results in Table 5 show that all of the models’ p-values were less than
0.05 (e.g., p-values were 0.0000 in four models; meanwhile, they were 0.0013 in the western
China model). This means that the fixed-effects estimator was better than the random-
effects estimator for Models 1 through 5, as the null hypothesis was rejected. Therefore, we
selected the fixed-effects model to calculate the models.

Table 5. Hausman test results.

Chi-Sq statistic p-Values

The whole China model (Model 1) 38.39 0.0000
The northeast China model (Model 2) 93.05 0.0000

The central China model (Model 3) 71.25 0.0000
The eastern China model (Model 4) 101.09 0.0000
The western China model (Model 5) 64.60 0.0013

In this study, we calculated five panel models to identify the different impacts of the
urban form on the PM2.5 levels in the different regions making up the study area. Table 6
displays the findings of the estimation, which detail the influence of the urban landscape
pattern on the PM2.5 concentrations in each of the four regions. A model of all of China
was employed to examine the impacts of the urban form on the PM2.5 levels for the whole
of China. The findings indicate that the TA, the p-value for which was significant at the
1% level, had a positive effect on the PM2.5 concentrations. The estimated coefficients of
the PARA_MN and LSI are 1.389 and 0.541, respectively; this means that the two urban-
shape-complexity indicators shown had a positive impact on the PM2.5 concentrations,
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which is a result that is similar to that in the existing literature [19]. The higher the LSI and
PARA_MN, the more irregular the shape of the urban landscape—as such, the results from
the whole China model can be interpreted as indicating that a more regular shape within
the urban landscape pattern leads to lower PM2.5 concentrations. This is because complex
urban shapes lead to duplication in the construction of infrastructure and an increase in
the complexity of roads, which can bring about traffic jams. Traffic jams, in turn, have the
unfortunate effect of increasing fuel consumption, which is an important source of PM2.5
levels [39]. The LPI and DIVISION are indicators that measure the urban compactness.
In the whole China model, the LPI failed the significance test. The directions of the other
indicator of compactness—DIVISION—were found to be positive, indicating that a compact
urban landscape pattern was better at reducing the PM2.5 concentrations. This is because
a compact structure improves accessibility and the travel efficiency of residents, reduces
motor-vehicle dependence among residents, and, in turn, alleviates traffic congestion,
which reduces incomplete combustion and improves the air quality [19,40].

Table 6. Summary of the significant correlations between the PM2.5 concentrations and the five
urban-form indicators derived from the different panel models.

Independent
Variables

The Whole
China
Model

The
Northeast

China Model

The Central
China
Model

The Eastern
China
Model

The Western
China
Model

TA
0.145 *** 2.514 *** 0.478 *** 0.295 *** 0.054
(6.015) (5.743) (7.444) (4.476) (1.335)

PARA_MN
1.389 *** 1.370 *** 0.653 ** 3.034 *** 0.691 ***
(8.885) (3.041) (1.663) (5.159) (2.855)

LSI
0.541 *** 1.231 0.419 ** 0.625 ** 0.454 ***
(5.590) (0.900) (1.842) (2.029) (3.152)

LPI
0.778 0.596 0.353 *** 0.113 0.0.26

(1.548) (1.309) (2.771) (0.978) (0.319)

DIVISION
0.162 *** 1.512 *** 0.309 *** 0.323 ** 0.146 **
(2.631) (8.650) (2.581) (2.541) (1.981)

Estimation
method

R-squared

FE FE FE FE FE

0.781 0.820 0.777 0.772 0.662

Note: *** p < 0.01, ** p < 0.05.

Through the northeast China model, the TA with the estimated coefficient of 2.514,
which denotes urban extension, maintained a positive effort in increasing the PM2.5 levels.
Because of spatial mismatches between home and work, the lower job accessibility made
a longer commute for suburban residents. The PARA_MN, whose estimated coefficient
is 1.370, showed a positive impact on the PM2.5 levels, indicating that complex urban
shapes heavily increase the PM2.5 levels. This can be attributed to the positive effect of
irregular urban land use on energy consumption, which then increases the PM2.5 levels.
The northeast region of China constitutes the old industrial base within China. Here, the
development of industrial enterprises has accelerated the complexity of the urban landscape.
A study by Xie et al. [41] also demonstrated the tendency for rapidly industrializing
regions in Asia to be characterized by complex urban land-use patterns, which raises
energy consumption. The indicator DIVISION denotes that the urban compactness had an
estimated coefficient of 1.512, and this is shown to have exerted a positive impact on the
PM2.5 concentrations. The estimation findings suggest that the compact urban landscape
pattern has benefits for reducing the PM2.5 concentrations by improving the infrastructure
utilization and reducing traffic times [42,43].

In the central China model, the TA had an estimated coefficient of 0.478, which signifies
that the larger the extension of the urban land-use area, the higher the PM2.5 levels are likely
to be. The PARA_MN and LSI, with estimated coefficients of 0.643 and 0.419, respectively,
were found to have a positive influence on the PM2.5 levels at the 10% p-value significance;
this means that the irregular urban landscape pattern increased the value of the PM2.5
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concentrations. This is also observed in the existing literature, which has demonstrated
that complex urban boundaries may reduce the accessibility to public transportation [44].
The daily living patterns between residences, workplaces, and shopping malls, and the
traveling distances and times, may also increase. The estimated coefficients of the LPI
and DIVISION are 0.353 and 0.309, respectively; this demonstrates that a compact urban
landscape pattern is better at lowering the PM2.5 concentrations. Large volumes of research
have posited that population density, compact dwellings, and job density are likely to
save on energy consumption, electricity consumption, and travel times. Scholars have
also found that a larger urban core can produce higher PM2.5 levels due to the tendency
of traffic jams to occur in monocentric city forms [45]. Therefore, it can be concluded that
compact urban landscapes with pedestrian-friendly street plans are of benefit to reducing
vehicles and motorized travel [46–48].

From the eastern China model, we found that the TA, PARA_MN, LSI, and DIVISION
were all positively correlated with the PM2.5 concentrations, and the estimated coefficients
are 0.295, 3.034, 0.625, and 0.323, respectively. The results in the eastern China model show
that urban extension had a positive effect on increasing the PM2.5 levels by increasing the
resource consumption. As mentioned above, the higher the values of the PARA_MN and
LSI, the more irregular the urban shape. Furthermore, irregular urban landscape patterns
contribute to increasing PM2.5 concentrations. Meanwhile, the DIVISION denotes urban
compactness: the lower the values of this indicator, the more compact the spatial pattern
of an urban area. This means that compact urban patterns are of benefit in mitigating
the PM2.5 levels in China’s eastern region. These results can be attributed to the fact that
compact urban areas imply spatial patterns with mixed land use and efficient infrastructure
use [49]. In addition, compact cities can encourage a decline in private car use due to the
ability to provide efficient public transportation systems, developed walking networks,
and convenient housing and employment connections, which, in turn, can save energy and
reduce PM2.5 levels [35].

According to the results from the western China model, the PARA_MN and LSI, with
estimated coefficients of 0.691 and 0.454, respectively, were shown to have a positive impact
on the PM2.5 levels in the western region. The disorderly urban boundaries of the country’s
western cities can further aggravate the damage to vegetation coverage, making the already
loose surface structure more exposed, and aggravating the PM2.5 concentration caused
by dust. The coefficients of the DIVISION, with the estimated coefficient of 0.146, exerted
a positive influence, again reiterating the finding that cities with compact urban patches
negatively impact the PM2.5 concentrations. As mentioned above, the higher the DIVISION,
the more fragmented the urban landscape is. Hence, in the western region, the more
compact the urban area, the greater the reduction in the PM2.5 concentrations. Due to the
low technological level and limited foreign investment that characterize the western region
of China, enterprises are not efficient, and resource development and utilization tend to
not be rationalized. As a result, the decentralization of economic activities will further lead
to aggravating environmental pressures and the deterioration of fragile land environments,
and increase the infrastructure supply, all of which will increase the PM2.5 concentrations
as a result.

4. Discussion

Our results suggest that the urban landscape pattern existed in the determinants of
the PM2.5 concentrations of Chinses cities. For example, the indicator TA exerted a positive
influence on the PM2.5 concentrations and was shown to have exerted the most force in
the northeast region of China. This may be because northeast China developed by way of
heavy industry, meaning that more industries were built in this part of the country. The
presence of industries, in turn, exerts a strong effect on the PM2.5 levels [3]. However, there
was no significant relationship between the TA and PM2.5 concentrations in western China.
The possible reason is that the cities in the western region have low soil-water contents and
extensive alluvial deposits, which is a complementary condition to the wind erosion of dust
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storms and increases the PM2.5 levels. The increased hard-bottoming area may reduce the
occurrence of dust to reduce PM2.5 concentrations. Moreover, the indicators PARA_MN or
LSI were found to positively impact the PM2.5 concentrations in all of the models except for
the northeast China model, which demonstrates that an urban form with an irregular shape
can increase the PM2.5 concentrations. For instance, in the eastern region, the strength of
the coefficients was found to differ across the country, with the urban shape maintaining a
greater influence on the variations in the PM2.5 levels (regression coefficient: 3.034) than
in the other factors. The variables LPI and DIVISION, which denote urban compactness,
exerted a positive influence on the PM2.5 levels in all the panel models, implying that an
urban landscape with a compact structure is an effective asset in mitigating PM2.5 levels.
A similar result can also be seen in the study by Clark et al. [18], which argues that the
increasing percentage of the population living near the CBD was conducive to reducing
the PM2.5 concentrations. Similar findings have also been demonstrated by Song et al. [50],
who argue that “smart growth” is of benefit to reducing HC, CO, and NOx, which are
the main substances that affect PM2.5 concentrations. The reason for this may be due to
better accessibility, less driving time, less use of private cars, and a fuller utilization of
infrastructures, all of which are obtained by means of a compact spatial pattern [51,52]. In
addition, economic theories of agglomeration suggest that enterprises in compact cities are
more conducive to technological progress and, thus, to the mitigation of PM2.5 levels [35].

5. Conclusions and Policy Implications

PM2.5 concentrations, which threaten ecosystems, visibility, and health, have been
recognized as serious air pollution for the whole world. Despite a range of literature that
addresses the determining influences of a range of factors, the correlation between the
urban form and PM2.5 levels is not yet fully understood. The goal of this paper was to
exam the nature of the relationship between the urban form and PM2.5 levels by employing
panel data for four regions of China for the years 2000, 2005, 2010, and 2015. From the
preceding statistical analysis, it was found that China’s PM2.5 levels transitioned from a
period of rapid growth to a gradual flattening in the years 2000, 2005, 2010, and 2015, while,
in the northeast of China, these levels continued to rapidly increase across the study period.
Moreover, the urban landscape pattern was shown to experience significant changes across
the study period, with differences being evident between the regions for the years 2000,
2005, 2010, and 2015. The parameter estimation from the panel-data models revealed that
the urban landscape pattern has a significant influence on the PM2.5 concentrations of
Chinses cities. For instance, in terms of the urban landscape pattern, in central China,
eastern China, and western China, the key factor was the shape of urban areas, while,
in northeast China, the most powerful indicator of interpretation was the TA, which was
employed to denote urban expansion. However, there was no significant relationship
between the TA and PM2.5 concentrations in western China. Although the strength and
direction of the correlation coefficient was varied between the four regions, the results also
highlight the important contributions made by urban planning and the optimization of
spatial structures in mitigating PM2.5 levels. The empirical results of this paper may be
beneficial for policymakers in planning new cities from the ground up in different ways.

Thus, a range of targeted policies can be drawn up on the basis of the findings of
this empirical analysis for different regions. They are as follows. Firstly, in the central,
eastern, and western regions, improving the regular geometries of cities can reduce the
PM2.5 levels by improving the transportation efficiency and lowering energy consumption.
Thus, planners in these regions should pay attention to the shape of urban areas on the
basis of the strength of each estimation coefficient. Secondly, urban areas should not be
expanded in a disorderly manner due to the positive-impact relationship between urban
expansion and PM2.5 levels, and especially in the northeast region. Given this, urban
planners should estimate optimal city sizes to mitigate PM2.5 levels. Furthermore, city
authorities ought to prioritize the conservation of green areas and increase the green-area
coverage, which could absorb PM2.5. Thirdly, our results suggest that compact structures
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assist in reducing PM2.5 levels. Thus, planners could employ the concepts of the “compact
city” in their urban-planning activities, thereby highlighting mixed land uses, higher
density, efficient infrastructures, and reduced energy consumption due to shorter travel
times and easier access to local services and jobs. For example, cities in China’s central,
eastern, and western regions should avoid disorderly development models, strengthen
their urban development and planning-management capacities, and curb the air pollution
caused by disorderly development. Cities in the northeast region should control the
urban development boundaries and establish green belts outside the cities in order to
adjust the extents of urban expansion. Moreover, all regions should avoid overly scattered
urban development models, enhance urban compactness, develop compact urban spatial
patterns by enhancing the connectivity and aggregation within cities, and thereby reduce
the PM2.5 levels.

One of the limitations of this study is that the results may be affected by the brevity
of the study period (2000, 2005, 2010, and 2015), which was ascribed to the fact that the
PM2.5 concentration data and CLUD dataset were difficult to obtain for the year 2020.
We also note that PM2.5 concentrations may, in turn, be drivers of the changes in urban
forms, which was the challenge in exploring the relationship between PM2.5 concentrations
and the urban form. Notwithstanding these restrictions, we believe that our results are
beneficial for a better understanding of the impact of urban forms on PM2.5 concentrations,
and can help achieve the task of establishing strategies in terms of planning new cities from
the ground up in different ways. Clearly, beyond these benefits, additional work is needed.
For example: What is the relationship between the PM2.5 concentrations and urban form in
a single city? How do the PM2.5 concentrations affect urban forms?
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