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Abstract: Long-term trends in sunshine duration in Chinese cities have been closely linked to factors
caused by air pollution. To understand this impact on sunshine duration (SD), surface solar radiation
from 1981 to 2020, annual PM2.5 concentration from 2012 to 2020 and air pollution index (API) data
from 2013 to 2020 collected in ten representative cities in China were investigated, and the long-term
relationship of SD with diffuse fraction (DF), aerosol option depth (AOD), annual PM2.5 concentration
and API were analyzed. The results indicated that trends in SD varied across cities. SD decreased in
seven of the ten selected cities’ stations in the past 40 years, and the annual mean SD decreased from
−0.03 h d−1 per decade to −0.36 h d−1 per decade—particularly in the Beijing North China Plain,
Shanghai and Wuhan stations in the Yangtze River delta, where the trend coefficients were lower than
−0.5. Conversely, increases in varying degrees of SD were found in Kunming (0.38 h d−1 per decade),
Guangzhou and Shenyang in Southwest, South and Northeast China, respectively—with the biggest
trend coefficient of 0.54 in Kunming. In addition to the SD variation, the DF in the ten city stations
increased continuously from 1981 to 2010 and then declined after 2010, which is closely related to
decreases in the annual PM2.5 concentration after 2012. The correlation coefficients between DF
and SD ranged from −0.04 to −0.62, validating their negative relationship and the slight increasing
trend in SD in recent ten years. The annual averages for SD and the DF plateaued in the 2010s due
to the stringent pollution controls established by the Chinese government after 2010. Furthermore,
the correlation coefficients between SD and the API ranged from −0.12 to −0.58, demonstrating a
negative relationship between SD and the API.

Keywords: air pollution index; diffuse fraction; sunshine duration; clearness index

1. Introduction

Over the past decades, China has become one of the most rapidly industrialized and
urbanized countries worldwide. The growing population and intensified anthropogenic
activities have led to the continuous increase in anthropogenic pollutant emissions in
China. Moreover, the exacerbation of air pollution through aerosol radiative forcing has
highly affected the radiation balance of the surface-atmosphere system. As an important
indicator of solar radiation, sunshine duration (SD)—defined by the World Meteorological
Organization (WMO) in 1989—is “the sum of the time for which the direct solar irradiance
exceeds 120 W·m−2” [1]. As SD reflects the solar energy absorbed from the sun, it has
become an important thermodynamic factor for large-scale atmospheric movements [2,3].
Small changes in SD may have a tremendous impact on weather and climate [4–6]. However,
with the increase of anthropogenic aerosol loading in the atmosphere, the absorption
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and scattering of solar radiation by aerosols intensifies the reduction of surface solar
radiation [7]. In addition, acting as cloud condensation nuclei, aerosol particles enhance
the longevity of clouds and their reflection of extraterrestrial radiation, further reducing
SD [8]. Therefore, it is of great significance to study the effect of air pollution on SD.

Several studies have focused on the impact of air pollution on long-term trends in
sunshine duration and solar radiation. Fu et al. found that in large cities and medium-sized
cities throughout China, due to extensive anthropogenic activities and the air pollution
represented by aerosol optical depth (AOD) and tropospheric column NO2 (TroNO2), sunny
SD presented with a decrease of −0.13 h d−1 per decade from 1960 to 2005 [9,10]. Bartoszek
et al. researched the relationships between cloudiness, aerosol optical thickness, and sun-
shine duration in Poland from 1980 to 2018; they found a growing trend in area-average
values of relative sunshine duration in each season of the year with reductions in aerosol
optical thickness [11]. Wang et al. analyzed the spatiotemporal changes of surface solar
radiation over East China during 2000–2016, pointing out that aerosol-induced radiation
reduction could result in about a mean 6.74% reduction in rice yield over East China [12].
Chen et al. analyzed trends in global radiation and sunshine hours at 51 stations during
1961–1998 in mainland China and found decreasing trends in global radiation at 47 stations,
with 42 stations showing a reduced trend in sunshine hours [13]. Song et al. reported
that SD in eastern China decreased throughout the year at an annual rate of −0.132 h d−1

per decade during 1961–2014, suggesting that urbanization and industrialization may be
responsible [14]. Kaiser and Qian reported an average decrease of approximately 1% per
decade in possible SD in China from 1954 to 1998 and proposed that the increased atmo-
spheric anthropogenic aerosol loading due to growing fossil fuel combustion accounted
for the decline in SD [15]. Liao et al. pointed out that the attenuation of visibility and SD
was consistent during 1980–2012 in South China and suggested that increases in pollutants
are responsible for sunlight obstruction and reductions in visibility [16]. Wang et al. in-
vestigated the long-term trends in surface solar radiation from 1960 to 2000 in China and
found that surface solar radiation in most regions of China began to increase after 1990,
which was attributed to decreases in cirrus and cirrostratus clouds [17]. Qi et al. reported
that the interannual trends and variations of surface solar radiation decreased in both East
and West China during 1961–2010, and suggested that aerosol pollutants were the main
factor causing the reduction of surface solar radiation in East China [18]. Furthermore, they
determined that an abrupt change occurring in the early 1990s, followed by a sustained
increase—possibly due to the Chinese government’s environmental protection plans [18].
The abovementioned studies improve our understanding of air pollution related to changes
in SD. However, most of these studies have focused on the influence of air pollution on
trends in solar radiation separately, rather than combined with SD, or the impacts have
only covered limited land areas or weather conditions. Discussion of the influence of
air pollution on long-term SD trends in representative cities of China under all weather
conditions are rare in previous studies.

In this study, we examined SD and related solar radiation data from ten typical cities
in different climate regions over China from 1981 to 2020, mainly focusing on the long-term
trends in and associations between SD, the diffuse fraction (DF), annual PM2.5 concentration
and the air pollution index (API)—which is related to increases in anthropogenic aerosols.
This paper aims to provide an improved understanding of SD changes influenced by severe
environmental issues that have occurred during the industrialization and urbanization
caused by China’s reform and opening policy of 1980. The present article is organized
as follows: Section 2 introduces the data source and the methods. Section 3 presents
interannual SD trends and seasonal SD trends from 1981 to 2020, followed by discussions
of the relationships between SD changes and the DF and API. The main conclusions are
presented in Section 4.
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2. Methodology
2.1. Data

The SD and solar radiation data were collected from ten China Meteorological Radi-
ation Data International Exchange Stations located in seven climate regions in mainland
China [19] (Figure 1), with station information shown in Table 1. Daily SD, global solar
radiation and diffuse radiation were measured simultaneously from 1981 to 2020—except
for Shanghai, from 1991 to 2020. SD was measured using a Jordan Sunshine Recorder
with an absolute error of ±0.1 h and global solar radiation and diffuse radiation were
measured horizontally using a thermopile-based pyranometer with a relative error of ±2%.
The daily data were archived at the National Meteorological Information Center of China
Meteorological Administration (http://data.cma.cn/, accessed on 31 August 2021). The
annual and seasonal averages of SD and solar radiation deduced from daily data were
analyzed. In this study, spring, summer, autumn and winter corresponded to March–May,
June–August, September–November and December–February, respectively.

Atmosphere 2022, 13, x FOR PEER REVIEW 3 of 15 
 

 

2. Methodology 

2.1. Data 

The SD and solar radiation data were collected from ten China Meteorological Radi-

ation Data International Exchange Stations located in seven climate regions in mainland 

China [19] (Figure 1), with station information shown in Table 1. Daily SD, global solar 

radiation and diffuse radiation were measured simultaneously from 1981 to 2020—except 

for Shanghai, from 1991 to 2020. SD was measured using a Jordan Sunshine Recorder with 

an absolute error of ±0.1 h and global solar radiation and diffuse radiation were measured 

horizontally using a thermopile-based pyranometer with a relative error of ±2%. The daily 

data were archived at the National Meteorological Information Center of China Meteoro-

logical Administration (http://data.cma.cn/, accessed on 31 August 2021). The annual and 

seasonal averages of SD and solar radiation deduced from daily data were analyzed. In 

this study, spring, summer, autumn and winter corresponded to March–May, June–Au-

gust, September–November and December–February, respectively. 

 

Figure 1. Locations of the ten investigated stations and their climate conditions. NC for North China, 

NE for Northeast China, CC for Central China, SC for South China, SW for Southwest China, EA 

for Eastern arid regions, WA for Western arid/semi-arid regions, TP for the Tibetan plateau. 

Table 1. Geographical information of the investigated stations used in this study. 

Station Name Longitude/E° Latitude/N° Altitude/m asl. Climate Regions 

Beijing 116.47 39.81 32.8 NC 

Shenyang 123.51 41.73 51.0 NE 

Harbin 126.57 45.93 118.3 NE 

Shanghai 121.44 31.39 5.5 CC 

Wuhan 114.05 30.60 23.6 CC 

Guangzhou 113.48 23.21 70.7 SC 

Chengdu 103.86 30.75 547.7 SW 

Kunming 102.65 25.01 1888.1 SW 

Urumqi 87.65 43.78 935.0 WA 

Lanzhou 104.14 35.87 1874.4 EA 

The DF and clearness index (CI) are introduced in this article. The DF is defined as 

the ratio of diffuse radiation to global solar radiation and is an important indicator of the 

Figure 1. Locations of the ten investigated stations and their climate conditions. NC for North China,
NE for Northeast China, CC for Central China, SC for South China, SW for Southwest China, EA for
Eastern arid regions, WA for Western arid/semi-arid regions, TP for the Tibetan plateau.

Table 1. Geographical information of the investigated stations used in this study.

Station Name Longitude/E◦ Latitude/N◦ Altitude/m asl. Climate Regions

Beijing 116.47 39.81 32.8 NC
Shenyang 123.51 41.73 51.0 NE

Harbin 126.57 45.93 118.3 NE
Shanghai 121.44 31.39 5.5 CC
Wuhan 114.05 30.60 23.6 CC

Guangzhou 113.48 23.21 70.7 SC
Chengdu 103.86 30.75 547.7 SW
Kunming 102.65 25.01 1888.1 SW
Urumqi 87.65 43.78 935.0 WA
Lanzhou 104.14 35.87 1874.4 EA

The DF and clearness index (CI) are introduced in this article. The DF is defined as
the ratio of diffuse radiation to global solar radiation and is an important indicator of the
global transmissivity of the atmosphere. The clearness index, which varies primarily due to

http://data.cma.cn/
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cloud cover and cloud type, is the ratio of global solar radiation to extraterrestrial radiation.
To obtain the clearness index, the equation for calculating the extraterrestrial radiation
(MJ/m2) on a horizontal surface, H0, is as follows [20,21]:

H0 =
24 × 3600 × Isc

π

[
1 + 0.033 cos

(
360n
365

)]
×
[
cos ϕ cos δ sin ws +

πws

180◦ sin ϕ sin δ
]

(1)

where Isc is the solar constant (1367 W m−2), n is the day number of the year—starting
from January 1—ϕ is the latitude of the station in degrees, δ is the declination of the
sun in degrees and ws is the sunrise hour angle in degrees. δ and ws can be obtained by
Equations (2) and (3) [20,21]:

δ = 23.45 sin
[

360(n + 284)
365

]
(2)

ws = arccos[− tan δ tan ϕ] (3)

To ensure the quality of the SD and solar radiation data, some quality control criteria
were applied to the daily data. The criteria included: (1) daily collections were rejected if
either SD or solar radiation was missing; (2) only daily collections meeting 0 < DF < 1 and
0 < CI < 1 simultaneously were used; (3) the month was rejected if more than ten days of
SD or solar radiation were missing in that month.

API is a dimensionless parameter describing the comprehensive conditions of urban
environmental air quality. The higher the API, the more serious the comprehensive pollu-
tion. API includes six pollutants: SO2, NO2, PM10, PM2.5, CO and O3; it is calculated using
the sub-index of the six pollutants derived from daily or monthly average concentrations.
The equations are as follows:

Ii =
Ci
Si

(4)

API =
6

∑
i=1

Ii (5)

where Ii is the sub-index of the ith pollutant of the six pollutants, Ci is the concentration of
the ith pollutant of the six pollutants; when the ith pollutant is either SO2, NO2, PM10 or
PM2.5, Ci is the monthly mean concentration; when the ith pollutant is either CO or O3, Ci
is the concentration at a specific percentile. Si is the secondary standard of the ith pollutant;
when the ith pollutant is either SO2, NO2, PM10 or PM2.5, Si is the secondary standard for
the annual mean; when the ith pollutant is CO, Si is the secondary standard for the daily
mean; and when the ith pollutant is O3, Si is the secondary standard for the 8 h mean.

The monthly API data used in this study were obtained from the China National
Environmental Monitoring Centre (http://www.cnemc.cn/jcbg/kqzlzkbg/, accessed on
31 August 2021); however, the data consistent with the SD and global solar radiation
stations are only available from January 2013 to August 2020 because the observation
starting time and data were unavailable for this study. In addition, the annual PM2.5
concentration data from 2012 to 2020 were used in this study, which were obtained from the
Tracking Air Pollution in China website: http://tapdata.org.cn/ (accessed on 11 May 2022).

2.2. Methods

The linear regression method was used to analyze the inclination of climatic elements
over a long time scale. To evaluate inclination, we established the unary linear regression
equation y = a + bx between the SD (y) and time series (x, year), where a is the regression
constant and b is the regression coefficient—namely, the inclination rate. Both a and b can
be calculated using the least square method. b > 0 indicates that y increases with an increase
in time x; on the contrary, b < 0 means y decreases as time x increases.

http://www.cnemc.cn/jcbg/kqzlzkbg/
http://tapdata.org.cn/
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A moving average was introduced to investigate the SD trends in this study. For a
climate element series, its moving average series can be depicted using Equation (6):

yj =
1
k

k

∑
i=1

yi+j−1 (j = 1, 2, . . . , n − k + 1) (6)

where n stands for the number of years, yj is the jth moving average of SD, k is the step
length and ith is the sequence of the step length. From the curve of the moving average, we
can see whether the climate variable is increasing or decreasing, which helps determine the
turning point of the climate variable.

We also analyzed the trend coefficient ryx, which is defined as a correlation coeffi-
cient between the climatic element series and the time series, and can be expressed as in
Equation (7) [10]:

ryx =
∑n

i=1(yi − y)(i − x)√
∑n

i=1(yi − y)2 ∑n
i=1(i − x)2

(7)

where n denotes the number of years, i is the year sequence, yi is the element value in
the ith year, y represents the mean of all the element values in n years and x is equal to
(n + 1)/2. If ryx > 0, the element increases during n years, whereas if ryx < 0, the trend in
the element declines during n years; ryx = 0 means no change. Furthermore, correlation
and fitting analyses were used in our study.

3. Results and Discussion
3.1. Trends in Sunshine Duration from 1981 to 2020

Figure 2 shows the spatial distribution of the trend coefficients of SD for the ten stations
over China from 1981 to 2020. SD trend coefficients are presented in Table 2. There was
a clear decline in SD at seven stations, but not in Kunming, Guangzhou and Shenyang—
located in Southwest, South and Northeast China, respectively. Owing to its environment
and high altitude, Kunming showed a significant increase in SD, with a trend coefficient
greater than 0.5. Guangzhou, thanks to its being an inshore region in southeast China and
its advanced technology and tertiary industry, had a positive trend coefficient of 0.21. The
trend coefficient of Shenyang was 0.03; hence, the increase in SD in this region was minimal.
In contrast, stations in the other representative cities in China showed a decreasing trend
in SD. The Beijing, Shanghai and Wuhan stations had trend coefficients lower than −0.5.
Notably, in Beijing and Shanghai, the trend coefficients were both less than −0.6, which
were attributed to their larger population densities and levels of anthropogenic pollution
due to urbanization.
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Table 2. Statistical summary of SD.

Station Mean
(h d−1)

Std.
(h d−1)

Trend
Coefficient

Regression
Equation

Correlation
Coefficients
of SD vs. DF

Beijing 6.93 0.44 −0.62 y = −0.023x + 7.40 −0.41
Shenyang 6.62 0.41 0.03 y = 0.001x + 6.60 −0.30

Harbin 6.50 0.74 −0.34 y = −0.022x + 6.95 −0.40
Shanghai 5.05 0.48 −0.70 y = −0.036x + 5.64 −0.44
Wuhan 4.98 0.48 −0.51 y = −0.021x + 5.41 −0.59

Guangzhou 4.28 0.39 0.21 y = 0.007x + 4.14 −0.48
Chengdu 2.71 0.36 −0.27 y = −0.008x + 2.89 −0.35
Kunming 6.13 0.81 0.54 y = 0.038x + 5.36 −0.53
Urumqi 7.77 0.53 −0.39 y = −0.018x + 8.14 −0.04
Lanzhou 7.08 0.31 −0.10 y = −0.003x + 7.14 −0.62

Through a regression analysis of the daily average SD, a ranking of the cities with
decreasing SD trends can be obtained: Lanzhou < Chengdu < Urumqi < Wuhan < Harbin
< Beijing < Shanghai, ranging from −0.03 h d−1 per decade to −0.36 h d−1 per decade.
Increasing trends in SD were found in Kunming, Guangzhou and Shenyang, with the
biggest increasing trend of 0.38 h d−1 per decade in Kunming. The regression equations
are listed in Table 2.

Setting the step length k as 5 years, the moving average curves of the annual daily
mean SD of the ten stations are shown in Figure 3. Except for obvious upward trends in
Kunming and Guangzhou and a weak upward trend in Shenyang, downward trends in the
SD of the other seven stations can be observed from Figure 3—which is consistent with the
results of the linear analysis and trend analysis. Moreover, except for the turning points
of Urumqi and Harbin in 2015 and Shenyang in 2006, inflection points in the SD of most
stations could be identified at around 2010.
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Figure 4 shows the seasonal trends in SD from 1981 to 2020. Consistently, the changes
in SD in the studied cities exhibited a similar variation. The overall SD decreased in 1981–
2010 and started increasing after 2010. This fall–rise trend might be due to environmental
protection measures taken by the Chinese government over the past decade. In Shanghai,
Wuhan and Chengdu, SD trends seasonally varied in fall–rise and rise–fall patterns. This
was primarily due to the climate characteristics of spring and winter in these areas, which
are not conducive to the diffusion of pollutants, further reducing the solar radiation reaching
the ground, and consequently reducing SD.
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Figure 4. Seasonal trends in SD from 1981 to 2020 for the ten selected stations. (a) Seasonal trends
in SD for Beijing; (b) Seasonal trends in SD for Shenyang; (c) Seasonal trends in SD for Harbin;
(d) Seasonal trends in SD for Shanghai; (e) Seasonal trends in SD for Wuhan; (f) Seasonal trends in
SD for Guangzhou; (g) Seasonal trends in SD for Chengdu; (h) Seasonal trends in SD for Kunming;
(i) Seasonal trends in SD for Urumqi; (j) Seasonal trends in SD for Lanzhou.
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3.2. DF and SD Trends

Generally, DF is an important indicator of levels of diffuse radiation, which are closely
related to the aerosol content in the air, and can uncover the effects of pollutants on SD
measurements. The correlation coefficients between DF and SD, listed in Table 2, ranged
from −0.04 to −0.62, indicating that there was a negative relationship between the DF
and SD. Therefore, sunshine duration decreased when diffuse radiation increased, and
vice versa.

However, the bar graph of the DF trend coefficients shown in Figure 5 provides a
different perspective. Long-term trend coefficients of DF during 1981 to 2020 were both
positive and negative, with no distinct relationship between SD and the DF. According to
the previous analysis on seasonal trends in SD, most SD trends took 2010 as the node—first
decreasing and then increasing. We recalculated the trend coefficients of DF according to
the 2010 node. From Figure 5, the DF trend coefficients of all the studied stations were
positive before 2010 and negative from 2011 to 2020. This indicates that the diffuse radiation
component increased continuously from 1981 to 2010, and began to decrease after 2010,
just contrary to the seasonal trends in SD depicted in Section 3.1.
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The opposite trend observed between SD and DF might be closely related to an-
thropogenic emissions. To understand the impact of the anthropogenic emissions on the
relationship between SD and DF, AOD, as an important physical property of particle
pollutants, is introduced to validate the negative correlation. The spatial–temporal varia-
tion and trends in MERRA-2 AOD over China from 1980 to 2017 have been analyzed by
Sun et al. [22]. High AOD values mainly appeared in agglomerations such as the North
China Plain (the city cluster of Beijing–Tianjin–Hebei), Pearl River Delta (the city cluster of
Guangzhou–Shenzhen–Zhuhai), Yangtze River delta (the city cluster of Shanghai–Nanjing–
Wuhan) and part of the Sichuan Basin (the city cluster of Chengdu), while low AOD values
mainly appeared in western China. The annual Mean MERRA-2 AOD of the whole of
China showed a slight increase from the 1980s to the 1990s, a sharp increase from 2001 to
2010 and a decrease from 2010 to 2017—which is almost identical to the trends and turning
points of the DF and SD. Furthermore, He et al. [23] investigated the AOD spatial–temporal
distribution during 2003 to 2016 throughout China. Their statistical results showed that
high AOD values mainly occurred in developed agglomerations; the overall annual mean
AOD showed a declining trend of −0.0018 per year from 2004 to 2016 over the whole of
China. A remarkable upward trend of 0.012 year−1 from 2003 to 2008 and a significant
decrease from 2008 to 2016 could be found; the turnaround appeared in 2008, which is
adjacent to the inflection point of the SD and DF at around 2010. Obviously, the variation
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in AOD had a good positive correlation with the DF, and an evident negative correlation
with SD. The possible reason for this might be that the surged anthropogenic emissions
could lead to an increase in aerosols and AOD; through scattering and absorbing, a large
number of aerosols will increase the diffuse radiation in the atmosphere and reduce the
direct radiation reaching the ground—thus reducing the SD. Regarding the turning point
shown in the SD, DF and AOD trends, this is most likely due to the Chinese government
taking a series of stringent pollution controls from around 2010.

In this study, we took annual PM2.5 concentration as an example to investigate the
influence of anthropogenic emissions on the relationship between SD and DF. As the
particle concentration data from throughout China before 2012 are not available, we could
only illustrate the spatial distributions in annual PM2.5 concentrations during 2012 to
2020 in Figure 6—which correlate well with the trends in SD and DF after 2010 and are
consistent with previous studies [22,23]. From 2012, high concentrations of PM2.5 have
been distributed over the North China Plain (the city cluster of Beijing–Tianjin–Hebei),
Yangtze River delta (the city cluster of Shanghai–Nanjing–Wuhan), Northeast Plain (the city
cluster of Shenyang–Jilin–Harbin), Northwest Plateau (the city cluster of Xi’an–Lanzhou–
Urumqi) and Sichuan Basin (the city cluster of Chengdu). All these regions are the fastest
developing areas in China. However, the interannual trend in PM2.5 concentration is
getting better year by year. This is likely to be closely related to the Air Pollution Prevention
and Control Action Plan (2013–2017) and the Blue Sky Protection Campaign (2018–2020),
implemented since 2013. According to statistical studies, the Air Pollution Prevention and
Control Action Plan reduced the annual population-weighted mean PM2.5 from 62.5 µg/m3

in 2013 to 44.4 µg/m3 in 2017, and the Blue Sky Protection Campaign further reduced
PM2.5 concentrations to 33.1 µg/m3 in 2020 [24–26]. The decrease in anthropogenic aerosols
resulted in a decrease in the DF, which further increased the solar radiation reaching the
ground and raised SD. Correspondingly, except for Urumqi—which had a decreasing trend
of SD before 2015—the other nine cities had an overall decrease before 2010; after that, the
SD trends of the cities rose gradually, which is consistent with the analysis results in Figure 5,
validating the negative relationship between SD and DF related to the concentrations of
aerosol particles.

3.3. Connections between API and SD Trends

Figure 7 displays the time series of the annual mean API from 2013 to 2020. A negative
correlation was observed between SD and API, which confirms that light pollution will
result in high SD. Furthermore, sharp decreases in API were observed after 2015 for all sta-
tions, along with a slight improvement in SD during this period. This might correlate with
pollution controls such as supersessions in polluting industrial equipment and enterprises,
and reductions in emissions of sulfur and nitrogen oxides from large plants.

Using only the available API data, the correlation coefficients between SD and the API
were calculated and listed in Table 3, ranging from −0.12 to −0.58. Correlation coefficients
of less than −0.3 could be found in the urban agglomerations in North China Plain, Yangtze
River delta, Northeast Plain, and Northwest Plateau, this is supported by the distribution
of annual PM2.5 concentration across China.
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Table 3. The correlation coefficients between SD and API.

Station Correlation Coefficients of SD vs. API

Beijing −0.55
Shenyang −0.39

Harbin −0.33
Shanghai −0.32
Wuhan −0.37

Guangzhou −0.22
Chengdu −0.12
Kunming −0.17
Urumqi −0.33
Lanzhou −0.58

Atmosphere 2022, 13, x FOR PEER REVIEW 10 of 15 
 

 

  

Figure 6. The spatial distributions of annual PM2.5 concentrations from 2012 to 2020 (Source: 

http://tapdata.org.cn, accessed on 11 May 2022). 

3.3. Connections between API and SD Trends 

Figure 7 displays the time series of the annual mean API from 2013 to 2020. A nega-

tive correlation was observed between SD and API, which confirms that light pollution 

will result in high SD. Furthermore, sharp decreases in API were observed after 2015 for 

all stations, along with a slight improvement in SD during this period. This might corre-

late with pollution controls such as supersessions in polluting industrial equipment and 

enterprises, and reductions in emissions of sulfur and nitrogen oxides from large plants. 

Figure 6. The spatial distributions of annual PM2.5 concentrations from 2012 to 2020 (Source:
http://tapdata.org.cn, accessed on 11 May 2022).

http://tapdata.org.cn


Atmosphere 2022, 13, 950 11 of 14Atmosphere 2022, 13, x FOR PEER REVIEW 11 of 15 
 

 

  

  

  
Figure 7. Cont.



Atmosphere 2022, 13, 950 12 of 14Atmosphere 2022, 13, x FOR PEER REVIEW 12 of 15 
 

 

  

  

Figure 7. Interannual changes in averaged SD, DF and API for the ten cities from 1981 to 2020. (a) 

For Beijing; (b) For Shenyang; (c) For Harbin; (d) For Shanghai; (e) For Wuhan; (f) For Guangzhou; 

(g) For Chengdu; (h) For Kunming; (i) For Urumqi; (j) For Lanzhou. 

Using only the available API data, the correlation coefficients between SD and the 

API were calculated and listed in Table 3, ranging from −0.12 to −0.58. Correlation coeffi-

cients of less than −0.3 could be found in the urban agglomerations in North China Plain, 

Yangtze River delta, Northeast Plain, and Northwest Plateau, this is supported by the dis-

tribution of annual PM2.5 concentration across China. 

Table 3. The correlation coefficients between SD and API. 

Station Correlation Coefficients of SD vs. API 

Beijing −0.55 

Shenyang −0.39 

Harbin −0.33 

Shanghai −0.32 

Wuhan −0.37 

Guangzhou −0.22 

Chengdu −0.12 

Kunming −0.17 

Urumqi −0.33 

Lanzhou −0.58 

 

Figure 7. Interannual changes in averaged SD, DF and API for the ten cities from 1981 to 2020. (a) For
Beijing; (b) For Shenyang; (c) For Harbin; (d) For Shanghai; (e) For Wuhan; (f) For Guangzhou; (g) For
Chengdu; (h) For Kunming; (i) For Urumqi; (j) For Lanzhou.

4. Conclusions

In this study, the SD, surface solar radiation, PM2.5 concentration and API data from ten
China Meteorological Radiation Data International Exchange Stations in ten representative
cities were collected to examine the trends between DF and SD from 1981 to 2020, PM2.5
concentration and SD from 2012–2020, and API and SD from 2013–2020. Our analysis
indicates that solar radiation and SD are associated closely with aerosol pollutants due to
urbanization and industrialization.

Overall, SD decreased in seven of the ten selected cities’ stations from 1981 to 2020,
with a decreasing rate of −0.03 h d−1 per decade to −0.36 h d−1 per decade—notable in
Beijing, Shanghai and Wuhan, where trend coefficients were lower than −0.5. By contrast,
SD increased in Kunming, Guangzhou and Shenyang, with the largest trend coefficient
of 0.54 and the largest increasing rate of 0.38 h d−1 per decade in Kunming. Seasonal
trends in SD showed a fluctuating decrease in SD from 1981 to 2010 and increases from
2011 to 2020. In contrast to the seasonal trends in SD, the DF trend coefficients suggested
that diffuse radiation increased continuously from 1981 to 2010, peaking in the 2010s and
decreasing after 2010. The correlation coefficients between DF and SD ranged from −0.04
to −0.62, validating the negative relationship between DF and SD—this was supported by
the improvement in annual PM2.5 concentrations due to the stringent pollution controls in
place since 2013 throughout China. Furthermore, the correlation coefficients ranging from
−0.12 to −0.58 demonstrated a negative relationship between SD and API; sharp decreases
in API were observed after 2015 for the ten typical cities’ stations and slight improvements
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in SD during this period were found which accounted for the pollution impact on SD trends
from the other side.

Because many factors can affect the transmission of solar radiation in the atmosphere,
some factors might not have been accounted for in this study. SD and diffuse radiation
are not only affected by air pollution, but also by clouds. As cloud coverage data are not
available for this study, we only adopted the clearness index related to the cloud cover,
without analyzing the relationship between SD and cloud cover. We will further explore
the influence of clouds on SD in subsequent studies.
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